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Uncertainty-based modelling was used to describe the biochemical activity in the Tajo 

River (Spain). The biochemical model is a reduced version of the River Water Quality 

Model no. 1 (RWQM1). The transport model includes a Particulate Transport Factor 

(PTF), which disconnects the hydraulic and solids’ retention times along the river and 

enables the description of biomass accumulation in some river zones. The water quality 

model is implemented in the WEST simulation platform while the calibration approach, 

based on the SCEM-UA algorithm, is coded in Matlab. A successful model calibration has 

been performed using longitudinal profiles of ammonium, nitrates and dissolved oxygen 

for winter and summer periods. The main feature of the approach is to map the uncertainty 

to only three, transport-related parameters: the PTF, the volumetric oxygen mass transfer 

coefficient in winter (KLa February), and its equivalent in summer (KLa August). It is found 

that the uncertainty about the optimal PTF value is considerably lower than that of the KLa 

February or KLa August parameters. The uncertainty propagation shows that the model is 

able to properly describe the oxygen and nitrogen in-river profiles with very low 

uncertainty (narrow confidence intervals). The quality of the results encourages further use 

of the model for the assessment of water quality management scenarios in the Tajo basin. 

 

INTRODUCTION  

 

River water quality modelling has been subject of research for a long time. Since the 

development of the Streeter Phelps model (Streeter and Phelps [1]) many improved models 

and new software packages have been proposed (Cox [2]). The RWQM1 (Reichert et al. 

[3]) represents a big step forward in river water quality modelling. It includes the different 

biomass species as explicit state variables and guarantees a closed mass balance by defining 

the model components in terms of the mass fractions of elemental compounds (C, H, O, N 

and P). However, the complexity of the model structure has not encouraged a widespread 

use of the model and few model applications have been published (Benedetti et al. [4]; 

Borchardt and Reichert [5]; De Keyser et al. [6]; De Schepper et al. [7]; Martin et al. [8]; 

Reichert [9]; Vanrolleghem et al. [10]). 

The Bayesian approach is being proposed for model calibration in a wide range of 

contexts (Omlin and Reichert [11]; Beven and Freer [12]; Feyen et al. [13]). Besides the 

optimum parameter values, it provides an assessment of the associated uncertainty. 



Additionally, the reliability of the model responses can be easily assessed by forward 

propagation of the parameter uncertainty (Beck [14]). This is especially interesting when 

the model needs to be used for the exploration of other possible scenarios.  

This paper proposes the use of RWQM1 to describe the biochemical activity of the 

Tajo River (Spain). A Bayesian Monte Carlo approach is used to calibrate the model and 

the uncertainty of the estimated values is assessed. The research work has delivered a 

complete software structure which is ready for use in other case studies.  

 

MATERIALS AND METHODS 

 

River Water Quality Model 

The Tajo River is represented by a series of 36 Continuously Stirred Tank Reactors (CSTR) 

which ensures a hydraulic residence time distribution (HRTD) close to a plug flow reactor. 

The temporal change of the model components (water quality parameters) is calculated as a 

function of the transport and the biochemical reaction components (Eq. 1).  
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where j

iX  represents the concentration of biochemical model component i in tank j. 

The biochemical model is a reduced version of RWQM1 (Reichert et al. [3]). It 

includes 14 components and 13 biochemical transformations to describe the organic 

material biodegradation, nitrification and denitrification processes, as well as biomass 

population dynamics and phosphate precipitation. The model assumes no significant 

changes of pH during the process. The model components are defined by means of their 

elemental mass fractions, in terms of C, H, N, O and P. This model building methodology 

ensures closed mass balances throughout the system. The model stoichiometric matrix, 

[Ep,i], evaluates the amount of component Xi that appears or disappears for each 

transformation process, p. On the other hand, the kinetic vector evaluates the rate at which 

each transformation takes place (Eq. 2). 
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The transport model distinguishes between soluble and particulate components by 

means of a Particulate Transport Factor PTF (Martín et al. [8]). This number (between 0 

and 1) defines the fraction of particulates in the bulk liquid. Eq. (3) describes the transport 

equations for soluble and particulate components: 
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The PTF parameter leads to a disconnection between the HRT (Hydraulic Retention Time) 

and the SRT (Sludge Retention Time) of the river since a fraction (1-PTF) of particulate 

components is retained in the tank at each time step. This parameter allows for the 

accumulation of particulate components in some zones of the river. This effect might 

represent many different phenomena: the solids deposition, the inert material wash out, the 

biomass growth on the river bed, etc. Obviously, the PTF parameter should be adjusted 

depending on the case study.  

 

Integrated Monte Carlo Methodology 

The Bayesian approach treats the model parameters as random variables (Omlin and 

Reichert [11]) where the probability of each value (θ) represents a degree of belief. Before 

model calibration, some prior probability distribution, p(θ), defines the modeller’s 

knowledge about possible parameter values. The calibration process updates the prior 

beliefs based on the evidence of experimental data (in the following y), providing the joint 

posterior distribution of the parameters, p(θly). 

Assuming i.i.d. residuals (e), and using uniform prior distributions, Gamma integrals 

can be used to integrate out the influence of the residual error (see Box and Tiao [15]) and 

the posterior density leads to Eq. (4): 
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where m is the number of experimental data. For more information about the Bayesian 

inference scheme, the reader is referred to Box and Tiao [15] and to Thiemann et al. [16]. 

The Integrated Monte Carlo Methodology (IMCM), recently proposed by Martin and 

Ayesa [17], is a complete software package intended to automatically solve calibration 

problems related to biochemical models. It includes four modules: Markov Chain Monte 

Carlo (MCMC), Moving Feasible Ranges (MFR), Statistical Analysis of the Joint Posterior 

Distribution (SAD) and Uncertainty Propagation Analysis (UPA).  

The MCMC module is based on the Shuffled Complex Evolution Metropolis (SCEM-

UA) algorithm, initially proposed by Vrugt et al. [18]. SCEM-UA is a widely-used Markov 

Chain Monte Carlo algorithm that uses a multi-chain approach based on the Metropolis 

Sampler (Metropolis et al. [19]) and Shuffled Complex Evolution algorithm from Duan et 

al. [20]. The main drawback of the algorithm is that the Markov Chain does not evolve 

freely in the entire parameter space but only within the bounds defined by the prior 

parameter distributions (uniform distributions). These bounds are defined by the modeller 

and define the region in which the joint posterior distribution is going to be sampled. If 

these ranges are well suited, presumably a single SCEM-UA run will completely define the 

posterior distribution, but otherwise, a new SCEM-UA trial has to be launched using some 



new updated ranges. The MFR algorithm automates this process by launching the SCEM-

UA algorithm several times until the joint posterior distribution is properly addressed. 

Once the joint posterior distribution is obtained, the SAD module estimates a long list 

of parameter statistics (mean values, standard deviations, coefficients of variation, etc.) 

enabling the assessment of the parameters uncertainty. Finally, the UPA module performs 

the uncertainty propagation analysis from model parameters to model responses. The 

module assesses the uncertainty around the optimum model response (using the optimum 

parameter values) by the Confidence Intervals associated to Parameter Uncertainty (CIPU) 

and the Confidence Intervals associated to Total Uncertainty (CITU). The CIPU bounds 

demarcate the zone in which the model responses are most probably going to be found 

(with respect to parameter uncertainty) while the CITU predict the zone in which a new set 

of experimental data would be expected (by including the effect of the residual errors).  

 

Software Set Up and Calibration Strategy  

The simulation platform WEST (Vanhooren et al. [21], www.mikebyDHI.com) is used 

to implement the proposed water quality model. The Fix Volume Tank default WEST 

model is modified to account for the parameter PTF, and the biochemical model 

transformations are also incorporated. The IMCM is implemented in Matlab R2007b, using 

nested functions written as independent m-files. The WEST and Matlab packages are 

connected by using the TornadoMEX (WEST provided) API function which calls ad hoc 

scripts of the case study.  

The SCEM-UA algorithm in the MCMC module uses 10.000 model simulations 

(Figure 1), three MCMC chains (or sequences) and a population size of 200 samples. The 

algorithm evolves freely within some a priori defined Prior Ranges. In this case, two 

MCMC algorithm trials launched by MFR module were enough to define the final joint 

posterior distribution. 

 

 

Figure 1. Schematic representation of IMCM and WEST simulation platforms.  

 

In the case of the Tajo basin, the main goal lies in the description of the longitudinal 

nitrogen and oxygen profiles in summer and winter scenarios. During model calibration 

only three parameters were estimated: the Parameter Transport Factor (PTF), the 

volumetric oxygen mass transfer coefficient in winter (KLa February), and its equivalent in 

summer (KLa August). The parameter PTF is supposed to be the same in each river stretch. 

On the other hand, the transfer of oxygen to the liquid phase (KLa) varies seasonally as it 

depends on the water level, water temperature, etc. The objective is to explore to which 

extent the model can describe the experimental data and to assess the uncertainty involved 

in that estimation.  

RESULTS AND DISCUSSION 

 

Steady-state simulations of NH4, NO3 and DO concentration profiles along the river 

branches in February and August of 2003 are used for the calibration of PTF, KLa February 



and KLa August parameters. Figure 2 shows the calibration result. The optimum parameter 

values (PTF = 0.17, KLa February = 13.7 day
-1

 and KLa August = 12.2 day
-1

) are estimated 

and the posterior distributions are well defined. It can also be concluded that the uncertainty 

around the PTF optimum value is considerably lower (Coefficient of Variation, CV=0.076) 

than that of the KLa August (CV=0.479) or KLa February (CV=0.136).  

 
Figure 2. Marginal posterior distributions of the calibrated parameters: PTF, KLa February 

and KLa August 

 

The parameter PTF defines the transport of particulate components along the river. 

Once the transport is defined, the spatial profile of the different microorganism species is 

dynamically estimated by the model, since the biomass maintains a constant equilibrium 

with the available substrate provided by the wastewater treatment plant (WWTP) 

discharges. In this manner, for high PTF values long river distances are needed to achieve a 

given biodegradation, while low PTF values are associated with highly concentrated 

biochemical activity. The final value of the PTF parameter reflects that the biodegradation 

rates observed in the river (by means of the NH4, NO3 and DO experimental profiles) 

matches those described by the model. Obviously, this parameter turns out to be highly 

identifiable. The KLa February and KLa August parameters determine the in-river dissolved 

oxygen concentration. The KLa February is less identifiable than the KLa August because 

the dissolved oxygen concentrations in winter are close to the saturation limit and therefore, 

high values of the KLa February return similar DO in-river profiles. 

Figure 3 shows the uncertainty propagation results. The optimum parameter values 

were reasonably able to reproduce the experimental profiles of NH4, NO3 and DO (dashed 

line). It is also easy to observe that WWTPs’ discharges lead to a high NH4 concentration in 

the Manzanares River, which is subsequently nitrified along the Jarama and Tajo stretches. 

Comparing February to August profiles, it can be seen that higher summer temperatures 

prompt a faster biodegradation of NH4 leading to a faster increase in NO3. Additionally, the 

in-river DO concentration declines in August compared to February both in the discharge 

zone as well as the Jarama stretch due to the increase of nitrification activity and lower 

solubility. 



   

  

 
Figure 3. Uncertainty propagation on NH4 (mgN/l), NO3 (mgN/l) and DO (mgO/l) model 

simulation responses. CIPU (dark lines) associated with parameter uncertainty and CITU 

(light lines) representing the total uncertainty in terms of parameters and residual errors. 

 

Figure 3 also depicts the Confidence Intervals: CIPU (dark lines) associated with 

parameter uncertainty and CITU (light lines) representing the total uncertainty in terms of 

parameters and residual errors. On the one hand, the CITU bounds bracket most of the 

experimental data, indicating appropriate model behaviour. On the other hand, the CIPU 

ranges are most of the times quite narrow indicating that there is little uncertainty around 

the optimum simulation response. In this respect, it is evident that the CIPU become wider 

when assessing the uncertainty of the model to describe the oxygen concentration in 

February: winter temperatures make oxygen concentrations approach the saturation limit, 

which leads to considerable uncertainty in the definition of the KLa February optimum 

value, and therefore higher uncertainty in the oxygen simulation responses. The CIPU 



bounds can also serve to detect possible inconsistencies in experimental data, as they are 

depicting the zone where the model responses are expected to be. For example, assuming 

that the NH4 discharged by WWTPs is completely nitrified along the studied branch, the 

CIPU indicate that NO3 in-river concentrations should reach higher concentrations at the 

end of the Tajo branch both in February and August. 

The reasonably low uncertainty expected in the model responses (see CIPU bounds) 

encourages further utilization of the model for exploration purposes. For example, as most 

of the WWTPs in the studied area were designed for C removal only, the investigation of a 

new scenario where they are upgraded for C and N removal would be very interesting. 

 

CONCLUSIONS 

 

The biochemical activity in the Tajo Case Study has been described using a RWQM1-based 

model. The Integrated Monte Carlo Methodology (IMCM), based on Bayesian inference, 

has served to calibrate the model using ammonium, nitrate and oxygen data. The study 

allowed estimating the uncertainty in the parameters and in the model responses.  

- Only three transport-related parameters have been calibrated: the Particulate 

Transport Factor (PTF), the volumetric oxygen mass transfer in winter (KLa February), and 

the volumetric oxygen mass transfer in summer (KLa August). The PTF parameter allows 

including the effect of the biomass accumulation in some zones of the river, and therefore, 

describing the high biochemical activity observed in the Jarama and Tajo branches. 

- The Integrated Monte Carlo Methodology (IMCM) has properly yielded the joint 

posterior distribution of the parameters. In this sense, the optimum PTF value was more 

certainly defined than the ones of KLa August or KLa February parameters. IMCM has 

facilitated the uncertainty evaluation not only with respect to the parameter values but also 

in terms of the model responses. The model is now able to describe the expected variability 

of the data around the main process behaviour. 

The suitability of the results encourages further use of the model for the exploration of 

new scenarios, such as the one in which the main WWTPs of the zone were upgraded to 

fulfil N removal.  
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