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Abstract: In this paper, software tools for automatic data quality assessment with a 
practical orientation are proposed. Two different approaches are presented that use 
time series information. First, univariate methods based on autoregressive models 
are applied for data correction (outliers detection for data replacement). Faults are 
detected by defining acceptable thresholds to data features and to the residuals’ 
standard deviation (RSD). Second, multivariate statistical methods based on 
Principal Components Analysis are used to extract correlations between variables 
from data sets and performing fault detection using the T

2
 and Q statistics. The 

proposed tools are successfully tested on river water quality time series obtained 
from in situ monitoring stations collecting a large amount of physical and chemical 
variables. 
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1 INTRODUCTION 

 
Effective management of water bodies requires having reliable information about 
water quality. Nowadays, implementation of in situ continuous monitoring at high 
frequency is being used to collect water quality information of surface waters. Along 
rivers and water networks, on-line measuring campaigns over long periods are 
conducted on to identify spatial and temporal variations in water quality, trends and 
also analyze the variability of the polluting sources [Langeveld et al., 2011]. 
Additionally, the use of automated on-line measuring systems can reduce the total 
monitoring costs [Pressl et al., 2004]. 
An important change can be noticed from having not sufficient data (grab or 
composite samples) to huge and complex data sets consisting of a large number of 
physical-chemical parameters. Such data usually is affected by different sources of 
errors and uncertainties [Rieger and Vanrolleghem, 2008]. Since measurements 
are carried out in a very severe and difficult environment, sensors are subject to 
many functional, technical and operational constraints. Despite of the important 
efforts of manufacturers including for example self-cleaning systems, the reliability 
of sensors remains frequently insufficient. Degradation of measuring conditions, 
clogging and progressive fouling by grease, solids and other wastes is usual (Yoo 
et al., 2007). Additionally, real hydrological data are mostly noisy, not normally 
distributed, and often co-linear or autocorrelated. Efficient monitoring and proper 
understanding and use of collected measurements in further applications depends 
therefore on careful data evaluation and validation to ensure data quality. Detection 
of corrupted, doubtful and/or unreliable data, outliers, noise, missing values and 
potential sensor faults becomes crucial.  
Corrupt data can be identified and replaced/removed by different methods ranging 
from logical algorithms to more sophisticated statistics or model-based methods. 
However, in current practice data validation is most often carried out with a time-
consuming and inefficient manual procedure based on basic data and visualization 
tools. Some software tools for data quality evaluation in urban hydrology can be 



J. Alferes et al. / Efficient data quality evaluation in automated water quality measurement stations 

found in the literature based on rules to detect doubtful and/or unreliable data using 
parametric tests [Mourad and Bertrand-Krajewski, 2002; van Bijnen and Korving, 
2008]. Some statistical methods have been developed for the same purpose in the 
last years, but only few of them have been implemented in software platforms for 
practical use in the water sector [Branisavljevic et al., 2010]. A lot of work has been 
done in the fault detection and diagnosis field covering model-based and data-
based methods [Venkatasubramanian et al., 2003]. However, how to integrate them 
effectively for practical applications still remains an important topic for further 
research. Multivariable methods have also been used for analysing environmental 
data and drawing meaningful information [Alkarkhi et al., 2008]. Concerning water 
quality, these studies have been focused only on water samples taken in surface 
waters according a monitoring plan.  

Given the large amount of data typically collected with continuous monitoring, in 

this paper, software tools for automatic data quality assessment with a practical 
orientation are proposed. Using time series information, the laborious manual 
validation procedure is replaced by automatic methods for data correction and fault 
detection. While univariate analysis based on autoregressive models is used for 
detection and replacement of doubtful data, multivariable analysis based on 
principal component analysis (PCA) is used to extract correlation and significant 
information between variables. 
 
 
2 IN SITU MONITORING STATION 

 
A Primodal Systems' RSM30 Monitoring Station (Figure 1a) has been installed to 
measure the water quality dynamic of the small urban river Notre Dame located in 
Ancienne-Lorette, Quebec, Canada. The measurement campaigns of this study 
covered the summer periods of 2010 and 2011. The measurement station 
comprises sensors for conventional, physical-chemical parameters (temperature, 
dissolved oxygen…) as well as innovative sensors like a UV spectrometer and an 
ion selective device (ISE-sensor). Water level is also recorded. All sensors are 
permanently submerged in a secured cage dropped on the river bed (Figure 1b).  
 
(a) 

 

(b) 

   
Figure 1. (a) Data acquisition cage, (b) Probe-holder cage 

 
 
Table 1 gives a detailed list of the sensors installed at the monitoring station. The 
location of the monitoring station allows both continuous monitoring of the Notre 
Dame River and the impact of the urban area discharge on the river water quality. 
For that, all sensors recorded data at short intervals (between 5-60 seconds) 
generating rich-information data sets. To achieve a good data quality of the on-line 
measurements a systematic calibration and maintenance routine is critical. 
However, due to environmental conditions access to the probe-holder cage was not 
always possible, especially after rainy periods. Missing calibration steps and other 
technical problems like faulty probes and vandalism actions resulted in some gaps 
in the data. 
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Table 1 Measured water quality parameters 
Probe Parameter  Unit Sampling (sec) 
Hach pHD sc  pH - 5 

Temperature °C 
Hach sc100 Inductive 
conductivity 

Conductivity  5 
Temperature °C 

Hach LDO  Dissolved oxygen (DO) mg/l 60 
Temperature °C 

s::can ISE Potassium (K+) ppm 60 
Ammonia  (NH4) ppm 
Temperature °C 
pH - 

s::can spectro::lyser Nitrates (NO3) mg/l 60 
Total organic carbon (TOCeq)  mg/l 
Dissolved organic carbon (DOCeq) mg/l 
Turbidity FTUeq 

Hach Solitax sc Total suspended solids (TSS) g/l 5 
Sigma 950 flow meter Level  m 60 

 
 
3 AUTOMATIC DATA QUALITY ASSESSMENT TOOLS 

 

Two different approaches for automatic data quality assessment are presented that 
use on-line time series information (Figure 2) in the absence of exact process 
knowledge. On the one hand, univariate methods are aimed to extract information 
from single measurement variables. Their proposed implementation can be divided 
in two main steps: outliers detection and fault detection. On the other hand, given 
the high dimensional measurement space, multivariable methods are used first to 
detect and remove correlations among variables and reduce their dimensionality 
and are then used for fault detection. It is important to note that both methods can 
be tuned to provide a more or less restrictive performance.  
 

 
Figure 2. Proposed software tools for data series validation 

 
 
3.1 Univariate analysis 

 
The proposed tool is based on forecasting of time series data by means of 
autoregressive models. The first step includes the outlier detection and data 
replacement to generate a proper time series that can be effectively used in further 
steps as shown in Figure 2. An outlier is a sample value that differs notably from 
the mean of the measurement series. Since it could significantly affect data 
features, outliers must be removed or replaced. The proposed outlier detection 
method compares measured values with calculated forecast values by defining a 
dynamic prediction interval.  
At time T, the forecast value of the data x in the next time unit, T+1, is predicted 

using a third-order exponential smoothing model. To give better estimations of the 

local variance, which is translated in more reliable prediction intervals, a simple 

exponential smoothing model is also defined to predict the standard deviation of the 

forecast error. For estimation of the variance of the forecast errors, 2
eσ , a mean 

absolute deviation ∆ is first defined. Then, according to Montgomery et al. [2009], 
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the estimate of 2
eσ  at time T is given by TTe ∆= ˆˆ 1.25,σ  and the estimates of ∆ are 

calculated as follows:  

1TTT ∆̂δ)(1(1)eδ∆̂ −−+=                                                                       (1) 

where )1(Te is the one-step-ahead forecast error calculated as )(ˆ)1( Txxe TTT −= . 

The term )(ˆ TxT  represents the one-step-ahead forecast value made at time T. The 

factor δ is a smoothing parameter, typically between 0.01 and 0.3, which controls to 

what extent the past observations influence the forecast. The prediction interval xlim 

is then defined by adding or subtracting a multiple of the standard deviation of the 

forecast error to the forecast data value as follows:   

Te,Tlim σ̂K(T)x̂x ±=                (2) 

where e,Tσ̂ represent the one-step-ahead forecast standard deviation made at time 

T. K is a multiplicative factor that can be adjusted to make the model more or less 

restrictive. If the measurement data falls outside the prediction interval, it is 

considered as an outlier. In this case the outlier is replaced by the forecast data 

value.  The resulting data series is called accepted data. For data validation 

purposes, the accepted data is then smoothed using a kernel smoother [Schimek, 

2000] with a 13-samples bandwidth. More effective results without the corruption 

with signal noise are obtained when smoothed data is used to calculate features in 

the data. 

For model evaluation and fault detection purposes, some data features are 

calculated. Faults are subsequently detected by applying acceptable limits to data 

features. To give an indication about the goodness of the smoothed data (once the 

outliers have been replaced for the forecast values) the fraction of forecast values 

used by the smoother is represented. The slope in the smoothed data is also 

calculated to provide information about the rate of change of the variable. Errors in 

the model are assumed to be normally and independently distributed with mean 

zero and constant covariance. Diagnosing the residuals (calculated as the 

difference between the accepted and smoothed data) is useful to check normality 

and good fit of the model to the raw data. When autocorrelation in the residuals 

time series is detected either the smoothed data is not representative of the real 

measurements or the noise presents a non-random distribution. Autocorrelation of 

the residuals is analysed by carrying out a runs test on a 30-samples moving 

window [Dochain and Vanrolleghem, 2001]. Finally, the variance of the data is 

determined by calculating the residuals standard deviation (RSD). Horizontal lines 

in Slope and RSD plots represent the determined acceptability limits for each 

feature according to expected realistic values in the field. Concerning the Runs test 

value plot, the limits correspond to the 95% confidence interval.  

 
 
3.2 Multivariate analysis 
 
Real water quality data are mostly redundant, non-stationary and often auto and 
cross-correlated. For exploration and interpretation of large-dimensional 
multivariate datasets that are highly correlated, multivariate methods can be applied 
to reduce the dimension of the variable matrix space into a more accessible low-
dimensional space identifying key variables.  
Proposed multivariate statistical methods are based on principal components 
analysis (PCA). Unlike other methods, PCA has been revealed as a robust 
technique with a low computational demand and straightforward use [Villez et al., 
2009]. This technique searches a new set of uncorrelated and orthogonal variables, 
called principal components (PCs) which explain most of the data variability in a 
new coordinate system. Each principal component is a linear combination of the 
original variables and describes the largest process variability in a space of fewer 
dimensions than the original one. With X an autoscaled [m x n] matrix of 
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measurement values for n variables and m samples, the covariance matrix Cx            
[m x m] is computed as follows:  

XX
1m

1
Cx T

−
=                           (3) 

Cx captures the covariance between all possible pairs of measurements. 
Performing the singular value decomposition (SVD), Cx is diagonalized by the 
orthogonal matrix of its eigenvectors P = [p1 p2 … pn], called loadings. The principal 
components of X are the columns of P and the corresponding eigenvalues [λ1 λ2 … 
λn] represent the variance of X along each principal component pi. In the new 

coordinate system, the transformed data, called scores, are represented by XPT = . 
A graphical representation of the PCA projection is shown in Figure 3.  
 

 
Figure 3. Dimensionality reduction using PCA 

 
Sorting the columns of P in decreasing order, p1 corresponds to the largest 
eigenvalue λ1 and it is oriented in the direction of the largest variation of the original 
variables capturing the largest fraction of the data variance. A dimension reduction 
can be obtained by retaining a number of components a < n. In this case, the 
original data space can be expressed as: 

ETPT
+=X                           (4) 

where E represents the residual matrix which contains the components 
corresponding to the less significant eigenvalues. Choosing the number of principal 
components α is crucial to obtain a descriptive PCA model as a trade-off between 
dimension reduction and variability captured by the model. The method based on 
the eigenvalue scree plot [Jolliffe, 2002] is used. Once the PCA model is obtained 
new data can be projected onto the existing model preserving the matrix P.  
In order to properly interpreting the PCA results and for fault detection purposes two 
statistics which describe the statistical fit of the model are calculated. Plotting these 
statistics with appropriate confidence limits allows detecting deviations of the 
measurements from the normal behavior. The first statistic, called T

2
, which is the 

normalized sum of scores, captures the variations in the reference data model. At 
time k, T

2
 is calculated as: 

x(k)P(k)PΛx(k)T T1T2 −
=                          (5) 

where x(k) is the measurement vector and Λ
 
the diagonal matrix of the eigenvalues 

associated with the retained principal components. The confidence limit 2
α

T  for T
2
 is 

obtained using the F- distribution [Yoo et al., 2007]. The second statistic, called Q, 

is defined as the sum of squared residuals of the active principal components. At 

time k, Q is calculated as: 

( ) x(k)PP-I  (k)xQ(k) TT
=               (6) 

The confidence limit Qα for Q is computed under the assumption of normally 

distributed scores according to Montgomery [2009]. In general, Q captures the 

variation in the residual space not accounted for by the PCA model. For a new 

measurement, if T
2
< 2

α
T  and Q<Qα it is considered that the process is in control with 

100(1-α) % of confidence, α being a level of significance.  



J. Alferes et al. / Efficient data quality evaluation in automated water quality measurement stations 

4 RESULTS 
 
Some results about the application of the described methods are shown in this 
section. The univariate methods have been successfully tested on on-line time 
series of the different water quality parameters in Table 1. Figure 4 shows the 
behaviour of the outlier detection method for a short period of level measurements. 
The dynamic calculation of the prediction interval lets the algorithm adapt to the 
time-varying hydraulic behaviour visible in the data. Most of the data falls into the 
prediction interval with Raw and Accepted data almost coinciding, except for some 
periods associated with important changes in the level measurements as indicated 
for example in Figure 4a. A less restrictive version of the model in Figure 4b leads 
to accept the raw data initially rejected.        
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Figure 4. Outlier detection method for on-line level measurements. (a) Restrictive 
case. (b) Less restrictive case. 

 
Figure 5 shows the overall results over a short TSS time series. The impact of two 
rain events on the TSS behaviour is clearly observed. Hydraulic variations due to 
rain events directly affected the mixing conditions and the suspended solids 
concentration in a significant way. The TSS concentration was increased almost 
tenfold from the normal values in the first rain event.  
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Figure 5. Application of univariate methods over TSS on-line measurements 

 
It can be seen how several outliers were detected by the algorithm around these 
episodes increasing the fraction of forecast data used by the smoother. Although 
the slope in the smoothed data remained inside the limits during most of the 
analysed period, larger slope values were detected around rain events evidencing 
the important dynamics in the variable. Abnormal slope values were observed 
around September 30

th
. Run tests have shown that most of the data fall into the 

95% interval (-2, 2) suggesting the adequacy of the model. Periods in which some 
residuals correlation was detected are related with an insufficient performance of 
the smoother which is averaging important peaks in the data. This coincides with a 

 Raw  Accepted Upper limit Lower limit Smoothed  x 

(a) (b) 
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higher percent of forecast values used in the smoother and larger slope values. 
The RSD values also confirm the high variance in the data around the rain events. 
It is important to highlight that acceptability limits and also the model and smoother 
parameters can be adjusted to make them more or less restrictive in the fault 
detection phase.  
Concerning the multivariate methods, the tool has been tested using different 
groups of on-line variables in Table 1. The following examples show the results 
obtained considering time series of Turbidity, NO3, TOCeq, DOCeq, pH, K

+
, NH4 

and Temperature. Before the application of the PCA algorithm, all variables have 
been properly autoscaled (mean centering and variance scaling). Figure 6 shows 
the percentage of the total variability explained by each principal component for this 
data matrix. It can be seen in Table 2 that the first four principal components 
capture more than 90% of the variance in the process. 
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Table 2. Results of the PCA model 

pi λi 
% explained 

variance 
%cum. 

variance 

1 4.38 54.77 54.77 

2 1.39 17.36 72.12 

3 0.91 11.33 83.45 

4 0.70 8.79 92.24 

5 0.35 4.36 96.60 

6 0.23 2.86 99.46 

7 0.04 0.51 99.97 

8 0.00 0.03 100.00 
 

Figure 6. Relation between the principal 
components and the captured variance 

 
To illustrate the capacities of the multivariate methods, the following figures show 
some results for short on-line time series. Figure 7a shows the scores and the 
coefficients for the two first principal components for each observation. Each 
variable is represented by a vector and its length and direction indicate the 
contribution of the variable to the two principal components. Each point in the plot 
corresponds to a sample and its location indicates the score of each sample in the 
two principal components space. Points that cluster represent similar behaviour, 
and deviating points indicate process changes. Due to the mean centering of data, 
under normal operation points should be close to the origin. Some outlying points 
can be for example identified in the marked areas (I, II) suggesting an abnormal 
behaviour or disturbance for these samples. Graphical representation of T

2
 and Q 

statistics in Figure 7b also illustrate some fault situations in the process. In period I 
for example T

2
 accounted for a fault associated with abnormal variations within the 

model subspace in the NO3 measurements. In period II T
2
 revealed some abnormal 

variations in the Turbidity, DOCeq and TOCe measurements; but Q also identified 
events not taken into account in the current realization of the model.  
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5 CONCLUSIONS 
 
Automatic data quality and assessment tools for analysis of time series, based on 
univariate and multivariate methods, have been presented and successfully 
validated on complex data sets obtained from automated water quality 
measurement stations. The application of the univariate methods for identification 
and replacement of outliers allowed creating “good” time series that can be properly 
used in further analysis steps. Calculation of data features using smoothed data 
allows model evaluation and a better understanding of the time series, making 
possible the identification of possible faults or abnormal behaviours. The application 
of the multivariate methods has allowed dimension reduction and the identification 
of key variables that capture the most significant variability in the complex data set. 
Monitoring of the different data quality statistics has resulted effective and 
applicable to detect multiple sensor faults and also the statistical fit of the model. 
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