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Validation of a Metabolic Network for Saccharomyces cerevisiae
Using Mixed Substrate Studies
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Setting up a metabolic network model for respiratory growth of Saccharomyces
cerevisiae requires the estimation of only two (energetic) stoichiometric parameters:
(1) the operational PO ratio and (2) a growth-related maintenance factor k. It is shown,
both theoretically and practically, how chemostat cultivations with different mixtures
of two substrates allow unique values to be given to these unknowns of the proposed
metabolic model. For the yeast and model considered, an effective PO ratio of 1.09
mol of ATP/mol of O (95% confidence interval 1.07-1.11) and a k factor of 0.415 mol
of ATP/C-mol of biomass (0.385-0.445) were obtained from biomass substrate yield
data on glucose/ethanol mixtures. Symbolic manipulation software proved very
valuable in this study as it supported the proof of theoretical identifiability and
significantly reduced the necessary computations for parameter estimation. In the
transition from 100% glucose to 100% ethanol in the feed, four metabolic regimes occur.
Switching between these regimes is determined by cessation of an irreversible reaction
and initiation of an alternative reaction. Metabolic network predictions of these
metabolic switches compared well with activity measurements of key enzymes. As a
second validation of the network, the biomass yield of S. cerevisiae on acetate was
also compared to the network prediction. An excellent agreement was found for a
network in which acetate transport was modeled with a proton symport, while passive
diffusion of acetate gave significantly higher yield predictions.

Introduction

For a long time, bioprocess intensification has relied
on random mutagenesis of microbial strains or the
nondirected improvement of the cultivation conditions.
This labor-intensive approach is mainly taken because
many potentially beneficial changes in the genetic makeup
of an organism are not readily evident. Indeed, the
enzyme systems governing the bottlenecks of a cell’s
metabolism may be situated far away from the enzyme
system that finally synthesizes the desired biochemical
compound. In many cases, fueling reactions of primary
metabolism must be rerouted to achieve increased pro-
ductivities (Vallino and Stephanopoulos, 1993).
In recent years, a more rational approach termed

“metabolic engineering” emerged which aims to (1)
identify the critical path (or the metabolic bottleneck) in
a producing strains’ metabolism, (2) direct the vast
genetic engineering methodology to manipulate the iden-
tified enzyme systems, and in doing so, (3) minimize the

efforts and corresponding expenses for process optimiza-
tion. As Bailey (1991) points out, most often a new
limitation arises after molecular modification so that the
expected improvement is not completely attained. Hence,
an iterative procedure of analysis, metabolic engineering,
and evaluation is needed to obtain an optimized strain.
The identification of metabolic bottlenecks is based on

a quantitative description of the metabolism of an organ-
ism. While kinetic constraints are sure to exist and
methodologies for their identification have been proposed
(e.g., biochemical systems theory: Savageau (1969) and
Metabolic Control Theory: Kacser and Burns (1973),
current knowledge of the dynamic behavior of complex
enzyme systems is insufficient to allow application of the
kinetic approach to metabolic bottleneck identification
(Vallino and Stephanopoulos, 1993; Nielsen and Villad-
sen, 1994).
The insights in the stoichiometry of biochemical reac-

tion networks on the other hand are more up to this task.
With mass balances constructed over the enzyme reac-
tions, a pseudo-steady-state assumption on the pools of
metabolic intermediates and flux measurements of me-
tabolites, significant information can be obtained on
metabolic pathway utilization and potential limitations
(Holms, 1986). However, while considerable knowledge
has been gathered, some uncertainty remains on meta-
bolic pathways, e.g on substrate transport mechanisms,
compartmentation, and the stoichiometry of energy-
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generating and -consuming processes. Therefore, the
estimation of such unknown stoichiometric parameters
and validation of the constructed metabolic network
model (MNM) is an essential step before model predic-
tions can be interpreted for metabolic engineering pur-
poses or the design of optimal feeding strategies.
Until now, little effort has been spent on the calibration

and validation of the stoichiometry of metabolic network
models using experimental data. Most often, the models
are constructed on the basis of a priori knowledge only,
i.e. established biochemical reactions, thermodynamic
irreversibilities, and energetic parameters obtained from
the literature (Aiba and Matsuoko, 1979; Majewski and
Domach, 1990; Vallino and Stephanopoulos, 1990; Goel
et al., 1993; Varma et al., 1993). However, experimental
data are a second source of information for model building
(Vanrolleghem and Dochain, 1995) and have not been
exploited sufficiently. For instance, isotope studies with
radio- or mass-labeled substrates though hampered by
high costs and experimental constraints (Bryers and Yeh,
1990; Zupke and Stephanopoulos, 1994) may provide
highly informative data on intracellular flux distribu-
tions. Alternatively, careful measurement and evalua-
tion of the component flows in and out of the cells and
their dependence on the growth rate applied in chemostat
cultivations (e.g., Varma and Palsson, 1994) can also
serve model calibration and subsequent identification of
metabolic constraints.
Moreover, the biomass yield of a microorganism on

many substrates can be used very beneficially to obtain
stoichiometric model parameters of metabolic networks
(van Gulik and Heijnen, 1995). In this study, the
dependence of biomass yields and the expression of key
enzymes on the composition of a substrate mixture fed
to chemostat cultivations is proposed as a new source of
experimental data for network calibration. To validate
the metabolic network, attention is focused on the
capability of the network to predict biomass yields on
different substrates and the correspondence between
predicted metabolic fluxes and presence or absence of the
corresponding enzyme activities in cell-free extracts.
Additionally, through the use of symbolic manipulation

software, explicit expressions are derived which relate
rates of reaction and biomass yields to the unknown
stoichiometric parameters in the large metabolic network
represented by a 88 × 84 stoichiometric matrix.
Throughout the paper, the uncertainty introduced by

estimation of model parameters on the basis of noise-
corrupted data was carefully followed. Relying to a large
extent on evaluation of parameter sensitivities, the
usefulness of symbolic manipulation software will be
illustrated. This methodology proved also beneficial as
it allowed considerable reduction in the computational
burden associated with the parameter estimation task.
Moreover, it was an invaluable tool to the theoretical
identifiability study that was performed on this model
to assess whether the unknowns could be given unique
values at all, given the model and the proposed experi-
ments.

Materials and Methods

Organism and Chemostat Cultivation. Saccharo-
myces cerevisiae T2-3D (Pronk et al., 1994) was cultivated
in chemostats with a working volume of 1 L (Applikon,
Schiedam, The Netherlands) at a dilution rate of 0.10
h-1. Conditions applied were a temperature of 30 °C, pH
controlled at 5.0, and dissolved oxygen level maintained
above 25% of air saturation. Details can be found in de
Jong-Gubbels et al. (1995). Medium composition con-

tained a mineral and vitamin component as mentioned
in de Jong-Gubbels et al. (1995), while carbon sourcess
glucose, ethanol, and acetic acidswere added to a final
carbon concentration of 0.250 C-mol/L at the C-mol ratios
reported in the text.
Analysis. Substrate andMetabolites. In the liquid

phase, total organic carbon (TOC), glucose, ethanol, and
acetate contents of the culture supernatant were assayed
as described previously (de Jong-Gubbels et al., 1995).
In the gas phase, O2 uptake and CO2 production rates

were quantified and calculated according to van Urk et
al. (1988). The amount of CO2 leaving the culture with
the effluent was negligible due to the low pH.
Biomass Dry Mass and Composition. Methods

used for determination of dry weights of washed culture
samples, the elemental composition of biomass, and its
protein content can be found elsewhere (de Jong-Gubbels
et al., 1995).
Enzyme Assays. All assays were performed im-

mediately after preparation of cell-free extracts using the
methodology described in de Jong-Gubbels et al. (1995).
Enzyme activities are expressed as micromoles of sub-
strate converted per minute per milligram of protein. One
unit is defined as the amount of enzyme catalyzing the
conversion of 1 µmol of substrate/min.
Enzymes analyzed included fructose-1,6-bisphosphatase

(EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), isoci-
trate lyase (EC 4.1.3.1), malate synthase (EC 4.1.3.2),
phosphoenolpyruvate (PEP) carboxykinase (EC 4.1.1.32),
pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC
2.7.1.40), hexokinase (EC 2.7.1.1), and glucose-6-P de-
hydrogenase (EC 1.1.1.49) (de Jong-Gubbels et al., 1995;
Postma et al., 1988, 1989).

Metabolic Flux Analysis

Theory. The methodology used to study the metabo-
lism of S. cerevisiae when grown on mixtures of glucose
and ethanol is the metabolic flux analysis. It consists of
quantifying the flow of metabolites through a network
of reactions occurring in the cell. The first step in such
analysis is to set up a stoichiometric model for these
reactions. Considering the thousands of reactions taking
place in the cell, it is obvious that not all of these can be
included in the model. The biochemical reactions (n )
99) and considered metabolites (m ) 98) on which this
study is based are given in the Appendix. This basic
information can be summarized in the following matrix
notation:

S‚C ) [S1 S12 ··· S1m

l l l l
Sn1 Sn2 ··· Snm

][C1

l
Cm

] ) 0 (1)

in which S is the stoichiometric matrix and C is the
metabolite vector. Note that the consistency of such a
network with respect to conservation laws for the ele-
ments (considered are C, H, O, N, S, and P) and charge
l can be checked by applying the metabolite composition
matrix E:

E ) [C1 H1 O1 N1 S1 P1 l1
l l l l l l l
Cm Hm Om Nm Sm Pm lm ]

(2)
and checking whether

S‚E ) 0 (3)
The second step in metabolic model building consists of
constructing a mass balance for each metabolite i in-
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volved in a reactor system of volume V:

dVCi

dt
) V(ri + Φi) (4)

where ri is the net rate of conversion of metabolite i in
the metabolic system and Φi denotes the net rate of
transport of metabolite i over the system boundaries. Φi

follows from flow and concentration measurements. The
net conversion rate ri is determined by the rates of all
biochemical reactions vj in which metabolite i is produced
or consumed.
Two types of metabolites can be discerned: intracel-

lular intermediate species and species which are trans-
ported across the cell membrane, e.g. nutrients, O2, CO2,
and products. For the majority of metabolites that
remain essentially intracellular, it holds that

r i
intra ) 0 (5)

A second simplification results from the fact that only
chemostat cultivation is considered in this study. Hence,
the extracellular concentrations are constant in time and
it follows that

r i
extra ) -Φi (6)

The rate vector R, composed of n reaction rates vi and m
net conversion rates ri, is defined as

R ) [v1, v2, ..., vn, r1, r2, ..., rm]
T (7)

Note here that most net conversion rates ri are known.
Either they are zero when the component is intracellular
or they can be obtained from relation 6. We also define
an m × (n + m) coefficient matrix A composed of the
previously defined reaction stoichiometry matrix S and
an (m × m) identity matrix -Im (Noorman et al., 1991):

A ) [Sn - Im] (9)

The balance equations for the m compounds of a system
consisting of n biochemical reactions can now be denoted
by

A‚R ) 0 (9)
This homogeneous system of m equations describes the
metabolic network.
Solving the Metabolic Network. Use of the net-

work involves the calculation of unknown rates, n reac-
tion rates vj and p net conversion rates ri, where p is the
number of metabolites with non-zero conversion rates.
The rank of the S matrix determines the minimum
number of rates that must be specified to provide unique
values to the other rates, i.e. in total (n + p - rank of S)
rates must be defined. The reduced row echelon form of
the matrix S, obtained using a standard software package
(in this work Maple V, Math Soft, Inc., Cambridge, MA)
provides the solution of the metabolic network, i.e. each
unknown rate is given as a function of measured rates
only.
Stoichiometric Metabolic NetworkModel (MNM).

Metabolic networks of S. cerevisiae were constructed for
aerobic growth on (mixtures of) glucose, ethanol, and
acetate. The database of basic reactions used in our work
on yeast metabolism is summarized in the Appendix. All
decarboxylation and ATP-consuming reactions were con-
sidered unidirectional, while all others retained revers-
ibility until proven otherwise. As this reaction database
is also used for the description of other systems (e.g., see
van Gulik and Heijnen, 1995), some reactions were not
used in this S. cerevisiae network. These omitted reac-
tions are indicated by “#” in the Appendix (for the

argumentation, see below). The considered components
are listed as well. In Figure 1 the central metabolic
pathways are schematized.
For certain reactions multiple pathways have been

described. To make a choice among these, a number of
assumptions on the biochemistry and some design choices
were made while constructing the network. These are
reviewed below. First, the choice of the set of reactions
is argued and, second, it is summarized how values were
given to remaining unknown stoichiometric coefficients.
Reaction Network. In this work it is not attempted

to incorporate the incomplete knowledge on cell compart-
mentation of S. cerevisiae in the metabolic network. The
high uncertainty involved in situating particular reac-
tions in one or the other compartment (mitochondria/
cytoplasm) would require too many design choices,
making the interpretation of the network predictions
difficult. Moreover, compartmentation would introduce
an additional level of complexity that was hoped not to
be necessary for adequate description of the cell’s me-
tabolism.
Transport of solutes in and out of the cell was modeled

according to the three possible transport mechanisms
present in yeast (Cooper, 1982; Serrano, 1991): simple
diffusion, facilitated diffusion, and active transport. The
latter is based on proton symports for which the proton
motive force is generated by a H+-ATPase (r58). Glucose
uptake in S. cerevisiae occurs via facilitated diffusion so
that the reaction for active transport (r50) available in
the reaction database can be omitted (see the Appendix).
Ethanol on the other hand enters the cell by passive
diffusion. With respect to acetate uptake, the picture is
less clear and both possibilities were evaluated (see
further). Evidently, for the glucose/ethanol network,
reaction r52 was not taken into account. Uptake of
phosphate and sulphate ions is based on proton symports
with H+/ion stoichiometries of 2 and 3, respectively. For
ammonium uptake the model of Roon et al. (1977) was
adopted, i.e. transport occurs via a proton symport with
a H+/NH4

+ stoichiometry of 1.
Polymerization reactions of protein, polysaccharides,

and RNA each involve the conversion of ATP to ADP. In
the reaction network it was assumed that four ATPs are
consumed per peptide bound, three ATPs are converted
per nucleic acid monomer, and one ATP is used for
extension of a polysaccharide with one carbohydrate unit
(Stanier et al., 1987).
Some dehydrogenases exhibit a dual cofactor specific-

ity: either NAD or NADP can be used as the electron
acceptor. To prevent singularity of the metabolic net-
work, a design choice had to be made for the reactions
concerned (r13/r14; r17/r18). In a subsequent paper (Van-
rolleghem et al., 1996) it will be shown how this choice
can be argued and validated. At this stage, it is sufficient
to state that the pentose phosphate pathway (r26-r31) was
assumed to be the only source of NADPH, whereas the
reactions catalyzed by acetaldehyde dehydrogenase and
isocitrate dehydrogenase only had NADH as a cofactor
(hence, r14 ) r18 ) 0 and both reactions are eliminated
from the network, see the Appendix).
Since the experimental data of this study were col-

lected for one growth rate (0.1 h-1), no distinction could
be made between growth- and non-growth-associated
maintenance. Here, both processes were lumped and
total maintenance energy requirements were modeled
proportional to biomass synthesis, i.e. k mol of ATP is
consumed per C-mol of biomass synthesized (r99). Note
that this single process now accounts not only for
maintenance but also for futile cycles in the cell. Ver-
duyn et al. (1991) introduced this concept, and it was
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later also applied by Varma et al. (1993) and van Gulik
and Heijnen (1995). Note that lumping these processes
in k allows elimination of the futile cycle described by
reaction r35 and the explicit ATP-hydrolysis reaction r95.
Some reactions given in the Appendix could be elimi-

nated because the compounds involved were not present
in the studied process, i.e. citrate (r39/r57), lactate (r40/
r53), gluconate (r42/r55), external pyruvate, and succinate
(r54/r56). The alternative ATP-generation systems r37 and
r38 were not considered either. Some reactions used in
the study of Corynebacterium glutamicum (van Gulik and
Heijnen, 1995) were obviously omitted in this investiga-
tion (r24/r25/r65). Finally, the singularity induced by
inclusion of the overflow mechanism for pyruvate to
acetyl-CoA (via r11/r13/r44) was broken by eliminating the
first step.
In order to describe the metabolism for the whole range

of glucose/ethanol mixtures, it was necessary to construct
different network configurations. Thermodynamic con-
straints dictate that certain reactions are unidirectional,
and it was observed that, as the ethanol fraction in the
feed increased, these reactions were prone to reversal.
In most cases another enzyme catalyzes the reversed
reaction, albeit with different cofactors or the introduc-
tion of energy equivalents. Three such reaction pairs
were identified to be critical, leading to four metabolic
regimes denominated MNM I, II, III, and IV (Figure 2).
At high glucose fractions (MNM I), ethanol is only used

as a source of acetyl-CoA (r44), gradually replacing the
acetyl-CoA synthesized from glucose via pyruvate (r10).
In this way ethanol is fueling the TCA cycle and the
acetyl-CoA requiring pathways for fatty acid and amino
acid synthesis. In MNM I the anaplerotic reaction to
replenish carbon in the TCA cycle is reaction r12.

At higher ethanol feeds (MNM II), all acetyl-CoA is
synthesized from ethanol and two anaplerotic systems
operate concurrently. As the ethanol fraction in the
medium increases, reaction r12 is gradually replaced by
the glyoxylate shunt, r32/r33. At the same time, to prevent
reversal of the flux, reaction r10 (which is known to be
irreversible) is eliminated from the network.
At still higher ethanol conversions, gluconeogenic

reactions are incorporated to allow an increased portion
of anabolism to be based on ethanol. First, reaction r16

Figure 1. Central pathways of the metabolic network of S. cerevisiae growing on mixture of glucose and ethanol.

Figure 2. Overview of the four metabolic regimes, the three
corresponding switchpoints, and the reactions involved for S.
cerevisiae growing on all possible mixtures of glucose and
ethanol.
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is incorporated and reaction r12 is eliminated to prevent
a futile cycle (r8-r12-r16) (MNM III).
Finally, reaction r3 is replaced by reaction r4 (MNM

IV). It is evident that intermediate reactions r6 and r7
and reaction r2 have reversed fluxes to participate in the
gluconeogenesis.
Summarizing, switching between the different net-

works occurs at switch values of fGLU (f XfY
switch) where a

specific irreversible reaction tends to reverse, i.e. when
its flux becomes zero and a new reaction switches on. The
reaction switches to examine are r10/r32-r33, r12/r16, and
r3/r4.
Stoichiometric Coefficients. Important stoichiomet-

ric coefficients that have to be given values include the
elemental composition of biomass and the monomeric
composition of the polymers protein, lipids, polysaccha-
rides, and RNA. Polysaccharides were described as
polyglucose, while lipids were considered to consist of two
components, oleate and palmitoleate (Bruinenberg et al.,
1983). The monomer composition of RNA was also
obtained from Bruinenberg et al. (1983), while the amino
acid content of protein was taken from Oura (1972). With
a mean 42% protein, biomass was identical to the
composition reported by Verduyn et al. (1991). Ash
content was found to be 6%. The elemental composition
of 1 mol (100 g) of biomass used is C3.907H6.290O1.984-
N0.586P0.022S0.0061 (Table 1, see supporting information). It
must be noted that biomass composition was assumed
to be independent of the different glucose/ethanol mix-
tures in the feed. This was verified by experimental
analysis of protein, carbon, and nitrogen content of
biomass samples taken from cultivations performed with
various glucose-to-ethanol ratios. The following composi-
tion was measured at a 50% ethanol fraction in the feed:
40.2% protein, 46.7% C, and 7.82% N on a g/g basis. No
significant trend in these values could be found as the
composition of the reservoir medium changed (results not
shown).
The only assumption made concerning the energetic

efficiency of the oxidative phosphorylation concerns the
equivalence of FADH and NADH (reactions r34 and r36)
in S. cerevisiae (Verduyn et al., 1991). As shown in the
sequel, it is possible to estimate the operational PO ratio,
i.e. the effective amount of ATP formed per mole of
oxygen reduced, from well-designed experiments. Simi-
larly, the value of the maintenance factor k is not fixed
a priori but is estimated on the basis of experimental data
as shown below.

Results

Estimation of Unknown Parameters in theMNM.
Calculation of yields and switch functions. Given
the assumptions and design choices made above, the
model structure is defined completely, i.e. the set of
components, reactions, and constraints (with their re-
spective switching points). The task of validation of this
metabolic network is now only to be preceded by the
estimation of the two unknown stoichiometric parameters
remaining in the network: (1) the operational PO ratio,
i.e. the effective amount of ATP produced in the electron
transport system per oxygen reduced, and (2) the main-
tenance energy factor k, which lumps the growth- and
non-growth-associated maintenance requirements ex-
pressed as mol of ATP/C-mol of biomass produced.
In order to obtain numerical values for the reaction

and net conversion rates, values for PO and k have to be
inferred from a comparison between metabolic network
predictions and experimental data. To this end, it is
advantageous to write the model predictions as an

explicit function of the unknown stoichiometric param-
eters since this allows direct evaluation of the discrep-
ancy between predictions and data. This significantly
decreases parameter estimation calculations because the
network need not be solved (involving a computing-
intensive calculation of the reduced row echelon form)
separately for each PO and k value evaluated.
While it may be rather cumbersome to obtain solutions

of the network for which the parameters are explicit (see,
e.g., van Gulik and Heijnen, 1995), symbolic manipula-
tion software is fit for this task. A typical result for a
particular rate of reaction (r3, phosphofructokinase in
MNM III) is as follows (similarsnonlinearsrelations are
obtained for all other nonmeasured conversion rates):

v3 ) [-0.119(6PO - 1)rethanol + (0.230PO + 0.333k +

0.466)rglucose]/(4.227PO + 2k + 4.221) (10)
Hence, in this example, estimates of PO and k can be
obtained, provided the reaction rate v3 and the net
conversion rates of glucose and ethanol are measured at
different ratios of ethanol and glucose conversion. To this
end, model predictions for v3 are compared with the
measured rates, typically using a sum of squared errors
criterion that is minimized by variation of PO and k.
It is far easier to measure net conversion rates than

(intracellular) reaction rates. Therefore, preference is
given to estimation of the parameters on the basis of only
conversion rates or, equivalently, apparent yield coef-
ficients (ratios between conversion rates). It is important
to note that not all yield coefficients are functions of PO
and k. In this work conversion rates of glucose, ethanol,
CO2, H2O, H+(E), NH4

+(E), O2, Pi(E), SO4
2-(E), and

biomass are considered. Symbolic solution of the meta-
bolic networks reveals that biomass yield coefficients
involving H(E), NH4(E), Pi(E), and SO4(E) are indepen-
dent of PO and k, while all other combinations can be
used for parameter estimation. This is to be expected
because the conversion rates of H(E), NH4(E), Pi(E), and
SO4(E) are uniquely related to biomass on the basis of
charge and, N, P, and S elemental composition.
Biomass yields on substrate and oxygen were chosen

for the parameter estimation in this work. Substrate is
defined as the sum of glucose and ethanol on a C-mole
basis. The carbon fraction of glucose is given by the
variable fGLU. Defined in this way, the biomass yield on
substrate from the metabolic network MNM III is found
to be

Ysx
III )

(6PO - 1)(1 - fGLU) + (4PO + 2)fGLU
4.227PO + 2k + 4.221

(11)

and for the biomass yield on oxygen, one finds

Yox
III )

(6PO - 1)(1 - fGLU) + (4PO + 2)fGLU
(7.389 + 3k)(1 - fGLU) + (2.108 + 2k)fGLU

(12)
For the other networks (MNM I, II, and IV), only the
coefficients in these relations differ (Table 2). Note that
an increase in k always results in a decreased biomass
yield and that an increase in POmay compensate for this.
In the MNM, three critical reaction combinations have

been identified. The combinations r10 f r32/r33, r12 f r16,
and r3 f r4 each represent a switching point between the
four networks constructed. The critical glucose fractions
(f XfY

switch) at which this switching occurs can be deter-
mined from the analytical result of the corresponding
reaction rates. Taking again the example of the irrevers-
ible reaction catalyzed by phosphofructokinase (r3) (eq
10), one can calculate the critical glucose fraction at
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which the flux through this reaction is zero, i.e. v3 ) 0,
given by eq 10:

f IIIfIV
switch )

0.119(6PO - 1)
0.944PO + 0.333k + 0.347

(13)

It is evident that this critical feed composition is depend-
ent on PO and k. Similar calculations for the other
reactions lead to the (f XfY

switch) values summarized in
Table 3.
The dependence of the switch fGLU fractions on PO and

k complicates the estimation of these parameters. Indeed
it means that it is necessary to evaluate for each PO,k
combination proposed by the estimation algorithm, which
experimental data are to be compared to the predictions
by MNM I, II, III, and IV, respectively.
Evaluation of the Experimental Data Set. The

experimental data set available for calibration of the
metabolic network model consisted of conversion rates
of biomass (cell dry weight), oxygen, ethanol, and glucose
for 11 glucose fractions tested (de Jong-Gubbels et al.,
1995). Before the estimation of the remaining unknown
parameters PO and k in the MNM was initiated, the
available experimental evidence was carefully analyzed
with respect to consistency.
First, the carbon balance was checked. Typically about

4 mM of TOC was measured in the supernatant of the
cultures. The residual concentrations of glucose and
ethanol were below the detection limits of the analytical
methods used, and no low-molecular-weight metabolites
could be detected by HPLC. Probably, some high-
molecular-weight compounds (e.g., extracellular protein)
may have been present. Carbon recoveries were 97-
102%.
Second, as the number of measured flows is such that

the elemental balances present an overdetermined set
of linear equations, the conservation laws can be applied
to the data to increase the accuracy and credibility of the
estimates of the conversion rates. This technique is
called balancing or data reconciliation (van der Heijden
et al., 1994). The necessary adjustments to the measured
rates are related to the standard deviations of the
measurements and the structure of the set of equations.
The raw and reconciled data are summarized in Table 4
(see supporting information). Standard deviations for the
raw data were obtained from repeat measurements and
propagation of measurement variances. The chi-squared
consistency test shows that all adjustments made were
acceptable with respect to the observed measurement
errors (Table 4).
Estimation of PO and k. With these reconciled data,

the yield coefficients were calculated for the 11 mixtures
of ethanol and glucose, evaluated, and subsequently used

to estimate PO and k. A multiresponse sum of squared
errors criterion was used:

J ) ∑
i)1

11

ws(Ŷsx(i) - Ysx(i))
2 + ∑

i)1

11

wo(Ŷox(i) - Yox(i))
2

(14)

where the weights wo and ws were taken as approxi-
mately inversely proportional to the residual errors, i.e.
wo ) 1 and ws ) 10.
Figure 3 shows the result of the parameter estimation.

A satisfactory fit of the model to the data can be observed.
In addition, approximate confidence regions (R ) 0.05)
on the MNM predictions are indicated by dashed lines.
These confidence regions were calculated as follows.
First, a systematic exploration of the objective functional
J for an extensive number of parameter combinations
was performed. Figure 4a shows a contour plot of the
objective functional J as calculated for a grid of 41 × 41
combinations of PO and k. One observes that the
minimal value of the objective functional (Jopt ) 0.0189)
is found at a value of PO ) 1.090 and k ) 0.415. In
Figure 4b sections through the objective functional are
given for three k values in the neighborhood of the
parameter estimates. One observes a sharp minimum
in J as a function of PO for each particular k value, while
the effect of k on the minimum value of the objective
functional is somewhat less pronounced.
The (1 - R) confidence region of the parameters

consists of the set of parameter combinations, resulting
in an objective functional less than the threshold value
(Beale, 1960):

Jopt(1 + p
N - p

FR,p,N-p) (15)

where N and p are the number of measurements (N )
22) and parameters (p ) 2), respectively, and FR,p,N-p is
the value of the F distribution with p and N - p degrees
of freedom and a confidence level R. This region is
situated for values of PO between 1.07 and 1.11 and for
k between 0.385 and 0.445.
Subsequently, biomass yields were predicted with an

extensive set of parameter combinations taken from this
95% confidence region. These predictions allowed con-
struction of the confidence regions of the model as given
in Figure 3.
A Practical and Theoretical Check on Parameter

Identifiability. The valley-like form of the objective
functional gives rise to some concern and warrants
additional attention because it may be indicative of
problems with the estimation of PO and k. Indeed, in
the range of k ) 0.385-0.445 and PO ) 1.07-1.11, it

Table 2. Biomass Yield on Substrate and Oxygen for the Four Metabolic Networks Involved in the Description of S.
cerevisiae Metabolism on Glucose/Ethanol Mixtures

network Ysx (C-mol/C-mol) Yox (C-mol/mol)

MNM I
(6PO - 1)(1 - fGLU) + (PO + 4

3)fGLU
4.227PO + 2k + 3.681

(6PO - 1)(1 - fGLU) + (PO + 4
3)fGLU

(6.578 + 3k)(1 - fGLU) + (2.272 + 2k)fGLU
MNM II

(6PO - 1)(1 - fGLU) + (PO + 4
3)fGLU

4.227PO + 2k + 3.681

(6PO - 1)(1 - fGLU) + (PO + 4
3)fGLU

(6.578 + 3k)(1 - fGLU) + (2.272 + 2k)fGLU
MNM III (6PO - 1)(1 - fGLU) + (4PO + 2)fGLU

4.227PO + 2k + 4.221
(6PO - 1)(1 - fGLU) + (4PO + 2)fGLU

(7.389 + 3k)(1 - fGLU) + (2.108 + 2k)fGLU
MNM IV

(6PO - 1)(1 - fGLU) + (4PO + 7
3)fGLU

4.227PO + 2k + 4.459

(6PO - 1)(1 - fGLU) + (4PO + 7
3)fGLU

(7.745 + 3k)(1 - fGLU) + (1.996 + 2k)fGLU
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can be observed that parameter combinations satisfying

k - 0.415 ) 1.77(PO - 1.090) (16)

will result in objective functional values that differ little
from the minimal value. This makes it difficult to
attribute unique values to PO and k. This problem is
also known as the practical identifiability problem
(Munack, 1991).

To make a theoretical decision on the identifiability
problem, a standard technique consists of evaluating the
output sensitivity functions, i.e. ∂Ysx/∂PO and ∂Ysx/∂k, and
similarly for the biomass yields on oxygen. Proportional-
ity of these functions is a proof of the theoretical non-
identifiability of the considered parameters (Munack,
1991).

The output sensitivity functions of Ysx for the param-
eters k and PO have been derived analytically for MNM
III from (11):

∂Ysx
III

∂k
) -2

(6 - 2fGLU)PO + 3fGLU - 1

(4.227PO + 2k + 4.221)2
(17)

∂Ysx
III

∂PO
) 2.114

∂Ysx

∂k
+

6 ) 2fGLU
4.227PO + 2k + 4.221

(18)

This result clearly shows the nonproportionality of the
output sensitivity functions. Hence, it can be con-
cluded that PO and k are theoretically identifiable
from measurements of Ysx at different substrate
mixtures.
Similarly, the output sensitivities for Yox are deduced

from (12):

∂Yox
III

∂k
)

-
((6PO - 1)(1 - fGLU) + (4PO + 2)fGLU)(3 - fGLU)

((7.389 + 3k)(1 - fGLU) + (2.108 + 2k)fGLU)
2

(19)

∂Yox
III

∂PO
)

6 - 2fGLU
(7.389 + 3k)(1 - fGLU) + (2.108 + 2k)fGLU

(20)
leading to the same conclusion.

Table 3. Switching Points for Energetic Parameters PO and k and Their Sensitivity to These Parameter Valuesa

switchpoint f XfY
switch (C-mol of glucose/C-mol of carbon source) PO ∂f XfY

switch / f XfY
switch

∂PO k ∂f XfY
switch / f XfY

switch
∂k

I f II 0.148(6PO - 1)
0.944PO + 0.307k + 0.218

(0.597)
(0.433) (-0.092)

II f III 0.131(6PO - 1)
0.944PO + 0.323k + 0.289

(0.499)
(0.472) (-0.092)

III f IV 0.119(6PO - 1)
0.944PO + 0.333k + 0.347

(0.434)
(0.502) (-0.092)

a Values for the optimal values of PO (1.090) and k (0.415) are given in parentheses.

Figure 3. Reconciled biomass yield data and model predictions
with error bounds. (a) biomass yield on substrate and (b)
biomass yield on oxygen.

Figure 4. Multiresponse objective functional: (a) contour plot
of J as function of PO and k and (b) sections across objective
functional for different k values.

440 Biotechnol. Prog., 1996, Vol. 12, No. 4



We want to stress here that this theoretical exercise
should be performed before parameter estimation starts
and that the application of symbolic manipulation soft-
ware is very useful.
Validation and Predictive Capacity of the MNM.

Two approaches were used to validate the metabolic
network model of S. cerevisiae. The first consists of
confronting data and model predictions for the biomass
yield on a different substrate than the ones used for
calibration of the model. Second, predictions of the flux
through identified critical reactions are compared with
measured levels of the enzymes catalyzing these reac-
tions.
Validation Based on Biomass on Acetic Acid

Yield. S. cerevisiae can use glucose, ethanol, and acetic
acid as a single carbon source. Verduyn (1991), using a
closely related strain and the same cultivation conditions
as this work, reported a biomass yield on acetic acid of
0.29 g/g or 0.34 C-mol/C-mol. A metabolic network was
derived from the glucose/ethanol network valid for the
lowest glucose fraction (MNM IV), by omission of r13 and
r43 and setting fGLU ) 0. Except for the transport of acetic
acid into the cell, this network is complete for prediction
of metabolism in acetic acid cultivations. It is as yet not
established whether acetic acid transport in S. cerevisiae
is energy-dependent. Hence, two possibilities were evalu-
ated. First, a proton symport with a H+/acetic acid
stoichiometry of 1 was implemented. Alternatively,
passive or facilitated diffusion was incorporated in the
metabolic network.
With the values for PO and k estimated from the

glucose/ethanol experiments, biomass yields were calcu-
lated for both hypothetical acetic acid networks. For the
network with facilitated diffusion, a yield coefficient of
0.44 C-mol/C-mol was predicted, while a biomass yield
of 0.34 was calculated for the network in which a proton
symport was incorporated. One observes an excellent
agreement between the data and the network in which
transport of acetic acid into the cell requires energy.
Similarly the yields on oxygen, measured as 0.52 C-mol/
mol, were found to be 0.82 and 0.53 C-mol/mol for the
networks without and with transport-ATP demands.
Hence, these results not only validate the metabolic
network but also provide additional evidence for the
existence of a proton symport for acetic acid. This is
consistent with the results of Leao et al. (1986) and
Cassio et al. (1987).
Validation Based onMetabolic Flux Analysis and

in Vitro Enzyme Assays. Generally speaking, two
control systems for enzyme activity are present in the
cell. The first, operating at the level of enzyme synthesis
is based on (1) the modulation of DNA expression into
mRNA and translation of the latter in enzyme, (2)
regulation of enzyme turnover, and (3) irreversible
inactivation of the enzyme. The second control system
acts directly on the enzyme activity by changing the
kinetic properties of the biocatalysts, e.g. by allosteric
modification or phosphorylation.
Enzyme levels (expressed as in vitro activities) were

available for nine enzymes involved in the metabolism
of glucose and ethanol: r1, r3, r4, r8, r12, r16, r26, r32, and
r33 (de Jong-Gubbels et al., 1995). From the onset of the
analysis, it must be stressed that these measurements
may only be interpreted with respect to regulation at the
level of transcription/translation since allosteric mecha-
nisms cannot be assessed by in vitro techniques. Hence,
only if an enzyme is absent where the model predicts
activity may the validity of the model be questioned. Even
then, the possibility still remains that isoenzymes exist
in the cell that were not measured. Still one can confront

the predicted fluxes with the measured enzyme levels and
in this way obtain indications about the actual in vivo
activity of these enzymes, pointing to the method of
regulation.
A second precaution to take before conclusions are

drawn from this type of metabolic network validation is
due to the uncertainty of the parameters. Because the
development of the metabolic network involves estima-
tion of parameters on the basis of experimental data (see
above), the inherent uncertainty of the measurements is
propagated in the parameter estimates. The resulting
model uncertainty can be evaluated, however, by check-
ing the sensitivity of the predicted pathway rates and
the switching points to the parameter values. If the
switching points vary a lot with small changes in PO or
k, it means that these switching points can be situated
at almost any fGLU without affecting the model fit to the
yield data (see above). Hence, only if the sensitivities
are sufficiently low can reliable conclusions be drawn on
the validity of the network model structure.
Sensitivity of Switching Points. For the three

switching point functions of Table 3, one can readily
calculate the scaled sensitivity functions (we used the
symbolic software tool again to minimize “human error”).
For reaction r3 (eq 13) one obtains

k ∂f IIIfIV
switch

f IIIfIV
switch

∂k
) -0.333 k

(0.944PO + 0.333k + 0.347)
(21)

PO ∂f IIIfIV
switch

f IIIfIV
switch

∂PO
) 2.835PO

k
k ∂f IIIfIV

switch

f IIIfIV
switch

∂k
+ 6PO
6PO - 1

(22)

It means that with an increased k value more ethanol
will be converted before reaction r3 tends to reverse and
has to be replaced by the gluconeogenic analogon. Simi-
larly, a higher efficiency of the oxidative phosphorylation
will result in an opposite change of the switch glucose
fraction at which reaction reversal would occur. In Table
3, numerical values are given for this scaled sensitivity
function for the optimal parameter estimates obtained
above. The sensitivity of the switch substrate mixtures
for the other reactions are given as well. Similar conclu-
sions as for f IIIfIV

switch can be made. Note that the effect of
changing PO and k values is rather low. For a relative
change in the parameter value with 10%, a relative shift
of the critical glucose fraction must be expected with only
5% or 1% for PO and k, respectively. Hence, the critical
switching fractions are rather strictly controlled by the
value of PO and k. This result implies that the experi-
mental enzyme activity results may be interpreted to
validate the metabolic network. Again, we want to stress
the importance of this preliminary analysis for the
validation task at hand.
Experimental Results. The predictions of the f switch

values, together with the pathway fluxes that can be
calculated from the MNM solutions (e.g., eq 10), will now
be compared to the experimental enzyme activity deter-
minations (de Jong-Gubbels et al., 1995).
For the first switch in metabolism (from MNM I to

MNM II), Figure 5a shows the measured activities of the
enzymes involved in the glyoxylate shunt (r32/r33) and the
corresponding flux predictions. From the stoichiometry
of reactions r32 and r33, it is evident that the metabolic
network predicts identical reaction rates. The expression
of isocitrate lyase (r32) is initiated at lower ethanol
conversions than predicted by the network. Assuming
the metabolic network is correct, this may indicate that
the synthesis of this enzyme is not regulated very strictly.
Comparingly, malate synthase seems more tightly regu-
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lated and is only appearing at fGLU ) 0.6, which corre-
sponds very well to f IfII

switch ) 0.597 obtained from the
network (Table 3, Figure 5a). Moreover, the measured
enzyme activities are proportional to the required reac-
tion rates, indicating that regulation seems to occur at
the enzyme expression level. A different conclusion must
be made for isocitrate lyase.
No enzyme activities were measured for reaction r10

(it is difficult to accurately measure activities of the
pyruvate dehydrogenase complex).
While the model predicts that the reaction rate of the

alternative glucose-related anaplerotic pathway (r12,
pyruvate carboxylase) drops quickly to zero between fGLU
) 0.597 and fGLU ) 0.499, the measured enzyme levels
remained unchanged (data not shown to retain clarity
of Figure 5a; the experimental results can be found in
de Jong-Gubbels et al., 1995). Hence, no expression level
regulation seems active for this reaction, and control
based on enzymic modification must play a role. Fur-
thermore, the measured pyruvate carboxylase activities
remained at a constant level even at lower glucose feeds
and down to growth on ethanol only. Another remark-
able result is that it is predicted that both anaplerotic
reactions coexist in the cell (between fGLU ) 0.597 and
fGLU ) 0.499, Figure 5a), a result that is not contradicted
by experimental evidence.
At glucose fractions lower than f IIfIII

switch ) 0.499, the
model predicts that the gluconeogenic enzyme catalyzing

reaction r16 (PEP carboxykinase) must be present, and
this is confirmed by the experimental results (Figure 5b).
However, the simultaneous presence of both PEP car-
boxykinase and pyruvate carboxylase could lead to a
futile cycle (r16-r8-r12), and this is probably prohibited
in vivo by allosteric regulation mechanisms. Equiva-
lently, in the network, reaction r12 is eliminated for fGLU
lower than 0.499. One should note that PEP carboxy-
kinase was also present at significant levels under
cultivation conditions where the glyoxylate shunt was not
yet active, indicating either another role for the enzyme
than gluconeogenesis or the presence of regulation based
on enzyme modification. Again, predicted reaction rates
corresponded fairly well with the measured activities in
the fGLU range (0.3-0.0). Activities of pyruvate kinase
(r8) showed a linear decrease to 50% of the maximum
level as the ethanol fraction in the feed increased (see
also de Jong-Gubbels et al., 1995). The model predictions
did not correspond to this behavior. Under the assump-
tion that the proposed model describes cellular metabo-
lism, allosteric modification of the synthesized enzymes
must be acting to adjust the corresponding flux.
The switch from MNM III to IV involves phosphofruc-

tokinase (r3) and fructose-1,6-bisphosphatase (r4). It is
predicted to occur at a critical glucose fraction of 0.434.
The enzyme activities of FBPase summarized in Figure
5c are in excellent agreement with this prediction.
Moreover, as in the case of malate synthase (r33), the

Figure 5. Measured enzyme activities and flux predictions from the metabolic network for (a) dashed line, pyruvate carboxylase
(r12); full line, glyoxylate shunt (r32/r33); isocitrate lyase (r32, open symbols); malate synthase (r33, closed symbols); (b) PEP carboxykinase
(r16); (c) fructose-1,6-bisphosphatase (r4); and (d) glucose-6-P dehydrogenase (r26).
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reaction rate is proportional to the enzyme activity
measured, indicating control at the expression level
under the conditions tested.
It is well-known that, in addition to regulation at the

level of enzyme synthesis, the activity of the enzymes of
the glyoxylate cycle and gluconeogenesis may be influ-
enced by posttranslational modification and allosteric
regulatory mechanisms. However, the examples dis-
cussed above show that, under the carbon-limited steady-
state conditions investigated in this study, regulation
occurs mainly at the level of enzyme synthesis. For the
enzymes which are not controlled at the expression level,
additional regulation systems must be active, like allo-
steric systems or kinases. In this respect it is striking
to have a closer look at an enzyme involved in glycolysis,
phosphofructokinase (r3). While the carbon flux through
this reaction alters drastically as the ethanol fraction in
the feed increases, constant enzyme levels are found
through the whole range of glucose/ethanol mixtures
tested (data not shown, see de Jong-Gubbels et al., 1995).
From this result and the evidence reported on the other
reactions, one could conclude that the enzymes involved
in gluconeogenesis are more tightly controlled at the
transcription/translation expression level than the gly-
colytic enzymes which seem largely constitutive for the
conditions tested.
Finally, it is interesting to pay some attention to the

results of the flux analysis of reaction r26 catalyzed by
glucose-6-P dehydrogenase. Figure 5d illustrates that
the synthesis of this enzyme is rather constant for all
feed compositions tested. Although this does not neces-
sarily mean that the fluxes are actually constant, it is
interesting to observe that the predicted reaction rates
(Figure 5d) correspond to the enzyme levels found.

Discussion

A metabolic network was constructed for growth of S.
cerevisiae on mixtures of glucose and ethanol. The main
problem that had to be dealt with after inclusion of all
biochemical a priori knowledge (in the form of the
reaction network) was the estimation of two unknown
energetic coefficients: (1) the operational PO ratio de-
scribing the efficiency of ATP formation in the electron
transport chain and (2) a growth-related maintenance
factor k which in this work was a fixed amount of ATP
dissipated per unit of biomass formed.
In many applications, this estimation problem is

circumvented (1) by accepting a (most often theoretical
and not operational) PO ratio from the literature (Aiba
and Matsuoko, 1979; Majewski and Domach, 1990;
Vallino and Stephanopoulos, 1990, 1993; Goel et al., 1993;
Varma and Palsson, 1995) and (2) by applying a two-
parameter (growth-associated and non-growth-associ-
ated) maintenance reaction which provides sufficient
parameter flexibility to the reaction network to produce
acceptable model predictions (Varma et al., 1993; Vallino
and Stephanopoulos, 1993; Varma and Palsson, 1995).
Since most applications of the metabolic modeling meth-
odology have been theoretical in nature (Majewski and
Domach, 1990; Vallino and Stephanopoulos, 1993; Varma
et al., 1993; Varma and Palsson, 1994a), the present
models are not sufficiently validated with “rich” experi-
mental data and therefore possess limited predictive
capacities.
Tackling this estimation problem by experimental

methods was one of the main goals of our work. Van
Gulik and Heijnen (1995) have presented a first approach
to estimate these energetic parameters in metabolic
networks of S. cerevisiae and Candida utilis: it consists

of presenting a multitude of substrates one-by-one to the
organism. From the yields, it was shown to be possible
to obtain unique values for the unknown parameters PO
and k.
In the same study it proved also possible in the case

of lysine production by C. glutamicum to use the chang-
ing biomass and product yield data obtained in a chemo-
stat operated at a series of dilution rates for estimation
of the operational PO ratio and maintenance coefficient.
Our work evaluated whether yield data on a number

of different mixtures of substrates provided sufficiently
rich data for estimation of the unknowns. The approach
taken was more rigorous compared to the previous work
as the identifiability properties of the estimation problem
were thoroughly tested, both theoretically and practically.
For the theoretical identifiability check, the usefulness

of symbolic manipulation software was clearly shown as
it eased the derivation of the proof of nonproportionality
of the sensitivity functions. Its application has been
advocated previously for theoretical identifiability studies
of such large systems for it prevents human error
(Raksanyi et al., 1985; Posten and Munack, 1990).
In addition, this software also helped reducing the

necessary computations for the parameter estimation as
the four metabolic networks operational over the whole
range of substrate mixtures do not have to be solved for
each new (PO, k) parameter set tested.
Finally, the sensitivity functions which were calculated

during the theoretical identifiability study generated a
lot of insight on the dependence of reaction and conver-
sion rates on the energetic properties of the cell. Also,
this clearly showed the interrelation between the two
parameters, pointing to the multivariable nature of this
parameter estimation problem. It must be stressed here
that one-dimensional sensitivity analysis, as performed
in many instances, may shed an illusion of identifiability
since the multivariable character is not addressed.
For the practical identifiability, the numerical proper-

ties of the nonlinear parameter estimation problem were
evaluated. It was observed that the objective functional
shape was sufficiently conditioned for reliable parameter
estimation. Using a multiresponse objective functional
involving biomass yields both on substrate and on oxygen
and the postulated metabolic network, operational PO
and k values were obtained together with their 95%
confidence intervals (1.07 < PO < 1.11 mol of ATP/mol
of O; 0.385 < k < 0.445 mol of ATP/C-mol of biomass).
The PO value obtained is substantially lower than the

overall mechanistic PO ratio for S. cerevisiae of 2 (Ver-
duyn et al., 1991). In their discussion on the subject,
Verduyn et al. (1991) mention, next to their own, several
other approaches used in the past to describe this
discrepancy (von Meyenburg, 1969; Harder and van
Dijken, 1976; Harder et al., 1981) and conclude that an
effective PO ratio for baker’s yeast is expected to be close
to 1.
The value of 1.20 found by van Gulik and Heijnen

(1995) is somewhat further distant than the one esti-
mated here, but this can be explained by the approach
taken: They attempted to combine the yield data of both
C. utilis and S. cerevisiae to obtain two PO values but a
common k value for the respective yeasts. Hence,
compromise estimates may have been obtained which
may be different from the best estimates for the separate
yeasts. Comforting, however, is the finding that the (PO,
k) parameter set found in their work (1.20, 0.644) is lying
in the objective functional valley obtained in our work
(see Figure 4) and is almost fulfilling equation 16.
With respect to the k value, it is good to recall the two

concepts found in the literature to accommodate for the
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difference in theoretical and experimental ATP require-
ments for growth (Verduyn et al., 1991): In the first
concept, it is assumed that a fixed amount k of ATP is
dissipated and this is, consequently, independent of the
growth substrate. An alternative concept is that a fixed
fraction of all produced ATP, which will thus depend on
the substrate used, is no longer available for biomass
synthesis but is used in such processes as maintenance
of gradients, futile cycles, proofreading in protein, and
RNA/DNA synthesis. Verduyn et al. (1991) and van
Gulik and Heijnen (1995) collected ample evidence that
the first concept is the more likely because the alternative
leads to very different PO values for the same organism
growing on different substrates, which is unlikely.
In our metabolic network model, the approach of a

fixed amount of k ATP/C-mol of biomass was adopted.
The obtained k value can be compared to the k values
reported in the literature (Table 5). The higher k values
for the non-yeast growth systems can partially be ex-
plained by the lower maintenance requirements of yeasts
compared to other organisms (Verduyn et al., 1991).
More important, however, may be that the PO ratios used
in the other studies were not fitted to experimental data
and were probably too high. As mentioned previously,
this would result in a too efficient ATP generation and
thus, to account for the excess ATP, a substantially
higher k value is calculated. Finally, also the protein
content of the cell may play a role in the k value (see
below). Indeed, van Gulik and Heijnen (1995) express
the k value per C-mol of protein to account for a
substantial difference in protein content betweenC. utilis
and S. cerevisiae. In this manner a single maintenance
factor could be used for both organisms. For the litera-
ture data presented in Table 5, protein contents are
indeed significantly (up to 40%) higher than the 42%
protein of S. cerevisiae.
In this context, the question can be addressed as to

what the effect on the k factor would be if six ATPs are
used for elongation of the peptide chain instead of the
four included in our metabolic network. Indeed, this
stoichiometry is not established completely yet. One
observes in the reaction network used (see the Appendix)
that the ATP conversion for protein elongation and
biomass formation reactions (r85 and r99) are exchange-
able. It can be calculated that an increase to six ATPs
per peptide bond would decrease k with 0.25 mol of ATP/
C-mol of biomass. Taking the uncertainty of assumed
PO values into account, it appears that a k value of
approximately 1 mol of ATP/C-mol of biomass is a
reasonable value. However, a more extensive analysis
of growth yields for different types of organisms giving
independent values of PO and k is required to establish
a reliable value for k.
An attempt was made to validate the fully calibrated

metabolic network model. Special attention was focused
on the use of rather easy to measure variables of the cell’s
metabolism (yields and in vitro enzyme activities) to

ensure ease of application for other biological reaction
systems. To the authors’ knowledge this exercise is the
first of its kind for metabolic networks.
As a first validation test, a new substrate (acetate) was

administered to S. cerevisiae and the observed yield
corresponded excellently with the model prediction. As
a spinoff, new evidence was supplied that acetate uptake
requires an active transport system, indicating again that
metabolic network analysis is an excellent tool for
increasing insight in the cell’s metabolism.
The second validation method was based on a more

biochemical evaluation of the model’s predictive capabili-
ties. In the applied test, a number of measured activities
of enzymes of central metabolism were compared with
predicted reaction rates. None of the enzymes were
absent when its corresponding reaction was predicted to
be active in the cell. Moreover, the onset of expression
of a number of key enzymes was found to coincide very
well with the switching between different networks as
the glucose fraction in the feed decreased. This result is
a very powerful validation of the metabolic network.
It was also observed that for a number of enzyme-

catalyzed reactions (especially gluconeogenesis) enzyme
levels were proportional to the predicted reaction rates,
while for others the in vitro activities diverged from the
model responses. This information was interpreted in
the frame of enzyme regulation, i.e. the former enzymes
are subjected to regulation at the expression level
whereas the latter’s activity is regulated by enzymic
modification.
Finally, in the work of de Jong-Gubbels et al. (1995),

switching of the metabolic network reactions was pre-
dicted on the basis of an analysis of carbon fluxes only
(Table 6). The three switching fGLU fractions are clearly
lower than the fractions calculated here with the overall
metabolic network where cofactors are also taken into
account. For the glucose fraction for which all acetyl-
CoA is produced from ethanol (f IfII

switch), the predictions
correspond fairly well. For the gluconeogenic pathways,
however, the initiation of PEP carboxykinase (r16) and
FBPase activity (r4) based on the method of carbon-flux
analysis predicts a much higher critical glucose fraction
than the one given by the overall network, taking carbon
and cofactors into account. However, given the experi-
mental error involved in enzyme activity measurements,
the evidence is not totally conclusive to decide on one or
the other approach as the better one. Still, the overall
metabolic network approach seems more appropriate.
The results suggest that the cofactor balances, espe-

cially NAD(P)H, may play an important role in flux
distribution. The importance of the bifunctional nature
of the pentose phosphate cycle is highlighted in this
system as the flux through this pathway is determined
by the need for biosynthetic reducing power, apparently
exceeding the cell requirement for C4 and C5 units.

Table 5. Comparison of PO and k Values

organism

PO estd
(mol of ATP/
mol of O)

PO assumed
(mol of ATP/
mol of O)

k(biomass) (mol of ATP/
C-mol of biomass) at

D ) 0.1 h-1

k(protein) (mol of
ATP/C-mol of protein)

at D ) 0.1 h-1 ref

S. cerevisiae (aerobic) 1.09 0.415 0.88 this work
S. cerevisiae (aerobic) 1.20 0.644 1.37 van Gulik and Heijnen (1995)
C. utilis 1.53 0.712 1.37 van Gulik and Heijnen (1995)
S. cerevisiae (anaerobic) 0.675 1.43 Verduyn et al. (1991)
E. coli 1.30 2.04 2.91a Varma et al. (1993)
E. coli 1.30 2.22 3.17a Varma and Palsson (1995)
P. chrysogenum 2.60 1.27 2.31 Jorgensen et al. (1995)

a Assuming 70% protein.
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Concluding Remarks

This work showed that yield data for a number of
mixtures of two substrates provide sufficiently rich
information for unique estimation of the two energetic
parameters PO and k, the only unknowns remaining in
a proposed stoichiometric description of S. cerevisiae
metabolism.
Symbolic manipulation was very helpful in reducing

the computing time for parameter estimation, the evalu-
ation of the theoretical identifiability of the estimation
problem, and the generation of more insight in the
dependency of the reaction and conversion rates on these
energetic parameters.
The validation resultssboth the prediction of the

biomass yield on acetic acid and the predictions of
enzymatic activities and switching pointssprovide ex-
tensive evidence that the proposed metabolic network is
a good representation of the metabolism of S. cerevisiae.
The extrapolative power of the network seems consider-
able and may lead to the generation of interesting

hypotheses on the physiology of S. cerevisiae, the design
of optimal substrate feeding strategies, or the identifica-
tion of metabolic bottlenecks to be expected under certain
process intensifications.

Notation
fGLU glucose fraction in the feed (C-mol/C-mol)
f IIIfIV
switch fGLU where switch in metabolism occurs (C-

mol/C-mol)
J objective function (weighted sum of squared

errors)
Jopt optimal value of J
k maintenance factor (mol of ATP/C-mol of

biomass)
MNM(I, II,
III, IV)

metabolic network models

PO effective P/O ratio (mol of ATP/mol of O)
ri reaction i
vi rate of reaction ri (mol/h)
Ysx biomass yield on substrate (C-mol/C-mol)
Yox biomass yield on oxygen (C-mol/mol)
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Table 6. Comparison of Switching fGLU Fractions Based
on an Analysis Of Carbon Balances Only Versus an
Analysis Including Cofactors

switch-
point

carbon balancing
(C-mol of glucose/

C-mol of carbon source)

carbon and cofactor balancing
(C-mol of glucose/

C-mol of carbon source)

I f II 0.57 0.597
II f III 0.29 0.499
III f IV 0.26 0.434
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