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Dynamic mass balancing for wastewater treatment data

quality control using CUSUM charts

A. Spindler and P. A. Vanrolleghem
ABSTRACT
Mass balancing is a widely used tool for data quality control in wastewater treatment. It can

effectively detect systematic errors in data. To overcome the limitations of the mean balancing error

as a measure of data quality, a well established method for statistical process control (the CUSUM

chart) is adopted for application on the error vector of balancing data. Two examples show how time

periods with stable low mass balancing errors can be detected by the method. The detectability of

such time periods depends on the variability of the balancing error which is an important measure

for the precision of the data.
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INTRODUCTION
On wastewater treatment plants (WWTPs) data are routi-
nely collected for reasons of treatment performance
evaluation as well as process monitoring and control. The
collected data can be a valuable source of information for

process redesign, treatment plant extension or simulation.
It usually provides a long-term record of the plant perform-
ance and is readily available to the engineer. Typically,

concentrations of influents and effluents are measured in
24 h composite samples and flows are recorded as daily
sums. The advantage of routine data is their availability

for long time periods at no extra cost. In contrast,
dedicated measurement campaigns might provide a higher
sampling frequency but are costly in terms of time and

labor and can only cover a comparably short period of
time.

To serve as a basis for further engineering tasks, the
quality of the routine collected data has to be controlled.

Simple or advanced plausibility tests as well as mass
balancing are generally applied to meet this requirement
(Rieger et al. ). Plausibility testing is necessary but not

sufficient in terms of redundancy. Plausible values can still
be (systematically) wrong and sometimes right values
might not be plausible. Redundant verification is therefore

necessary. Mass balancing can often effectively detect sys-
tematic errors in data. Thomann Haller () showed a
possibility of testing the significance of the mean balancing
error.
Basics of mass balancing

Typical compounds for mass balancing include water H2O
(as flow), and elemental fluxes such as chemical oxygen

demand (COD), total phosphorus (P), total nitrogen (N)
and iron (Fe). Other compounds can be balanced over sys-
tems in which they are not subject to reactions, e.g. total

suspended solids (TSS) in dewatering stages.
Themass balance over a system for one compound and for

a time period of n days is calculated from all mean fluxes �F
entering (positive) or leaving (negative) the system (Figure 1).
It yields the mean balancing error �e for the particular time
period. If accumulation (storage ΔS) of the compound occurs

in the system, it also has to be considered (Equations (1a, b)).
It is easily understood that the mean balancing error �e

can be calculated in two distinct ways due to the distributive
property of the mean:

(i) as sum of vector means
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(ii) as mean of a vector of sums
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Figure 1 | Simple balancing layout. Several fluxes may enter or leave a system,

accumulation (ΔS) is possible.
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In Equation (1a) the means of all single time series of
fluxes F in and out of the system as well as the mean accumu-
lation are computed and than added. In Equation (1b)

however, balances are calculated for each time step (usually
1 day) thus giving a vector e of (daily) balancing errors of
length n (the error vector), the mean of which is calculated

at the end to give �e.
From �e, the relative mean balancing error �erel is com-

puted by normalization with the mean flux through the

system. As a matter of common agreement, the mean influ-
ent flux is chosen.

�erel ¼
�e

Px
i¼1

1
n

Xn
t¼1

Fi,in,t

 ! (2)

Measures for data quality

Accuracy and precision are the quality criteria for good data.
They correspond to systematic and random errors, respect-
ively. Although mass balancing has been accepted as a
method of choice for redundant data quality control in the

field of wastewater treatment (with a focus on accuracy),
little has been said about decision criteria.

The mean balancing error �e is mainly perceived as the

most important decision variable. Thomann Haller ()
also focused on this measure and showed how to find a con-
fidence interval for �e to test its significance. However, an

insignificant difference between �e and zero does not deter-
mine high data quality alone. A small (relative) mean
balancing error can still be significantly different from zero

if the precision of the single measurements is high. Low pre-
cision might accordingly yield a large confidence interval for
�e thus leading to the misinterpretation of a large �erel as not
significantly different from zero. Acceptability of a certain

mean relative error therefore seems to be more important
than significance. The level of acceptability depends on
the task that is addressed using the data.

Another aspect is dynamic variability. While a large �erel
certainly signals low data quality (or poor system
description), a low �erel could still have been calculated

from an error vector e that drifts in time from unacceptably
high to unacceptably low values. If data quality is checked
relying only on the mean, not much can be said about the

data quality in the time series. This is of special importance,
when historic data are to be used as input for simulation.

The CUSUM method is suggested to approach the
dynamic behavior of the error vector. In the literature, only

Zaher & Vanrolleghem () are known to have used this
method in the same context, howeverwithout explicitly inves-
tigating it. Among other control charts, CUSUM is one of the

more sensitive. Exponentially weighted moving average
(EWMA) charts, another sensitive type of control chart, had
also been investigated, but did not yield results of comparable

quality. The detectability of changes of the balancing error by
the CUSUM method depends on the variability of the error
vector and therefore on the precision of the data. This will
become clear in the course of this paper.
THE CUSUM CHART

CUSUM charts, introduced by Page (), are used widely in

statistical process control to detect small changes (e.g. shifts
or drifts) in the mean μ (the target value) of a monitored pro-
cess variable (Montgomery ). Small in this contextmeans

changes of less than one standard deviation.
CUSUM charts are designed to detect one-sided changes

(increase or decrease) of the monitored variable X. For the

two-sided case (increase and decrease), one upper (positive)
and one lower (negative) CUSUM chart have to be com-
bined. For convenience, data are normalized to a mean
value of 0 and a standard deviation of 1. The CUSUM is a

modified cumulative sum of a process variable X, consecu-
tively adding up the values xt, t¼ 1,…,n where n is the
length of vector X. The two modifications are:

(i) The upper (positive) CUSUM may not drop below zero,
the lower (negative) CUSUM may not rise above zero.

(ii) A smoothing parameter (reference value k) restricts the
sensitivity of the method by constantly drawing the
CUSUM series towards the target value (zero for nor-

malized data).

The two-sided CUSUM for normalized data may be

defined as:

Cþ
t ¼ max 0, Cþ

t�1 � kþ xt
� �

C�
t ¼ min 0, C�

t�1 þ kþ xt
� � with C0 ¼ 0 (3)
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The CUSUM series signals an undesired shift Δμ of

the process mean by exceeding a chosen control limit
(þh or �h). Thus, the reference value k and the control
limit h are the two parameters which determine the behavior

of the CUSUM chart. The optimal value of k is Δμ/2, half the
size of the shift to detect (Lucas & Crosier ). The control
limit h may then be chosen according to the desired average
run length ARL0 of the CUSUM series (Montgomery ).

The average run length ARL0 is the average number of
time steps (i.e. data points) after which the CUSUM
series will give a signal even though the true shift of the

mean is zero (false alarm). Indeed, due to the probabilistic
nature of the data (random errors), a long enough CUSUM
series will eventually exceed any control limit. This corre-

sponds to the type I error (false positive) in statistical tests.
Therefore, a compromise has to be made. In the past, ARL0

was chosen as 370 which is equivalent to a 3σ control limit
on a Shewart control chart (Montgomery ).

When k and h have been chosen, the average run
length ARLΔμ (for detection of a true shift Δμ of the mean) can
be calculated (Knoth ). ARLΔμ increases with decreasing

values of k (when h is adjusted to keep a constant ARL0) and
therefore with smaller shifts Δμ. In statistical process control
a fast response, i.e. low ARLΔμ, is desirable.
Synthetic example

Figure 2 (left) depicts data of a synthetic example. The time
series has length 200. At intervals [1:40] and [91:140] the

random data are N(0,1) distributed. In the interval [41:90]
the target value (mean) was changed to þ0.5. From data
point 141 to the end of the series, the mean drifts from 0

to �1. In Figure 2 (right), the results of a CUSUM chart
applied to the data are shown. The reference value k was
Figure 2 | Left: Synthetic N(0,1) data including a shift and a drift and its 7-day moving average
chosen to 0.25 for optimal detection of a shift of ±0.5.

ARL0 is kept at 370 with a control limit h of ±8.01 The cru-
cial parts of the CUSUM series are those where it moves
away from zero crossing the control limit. In the example,

the faulty periods would be interpreted as occurring in inter-
vals [45:100] and [165:200].
Application of the CUSUM method to the error vector of
a mass balance

When applying the CUSUM method for the analysis of the

error vector of a mass balance, several special character-
istics have to be considered:

(i) Historic data are being used. The fastest possible
detection of a change of the target is therefore not
crucial. This allows for a trial-and-error approach at

specifying the design parameters k and h and for
more sensitive detection.

(ii) The length of the CUSUM series is determined by

data availability. This influences the possible average
run length before detection of a true change.

(iii) The CUSUM series does not stop or cause corrective
action upon a signal. Therefore, the behavior of the

series after a signal is also of interest (as in the syn-
thetic example).

(iv) The process mean (target) is known a priori. The

expected value of the error vector of a mass balance
is always zero.

The ratio between the standard deviation se of the error
vector before normalization and the total mean input into
the system will be shown to be an important indicator for

the setup of the CUSUM chart. If the standard deviation
of the error vector is relatively high, the data lacks precision.
. Right: CUSUM chart of the data. Plotted slopes indicate interpreted faulty periods.



Table 1 | Influent and effluent flow sums for the two examples, absolute and relative

mean balancing error and standard deviation of the balancing error

Whole plant
flow balance

Anaerobic digester
flow balance

Mean influent flow ΣFi,in m3/d 24,648 139.6

Mean effluent flow ΣFj,out m
3/d �25,237 146.9

Mean balancing error
�e ¼ ΣFi;in þ ΣFj;out m

3/d
�589 �7.3

Relative mean balancing error
�erel ¼ �e=ΣFi;in

�2.4% �5.3%

Standard deviation se m
3/d 848 74.2
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A small shift in the mean of the error vector of less than 0.5

se (which is hard to detect) might then already mean a con-
siderable change in one of the fluxes associated with the
balance. Therefore, a small reference value k has to be

selected. A smaller reference value at constant ARL0

causes a higher ARLΔμ.
The CUSUM method can be applied quite straightfor-

wardly to flow data. The application becomes more

challenging, when daily changes in storage also have to be
considered. This is the case with all other measured vari-
ables, i.e. elemental flux balances. As storage is strongly

coupled with TSS concentrations, reliable and representa-
tive measurement of this variable is important.
RESULTS OF APPLICATION TO REAL DATA

The CUSUM method was applied to existing routine data of

a large WWTP (170.000 PE). The plant has six influents. The
two major influents are one municipal and one industrial
(refinery). Another two influents stem from the nearby air-

port (wastewater and surface water). The industrial
wastewater (about half of the influent flow) is pretreated in
a high-load aerobic stage before joining the aerobic/anoxic
treatment for nutrient removal. Because flow Q is the basis

for the calculation of fluxes the examples given are: (1) a
flow balance over the entire treatment plant; and (2) a
flow balance over the anaerobic digester. Unfortunately, it

was not possible to include a phosphorus balance as well
due to missing data in some fluxes.

The error vectors were calculated from daily flow

balances over the two systems for a time period of n¼ 366
days. Table 1 gives the absolute and relative mean flow bal-
ance errors and the standard deviation of the error vectors.

Figure 3 illustrates the error vectors themselves.
Figure 3 | Error vector e and its 7-day moving average for the two examples.
Both balances have relatively small mean errors of 2.4

and 5.3%, respectively. The ratio of standard deviation se
to total mean influent flow, however, is relatively small for
the flow balance over the whole WWTP (3.4%) but large

for the flow balance over the anaerobic digester (53%).
Therefore, the reference value k was chosen differently for
each of the two examples. Table 2 illustrates the steps for

the setup of the CUSUM chart.
For the whole plant flow balance k was chosen for opti-

mal detection of a shift in the mean of Δμ¼±1.0 se (k¼ 0.5).
For the flow balance over the anaerobic digester a more sen-

sitive choice was necessary. The reference value was chosen
as k¼ 0.15 in order to optimally detect shifts in the mean of
Δμ¼±0.3 se. Note that the detectable relative mass balance

errors (i.e. optimally detectable shifts, step 5 in Table 2) are
very different. Even though the example of the anaerobic
digester was set up for more sensitive detection only

balancing errors of about 16% can be optimally detected.
The control limits hwere chosen to give an ARL0 of 370.

The resulting ARLΔμ are ARL1.0¼ 9.2 and ARL0.3¼ 51
(Knoth ). For the flow balance over the anaerobic diges-

ter, a ‘design shift’ would be detected approximately 51 data
points after its occurrence. Given the length of the error



Table 2 | Steps for setup of CUSUM charts for the two examples (for N(0,1) normalized

data se¼ 1)

Step
Whole plant flow
balance

Anaerobic
digester flow
balance

0. Consideration of ratio
se=Σ�Fi;in

se,rel¼ 3.4% se,rel¼ 53%

1. Choice of optimally
detectable shift Δμ

Δμ¼ 1.0 se Δμ¼ 0.30 se

2. Reference value k¼ Δμ/2 k¼ 0.5 se k¼ 0.15 se

3. Calculation of control limit
h to give desired ARL0

h¼ 4.77 se h¼ 11.0 se

4. Verification of ARLΔμ ARL1.0¼ 9.2 d ARL0.3¼ 51 d

5. Calculation of relative
optimally detectable mass
balance error

Δμ=Σ�Fi ¼ ±3:4% Δμ=Σ�Fi ¼ ±16%
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vector (366 data points) this result seems to be a reasonable

compromise between detectability and run length for
detection.

Figure 4 shows the CUSUM graphs for both balances.

For the whole WWTP two time periods of worse
than average balancing performance can be distinguished.
Those are the intervals [20:135] and [280:366]. In

these time periods the relative mean balancing errors are
�3.0 and �4.1%, respectively. Between these two time
periods, the mean balancing error drops to �0.3%.

As shown in the synthetic example, the faulty time
periods were approximated by following back the slopes of
the CUSUM chart. For the anaerobic digester the relative
mean balancing error is largest in the time period

[120:225] amounting to �28%. At data point 269 the
CUSUM series shows a considerable jump, suggesting a
major single erroneous data point. Excluding data point
Figure 4 | Two-sided (positive and negative) CUSUM charts for the two examples.
269, the mean relative error for the anaerobic digester in

the time period [226:366] is þ2.3%.
DISCUSSION

The flow balance over the anaerobic digester obviously con-

tains an error that cannot be neglected. Following the
analysis, it was possible to diagnose the source of this error.
Interviews with staff pointed to a faulty flow meter in the

effluent of the digester. Data from an alternative flow meter
were available. Its analysis showed considerably less systema-
tic error (Figure 5). While the standard deviation of the error

vector stays at 74.7 m3/d, the relative mean balancing error
drops to as little as þ0.2% and is constant throughout the
entire time period. For the balance over the whole plant,
the error apparently stays small enough to be neglected in

any practical application of the data. It might for example
be due to minor miscalibration of the flow sensors.

From the two examples it becomes obvious that the cal-

culation of the mean balancing error is not sufficient for
determining the quality of routine data from WWTP. In
both examples the overall mean balancing error seems rela-

tively small and therefore acceptable at first sight. The
application of the CUSUM method clearly showed time
periods of varying performance of the error vector. In

example 2 (anaerobic digester) a relative mean error of
�28% over almost one-third of the entire time series was dis-
guised by the rest of the data.

A 7-day moving average (Figure 3) may already give

a good idea about intervals of different performance of
the error vector. The CUSUM method however has
the advantage of freely selectable control limits and gives a

clearer picture. Additionally, the selection of the parameters



Figure 5 | Error vector and two-sided CUSUM chart for the corrected Q balance over the anaerobic digester. Control limits h for the CUSUM chart are outside the visible range of the y-axis

at ±11.
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for the CUSUM method allows for the calculation of the

optimally detectable mass balance error.
The actually detected mass balance error can still be

smaller than the optimally detectable mass balance error.

This is the case in the first faulty period in example 1
(whole WWTP). The optimally detectable mass balance
error is not a strict limit for detectability but does give a
good idea to the user. This reflects the probabilistic nature

of random errors which do have a certain unpredictable
influence on the performance of the CUSUM method.

When applying the CUSUM method to elemental

flux balances, it becomes necessary to also consider storage
in the balances. This will mostly be done using daily TSS
data and known ratios between the balanced element and

TSS. However, representative measurement of TSS is not
easily achieved and the resulting error vector might show
too high variability. Smoothing of TSS data, i.e. by means

of a moving average might solve this problem. Research in
this respect is still going on.
CONCLUSIONS

When mass balances are used to determine the quality of
routine data from WWTP and to search for systematic
errors it is also necessary to consider the error vector of

the balance rather than the mean balancing error alone. It
has been shown that the CUSUM method can be applied
to determine time periods of good balancing performance

and to calculate the detectability limits for errors. The
variability of the balancing error vector, preferably
expressed as a ratio between standard deviation and total
mean input load into a system, is an important indicator

for these detectability limits.
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