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ABSTRACT 

Sensitivity analysis represents an important step in improving the 
understanding and use of environmental models. Indeed, by means of global 
sensitivity analysis (GSA), modellers may indentify both important (factor 
prioritization) and non-influential (factor fixing) model input factors. 
However, despite the potentialities of GSA methods, only few applications 
have been published in the field of urban drainage modelling. In order to fill 
this gap this paper presents a comparison among three GSA methods (SRC, 
Extended-FAST and Morris screening) on an urban drainage storm-water 
model. In particular, an exhaustive discussion on their peculiarities, 
applicability, and reliability is presented. Substantial agreement in terms of 
factors fixing was found between Morris screening and E-FAST methods. In 
general, the water-quality related factors exhibited higher interactions than 
factors related to quantity. In contrast to quantity model outputs, quality 
model outputs were found to be characterized by high non-linearity.  
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1 INTRODUCTION 

The evaluation of urban storm-water quality represents a key issue in the urban drainage field in case 
the target of implementing environmental protection methods for receiving water bodies is pursued 
(Novotny et al., 1985). In this context mathematical models, able to predict both storm-water quantity 
and quality characteristics, may provide useful support. Despite the fact that several water quality 
models are available in the urban drainage field, several aspects still limit their applicability, e.g. the 
extreme spatio-temporal variability of the stormwater quality-quantity characteristics or the lack of 
distributed field data, which consequently forces modellers to impose a considerable number of 
assumptions. Indeed, due to these assumptions their predictions are characterised by high uncertainty 
(Beck, 1987; Ashley et al., 2005; Deletic et al., 2012; Dotto et al., 2012). One may ask whether and 
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how these model assumptions influence the output of the model. In this context, sensitivity analysis 
represents a very powerful tool to provide answers, as it is able to determine how uncertain input 
factors determine the model outputs (Saltelli et al., 2004). The term “model input factors” includes all 
the input variables and the model parameters that may be varied during the sensitivity analysis. If the 
input variables are fixed during the sensitivity analysis the term “model input factors” corresponds 
with the term “model parameters”.  

Several sensitivity analysis methods have been proposed in literature mainly divided into two groups: 
local sensitivity methods and global sensitivity methods (Saltelli, 2000). The local methods provide a 
measure of the local effect on the model output of a given model factor by evaluating the change in 
model outputs under small changes of the model input factors. Global sensitivity analysis (GSA) 
methods assess how the model outputs are influenced by the variation of the model input factors over 
their entire range of uncertainty (Homma and Saltelli, 1996; Saltelli et al., 2004). The GSA may help 
modellers in selecting important factors (factors prioritization), non-influential factors (factors fixing) 
as well as identifying interactions among factors. More specifically, by means of the factors 
prioritization the model input factors that have the greatest effect on model outputs are identified. 
Conversely, the factors fixing setting leads to the identification of factors that may be fixed at any 
given value over their uncertainty range without reducing the output variance (Saltelli et al., 2004).  

In Saltelli et al. (2000) the GSA methods are classified into: (i) global screening methods e.g. Morris 
screening method (Morris, 1991; Campolongo et al., 2007); (ii) decomposition variance methods such 
as Extended Fourier Amplitude Sensitivity Testing (Extended-FAST) (Saltelli et al., 1999); (iii) 
regression/correlation based methods such as the standardised regression coefficients (SRCs) method 
(Saltelli et al., 2008). Although GSA offers many advantages compared to local methods only few 
applications have been published in the urban drainage modelling field (Gamerith et al., 2011; 
Vezzaro and Mikkelsen, 2012). Gamerith et al. (2011) compared two GSA methods for a sewer flow 
and water quality model: the SRCs and the Morris screening method. In particular, Gamerith et al. 
(2011) by varying the model parameters of the sewer model, demonstrated that both methods 
identified the same set of important parameters. They also found important non-linear behaviour 
related to the sewer water quality model parameters. Vezzaro and Mikkelsen (2012) recently applied 
a variance decomposition GSA method combined with the General Likelihood Uncertainty 
Estimation (GLUE) in order to identify the major sources of uncertainty in a storm-water quality 
model. They demonstrated that by combining GSA and GLUE methods the identification of the most 
relevant sources of storm-water model uncertainty is possible. 

This paper presents a comparison of three GSA methods applied to an urban drainage stormwater 
model in order to provide an exhaustive discussion on peculiarities, applicability and reliability of the 
different methods. Attention has been focused on the different responses of the methods in terms of 
factors fixing. In particular, the SRC, Morris Screening and Extended-FAST methods have been 
compared (Campolongo et al., 2007). These methods have been applied to an urban storm-water 
quality model recently presented by Mannina and Viviani (2010) by considering the variation of 
uncertain model input factors.  
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2 METHODOLOGY 

2.1 Terminology 

In this paragraph a definition of the different model input factors employed in the three analysed 
sensitivity methods is provided. Indeed, in the literature, as far as authors are aware, a complete, clear 
and generally accepted definition is lacking. The main reason is likely due to the fact that the 
sensitivity methods have been developed in different periods and disciplines, and the authors of each 
method generally do not refer to the other methods. Further, since a comprehensive comparison is 
lacking so far, the terminology used in the different methods has not been standardized.  

The objective of this section is to suggest a common terminology on the basis of the definitions drawn 
from the literature (among others, Saltelli, 2000; Campolongo et al., 2007; Pujol, 2009). It is worth 
mentioning that the three GSA methods allow identifying factors that may or may not have the same 
meaning depending on the method used. Further, in this section only a qualitative definition is 
provided as getting an agreement on quantitative aspects of these definitions is quite an ambitious goal 
that will require extensive use of the different methods. In the following we will provide the 
quantitative definitions of the statistics for the identification of the factors in each method.  

The first definition comes with the SRC method which, by defining a cut-off threshold (CFT), 
distinguishes between two different factors (Figure 1a): 

1. important factors: if sensitivity > CFT; 
2. non-important factors: if sensitivity < CFT. 
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Figure 1. Schematic overview of the suggested terminology for differentiating input factors according 
different GSA methods: SRC (a), Morris screening (b) and E-FAST (c). 



 4 

The important factors represent those model factors that have a high sensitivity coefficient and where, 
therefore, the modeler should pay more attention. Conversely, the non-important factors are those 
model factors characterized by a low sensitivity coefficient. In the case of, linear models, they can be 
fixed anywhere in their variation ranges. In the case of non-linear models however, some of the non-
important factors cannot be fixed due of interactions with other input factors (see below).  

Morris screening provides a second type of classification of input factors. It allows implicitly 
distinguishing between three different types of factors with respect to the mean and the standard 
deviation of the sensitivity (Figure 1b): 

1. important factors: if mean sensitivity > CFT; 
2. interacting factors: if mean sensitivity > CFT and the standard deviation of the sensitivity is 

above a specified cone line; 
3. non- influential factors: if mean sensitivity < CFT. 

In particular, the Morris screening method (Morris, 1991) as modified by Campolongo (2007) 
basically defines a cone whose edges are set by a CFT and an oblique line that is a statistical function 
of the mean and standard deviation of the sensitivity (Figure 1b) (quantitative characteristics are given 
below). 

The E-FAST distinguishes four classes of factors on the basis of two CFT (CFT1 and CFT2) (Figure 
1c):  

1. important factors: if sensitivity > CFT1; 
2. interacting factors: if interaction > CFT2; 
3. influential factors: if sensitivity > CFT1 or interaction > CFT2; 
4. non-influential factors: if sensitivity < CFT1 and interaction < CFT2. 

 
Non-influential factors which can be identified by both the Morris Screening as well as the Extended-
FAST method can be fixed anywhere within their range of uncertainty without changing the model 
output variance. 

2.2 GSA methods 

2.2.1 Standardized Regression Coefficients - SRC 

The SRC method consists of performing a multivariate linear regression between the model outputs 
and inputs factors obtained by means of Monte Carlo (MC) simulations. For each ith input factor (xi) 
and for each model output (y) of interest the regression slope (bi) is standardized according to 
Equation 1 and the sensitivity coefficient is evaluated as: 

yxiii i
bxSRC  )(  (1) 

where xi and y represent, respectively, the ith input factor and the model output standard deviation. 
The i value represents a valid measure of sensitivity for the input factor xi in case the linear 
regression coefficient R2 is greater than 0.7 (Saltelli et al., 2004). The absolute value of i represents 
the order of magnitude of the influence of the ith input factor. The sign of i represents the positive or 
negative effect that an increase of the ith input factor has on the model output. i approximates the 
variance contribution of the ith model input factor to the total variance of the model output. For linear 
models: i=1. 
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As described above, for the SRC method the factors with CFTi  are considered important 

factors, while those with CFTi   are non-important factors.  

The important factors represent those model factors that contribute most to the variance of the model 
output. Conversely, the non-important factors are those model factors that determine model output 
variance to a lesser degree. 

The SRC method generally requires a number of MC in the order of 500 – 1000 in the case of random 
sampling. For Latin Hypercube Sampling (LHS) the required number of simulations is typically 50-
150 times the number of input factors (NF) (Benedetti at al., 2011). 

 

2.2.2 Morris Screening 

The Morris Screening method is based on a one-at-a-time (OAT) perturbation of the model input 
factors under investigation (Morris, 1991). The OAT analysis is repeated r times at different locations 
in factor space resulting in r Elementary Effects for the model output. According to Campolongo et al. 

(2007), for each input factor the measure of sensitivity is summarized by the absolute mean (  ) and 

the standard deviation () of the cumulative distribution function of the r EEs. In particular,   and 

represent, respectively, the measure of the importance of the input factor and to which degree it 
caused non-linearity or interacts with other factors. More specifically, for the ith input factor a high 

value of   shows that model output variation is due to the variation of this factor. Further, a high 

value of forthe ith input factor means that the model output variation is influenced by non-linearity 

or interactions. The line corresponding to 


i =2*SEMi, where SEMi represents the standard error of 

the mean and is used for establishing the type of effect of factors (Morris, 1991; Ruano et al., 2011). 
SEMi is equal to i*r-1/2, where r (number of repetitions) is typically between 10 and 50 (Campolongo 
et al., 2007). Factors which lie outside the wedge formed by the line corresponding to the established 

CFT for   and the line 


i =2*SEM have a linear effect on the model outputs. Conversely, the 

factors which lie inside the area formed by the CFT for   and the line 


i =2*SEM, have a non-

linear effect. According to the Morris Screening method the important factors are factors for which 

CFT , the interacting factors have CFT and 2r    while the non-influential 

factors have CFT . 

In contrast to the SRC method, the Morris screening method allows to also identify interacting and 
non-influential factors.  

Regarding the number of model runs, according to Morris (1991), r * (NF+1) model simulations are 
required (Campolongo et al., 2007). 

2.2.3 Extended-FAST 

The E-FAST method belongs to the variance decomposition methods. The application of this method 
provides, for each input factor, two sensitivity indices: the first-order effect index (Si) and the total 
effect index (STi). Si measures how the ith input factor contributes to the total variance of the model 
output, without taking into account the interactions among factors. Thus, the higher the Si is, the 
higher is the influence of the input factor in terms of factor prioritization. The total effect index STi is 
used to determine factor interactions: the difference between STi and Si represents the degree to which 



 6 

the ith input factor is involved in interactions. A low STi value indicates that the ith input factor may be 
fixed anywhere within its range of uncertainty without reducing the variance of the model outputs. For 
the E-FAST method important factors are characterized by a Si > CFT1, the interacting factors by 

iTi SS  > CFT2, the influential factors by Si > CFT1 or iTi SS  > CFT2 and, finally, the non-

influential factors require Si < CFT1 and iTi SS  < CFT2. 

Regarding the number of simulations, NF*MC simulations are required for the E-FAST method 
application, where NF represents the number of the model input factors and MC is between 500 and 
1000 (Saltelli et al., 2005). 

2.3 Model description and case study 

The urban storm-water sewer model used in this study is able to simulate the main phenomena that 
take place both in the catchment and in the sewer network during both dry- and wet weather periods 
(Mannina and Viviani, 2010). It is divided into two connected modules: a flow module that calculates 
the hydrographs at the inlet (surface runoff) and at the outlet (sewer flow) of the sewer network, and a 
solids transport module, that calculates the pollutographs at the outlet of the sewer network for 
different pollutants (TSS, BOD and COD). The flow module consists of a hydrological and hydraulic 
component. It evaluates the net rainfall by applying a loss function (initial and continuous) to the 
measured rain intensity. From the net rainfall, the model simulates the rainfall-runoff process and the 
flow propagation with a cascade of two reservoirs in series and a linear channel.  

The solids transport module reproduces the accumulation and propagation of solids in the catchment 
and in the sewer network. The main simulated phenomena are build-up and wash-off of pollutants 
from catchment surfaces and sedimentation and re-suspension of pollutants in sewers (Bertrand-
Krajewski et al., 1993). To simulate the build-up of pollutants on the catchment surfaces an 
exponential function was adopted (Alley and Smith, 1981). The solids wash-off caused by overland 
flow during a storm event was simulated with the formulation proposed by Jewell and Adrian (1978). 
The solids deposition in the sewers during dry weather is evaluated by adopting an exponential law. 
Two classes of particles are considered: fine particles and coarse particles. The fine particles are 
mainly transported as suspended load whereas the coarse particles are mainly transported as bed load 
(sediment transport) and are in suspension only at high flows. Particular care has been taken with 
regard to sediment transformation in sewers, considering their cohesive-like behaviour due to organic 
substances and to the physical-chemical changes during sewer transport (Crabtree, 1989; Ristenpart, 
1995). In particular, the transport equation proposed by Parchure and Metha (1985) is coupled to the 
bed sediment structure hypothesised by Skipworth et al. (1999) to simulate the sediment erosion rate. 
The pollutographs at the outlet of the sewer system have been evaluated by assuming the complex 
catchment sewer network to act as a reservoir and by considering an adapted version of Wiuff’s model 
(Bertrand-Krajewski, 1993). The quality model focuses on describing TSS .BOD and COD dynamics 
are evaluated as a ratio of the TSS concentration. More specifically, during wet-weather, a linear 
relationship between TSS and the COD and BOD concentration is assumed. For further details on the 
model the reader is referred to literature (Mannina and Viviani, 2010; Mannina et al., 2012). 

The Montelepre experimental catchment is located near Palermo in the north-western part of Sicily, 
Italy. The total drained area is 70 ha with an impermeable area of 40 ha. The buildings in the area are 
mainly for residential use and minor service sector businesses; the number of inhabitant-equivalents is 
about 7,000. The Montelepre sewer pipes are circular and egg-shaped with maximum dimensions of 
100 × 150 cm. The sewer system is characterised by an average dry weather flow equal to 12.5 l/s 
(water supply: 195 l/ capita/d), and an average dry weather BOD concentration of 223 mg/l.  
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Discharge has been estimated from water depth measured by an ultrasonic probe placed in the main 
channel. A refrigerated automatic sampler with 24 bottles, each with one litre volume, was used for 
sampling of BOD, COD and TSS. The field campaign was carried out by DICA Palermo University 
(Candela et al., 2012). 

For further details about the model and the case study the reader is referred to literature (Candela et al., 
2012; Mannina and Viviani, 2010; Freni et al., 2010c). 

2.4 Methods application and criteria for comparison 

The model is run with a long input time series to simulate both dry and wet weather periods. The 
simulation covered a period of 1 year during which 36 events were recorded and the rainfall depth was 
802 mm and average rainfall intensity was 8.54 mm/h. Seven model outputs have been considered as 
reference of the whole simulated period: the maximum sewer  flow rate (QMAX), the total sewer flow 
volume (VTOT), the maximum TSS sewer concentration (CMAX,TSS), the maximum BOD concentration 
(CMAX,BOD), the TSS sewer load (LTOT,TSS), the average TSS sewer concentration (CAVERAGE,TSS) and the 
average BOD sewer concentration (CAVERAGE,BOD). Seventeen model input factors reported in Table 1 
have been considered. The model input factor ranges have been established by considering previous 
model applications to different case studies (Freni et al., 2010c; Mannina and Viviani, 2010; Mannina 
et al., 2012). Quantity and quality model input factors were changed simultaneously for each MC run. 
It is important to stress that the model structure is such that for the quantity model outputs (QMAX and 
VTOT) changing the quality model input factors (No. 6-17, Table 1) has no effect, i.e. the quantity 
model output are insensitive to these factors.  

Table 1. Model input factors number, symbol, definition, units and variation range. 

No. Symbol Definition Unit Min Max 

1  Channel constant min 0.04 6 

2 W0 Initial hydrological losses mm 0.22 1.5 

3  Catchment runoff coefficient - 0.25 0.57 

4 K1 Catchment reservoir constant min 2 7 

5 K2 Sewer reservoir constant min 2 7 

6 Accu Build-up coefficient Kg ha-1 d-1 0.01 40 

7 Disp  Decay coefficient d-1 0.01 0.5 

8 Arra Wash-off coefficient mm-Wh h(Wh-1) 0.01 2 

9 Wh Wash-off factor - 0.1 3 

10 Kdep Sewer sediment accumulation coefficient h-1 0.001 2 

11 hmax Maximum sewer sediment height m 0.01 0.1 

12 d' Depth of the weak layer mm 0.01 0.4 

13 b Erosional resistance exponent min 0.001 1 

14 cu Yield strength at uniform layer N m-2 1.1 10 

15 M Erosion coefficient g h-1 1 200000

16 Ksusp Sewer suspension delay h 0.001 0.9 

17 Kbed Sewer bed transport delay h 0.001 0.9 

 

For each model input factor reported in Table 1 a uniform distribution has been considered. Such a 
choice was driven by the fact that the prior information on the factors’ behaviour was insufficient. As 
recently pointed out by Freni and Mannina (2010a), a uniform prior distribution of model factors is 
preferred whenever relevant prior factor information is not available, as assuming a non-uniform shape 
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may lead to wrong estimations of uncertainty in modelling results (Freni and Mannina, 2010a). For the 
SRC the sampling is carried out according to the LHS method. 

The GSA methods have been applied by using the sensitivity package developed by Pujol (2007) in 
the R environment (R Development Core Team, 2007). 

For the SRC and Morris screening methods a CFT equal to 0.1 has been established while a CFT1 
equal to 0.01 for E-FAST. This latter threshold has been established considering the fact that i

2 is 
equal to Si (Saltelli et al., 2000) and therefore the value of CFT of 0.1 corresponds to a CFT1 value of 
0.01 for Si in E-FAST.  

For the Extended-FAST method a CFT2 of 0.1 for the value of the interaction (i.e. iTi SS  ) has been 

established. For each method a rank of importance has been determined for each model input factor 
according to the factors prioritisation setting. For factors prioritisation the comparison between 
methods has been performed by making a comparison between the following indices (Campolongo et 
al., 2007; Saltelli et al., 2008): 

- i and Si for the comparison between SRC and E-FAST method results; 

- i and for the comparison between SRC and Morris Screening method results; 

- and Si for the comparison between Morris Screening and E-FAST method results; 

- values of factors ranking order obtained by applying each method. 

For factors fixing the following indices have been considered (Campolongo et al., 2007; Saltelli et al., 
2008): 

- versus STi and  versus STi for the comparison between Morris screening and E-FAST; 

3 RESULTS AND DISCUSSION 

In the following sections the results are presented and discussed in detail for two of the seven 
investigated model outputs. In particular, the results related to QMAX (as quantity model output) and 
CMAX,BOD (as quality model output) will be discussed. Results for each method and the quantity model 
outputs (QMAX and VTOT) are summarized in Appendix A, while in Appendix B the results are reported 
for the quality model outputs (LTOT,TSS, CMAX,TSS, CMAX,BOD, CAVERAGE,TSS and CAVERAGE,BOD). 

3.1 SRC results 

For the SRC method application 1,000 simulations were performed using LHS. The R2 values 
obtained by applying the SRC method were larger than 0.7 for QMAX, VTOT and LTOT,TSS and smaller 
than 0.7 for CMAX,TSS, CMAX,BOD, CAVERAGE,TSS and CAVERAGE,BOD (see Appendixes A-B). The low R2 are 
of these model outputs are caused by non-linearity due to the high complexity of the quality model 
(Freni et al., 2009; Dotto et al., 2010). Indeed, several processes of the quality model control the TSS 
concentration (i.e., solids build-up and wash-off, the sewer sediments accumulation, erosion and 
transport) with a variety of aspects (e.g. climate variables, land use or the surface features) (Freni et 
al., 2009; Dotto et al., 2010; Mannina and Viviani, 2010). The result of low R2 for BOD can be 
explained by the functional relationship that exists between TSS and BOD in the model (see above). 
Consequently, the BOD concentration follows the same non-linear behaviour as TSS. 

Overall, the model input factors  (no. 1), K1 (no. 4), K2 (no. 5), Wh (no. 9), Kdep (no. 10), b (no. 13), 
cu (no. 14) and Kbed (no. 17) were classified as being non-important for all model outputs (see 
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Appendixes A-B). For the quantity model outputs for which a high linearity was found these non-
important model input factors may be fixed anywhere within their range of uncertainty.  

In Figure 2 results related to QMAX (Figure 2a) and CMAX,BOD (Figure 2b) are presented. For the quantity 
variable we do not need to investigate the effect of the quality input factors (6 to 17) because they 
cannot have any effect due to the model structure. By analyzing Figure 2a it is evident that only two 
model factors are important for QMAX: W0 and  This result highlights the strong importance of the 
hydrological losses for the quantity model. Indeed, W0 and account respectively for the losses in 
small ponds and in infiltration. In particular, a negative and a positive effect on QMAX was found 
respectively for W0 (i= -0.767) and (i= +0.560) (see Appendix A). Such results are in agreement 
with the physical meaning of these two factors: i) increasing W0 leads to a global reduction of QMAX, 
ii) the QMAX value is directly proportional to . 

For CMAX,BOD (Figure 2b) six of the seventeen model factors were classified as being important. 
Among these seven factors, W0 and Ksusp (no. order 16) had the highest influence on CMAX,BOD.  More 
specifically, both W0  and Ksusp showed a negative effect on CMAX,BOD (see Appendix B). These results 
are in agreement with the physical meaning of the model factors. Indeed, when increasing W0 the 
wash-off effect decreases, thus reducing CMAX,BOD. Moreover, increasing W0 leads to a reduction of the 
erosion effect of sewer sediments, thus reducing CMAX,BOD. An increase of Ksusp increases the sewer 
flow storage and thus the CMAX,BOD decreases due to a dilution effect. The high influence of the model 
input factor Accu (no. 6) confirms that the quality model outputs are strongly influenced by the solids 
accumulation during the dry weather period. This emphasizes the importance of having field data and 
detailed information on the catchment’s land use because it influences the quantity of the solids that 
accumulates in the catchment. Despite this, the model factors hmax (no. 11) and d’ (no. 12) were found 
to be important with their |i| value close to 0.1. This confirms (as also found for all model outputs, see 
Appendix B) the importance of the sewer sediments for the pollutant load assessment (see, among 
others, Ashley et al., 2000, Banasiak et al., 2005). Moreover, the importance of model factors 11 and 
12 confirms the need for accurate modelling of the sediments erosion process by considering the 
cohesive-like behaviour of sewer sediments (Skipworth et al., 1999). 
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Figure 2. Results of the SRC application related to QMAX (a) and CMAX,BOD (b); the lines represent the 
threshold value selected for i. 

3.2 Morris Screening results 

For the Morris Screening r=30 replicates were considered requiring 540 model simulations. Globally, 
the model input factors 1, 4, 5, 10 to14, and 17 were classified as non-influential for each model 
output according to the value of * and . All other model input factors had high * value and were 
considered important (see Appendixes A-B). Overall, among the model input factors with * greater 
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than 0.1 a higher non-linear effect was found for the quality model outputs than for the quantity model 
outputs (see Appendixes A-B). 

Thus, by applying Morris Screening 53% of the model input factors were found to be non-influential 
in terms of * value and  value (factor fixing). 

In Figure 3 results related to QMAX (Figure 3a) and CMAX,BOD (Figure 3b) are presented. For QMAX (and 
for all quantity model outputs, see Appendix) the effect of quality model input factors (from 6 to 17) is 
nil due to the model structure. For QMAX the model input factors W0 and are the most important, in 
terms of * value, confirming same physical interpretation as discussed in the previous paragraph. 
Both W0 and having a low value of , have a linear effect on QMAX (see Appendix A). Indeed, they 
both lie outside the wedge formed between the threshold line and the line *

i=2*SEMi.  

Regarding CMAX,BOD (Figure 3b) a higher number of model input factors were found to be influential 
than for QMAX because the model input factors from 6 to 17 (quality model input factors) do not have 
any effect on QMAX. For CMAX,BOD (Figure 3b) model input factors 2, , 6, 8, 9, 15 and 16 were 
influential. While these influential model input factors all lie outside the wedge formed between the 
threshold line and the line *

i=2*SEMi, a higher non-linear effect is shown than for QMAX (see  values 
on Appendix B). The physical interpretation of the important model input factors is the same as 
discussed in the previous paragraph. 
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Figure 3. Results of the Morris screening application related to QMAX (a) and CMAX,BOD (b); the labels 
indicate the number of the model input factors according to Table 1.  

3.3 E-FAST results 

In order to apply the E-FAST method 8,500 model runs were conducted corresponding to 500 
simulations for each model input factor. By applying E-FAST the model input factors , 3, 6-8, 11, 12, 
14 -16 were found to be important at least for one model output in terms of Si value. Among these 
important model input factors the parameters , 3, 6-8 were also found to be interacting in terms of 
normalized STi-Si value. Moreover, input factor 9 was found to be interacting for CMAX,TSS, CMAX,BOD 
and CAVERAGE,BOD (see Appendixes A-B). Model input factors 1, 4, 5, 10, 13 and 17 were found to be 
non-influential for each model output according to the Si and the normalized STi-Si values (see 
Appendixes A-B). Overall 11 of the 17 model input factors were found to be influential. 

In Figure 4 results related to QMAX (Figure 4a) and CMAX,BOD (Figure 4b) are shown. The most 
important model input factors for QMAX (Figure 4a) are W0 and  which account for 60% and 32% of 
the variance (see the Si value for these model input factors on Appendix A). As shown by the dark 
grey bars on Figure 4a, the interaction among model input factors is negligible for QMAX. Indeed, the 
model under study is characterised by an additive behaviour for QMAX. This characteristic is also 
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demonstrated by the fact that the sum of Si is close to 1 (see Appendix A). Consequently, the STi 
values do not differ significantly from the Si values (see Appendix A).  

For CMAX,BOD (Figure 4b) the number of important model input factors is higher than for QMAX due to 
the fact that the quality model input factors do not have any effect on the quantity model outputs. 
Further, for CMAX,BOD (Figure 4b) the model input factors 2,  6-8, 11, 15 and 16 were found to be 
important in terms of Si values. However, for CMAX,BOD a high interaction is found as demonstrated by 
the sum of the STi values and by the higher difference between STi and Si (see Appendix B). The 
highest interaction contribution to the total variance was found for model input factors W0 and Ksusp. 
The interaction of model input factors W0 and Ksusp with all model input factors contributes to the 
variance of CMAX,BOD by respectively 23% and 24% of (see Appendix B). Indeed, the most influential 
model input factor in terms of Si value accounts for only 21% of the total variance of CMAX,BOD 

demonstrating that the highest contribution is provided by the interaction among model input factors. 
The higher interactions for the quality model input factors is likely due to two aspects: the higher 
uncertainty that generally comes with the quality processes compared to the quantity processes (see 
Freni and Mannina, 2010b) and the higher number of model input factors considered compared to the 
number considered for the quantity output variables (namely, 5 and 17 model input factors for the 
quantity and quality modelling, respectively). The input factor Wh was found to be interacting on the 
basis of the established threshold for the interaction. Indeed, Wh contributes with 14% to the total 
variance of CMAX,BOD via the interaction with the other model input factors.  

Important to stress is that only by means of the E-FAST method a numerical quantification of the 
interactions among model input factors is possible.  
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Figure 4. Results of Extended-FAST application related to QMAX (a) and CMAX,BOD (b). 

3.4 Comparison of the methods 

In Table 2 the results related to the comparison among the three methods for the two model outputs 
discussed here (QMAX and CMAX,BOD) are summarized. The three methods are able to provide the same 
result in a qualitative and quantitative way for QMAX and CMAX,BOD. Indeed, for QMAX a high linearity 
has been found in the application of the SRC method as demonstrated by the R2 value close to 1. Such 
result was also confirmed by the low value of the sum of i in the Morris screening application. The 
low value of the sum of i means that globally the model input factors have a linear effect. This high 
linearity for QMAX has also been confirmed for E-FAST by the similar values found for the sum of Si 
and the sum of STi. This confirms the low interactions for this model output. 

For CMAX,BOD a similar agreement in the results was found. R2 of SRC application is 0.46 (we are 
outside the range of applicability of SRC) showing a substantial non-linearity for this model output. 
The same result is confirmed by the application of the Morris screening and E-FAST methods. Indeed, 
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for CMAX,BOD the sum of i is quite high (3.19) demonstrating a higher interaction among model input 
factors than for QMAX. Moreover, the sums of Si and STi related to the E-FAST application differ 
considerably (Table 2).  

In terms of factors prioritisation the comparison between i
 and * allows concluding that the 

methods agree quite well. Excellent agreement among the results has been obtained when comparing 
i

2 and Si for factor prioritisation, and this for both QMAX and CMAX,BOD (Table 2). Thus, the SRC and 
E-FAST methods lead to similar results in terms of quantifying the degree of influence of the analysed 
model input factors.  

In terms of factors fixing corresponding results have been obtained with the Morris screening and E-
FAST methods, i.e. comparing * with STi and  with STi  (Table 2).  

Table 2. Results obtained by applying SRC, Morris screening and E-FAST methods for QMAX and 
CMAX,BOD. 

METHOD
VARIABLE 

i Si STi

0.76 0.93 1.06
No. factor order i rank   rank Si STi rank

1 -0.012 10 0.000 0.000 5 0.000 0.000 17
2 -0.767 1 0.809 0.307 1 0.599 0.654 1
3 0.560 2 0.531 0.264 2 0.316 0.372 2
4 -0.091 3 0.090 0.091 4 0.006 0.013 3
5 -0.073 4 0.097 0.098 3 0.006 0.013 4
6 -0.020 5 0.000 0.000 6 0.000 0.001 5
7 -0.009 12 0.000 0.000 7 0.000 0.001 6
8 -0.014 7 0.000 0.000 8 0.000 0.001 7
9 -0.009 13 0.000 0.000 9 0.000 0.001 8
10 0.014 8 0.000 0.000 10 0.000 0.001 9
11 0.002 16 0.000 0.000 11 0.000 0.001 10
12 0.016 6 0.000 0.000 12 0.000 0.001 11
13 -0.011 11 0.000 0.000 13 0.000 0.001 12
14 -0.005 15 0.000 0.000 14 0.000 0.001 13
15 -0.001 17 0.000 0.000 15 0.000 0.001 14
16 -0.006 14 0.000 0.000 16 0.000 0.001 15
17 -0.013 9 0.000 0.000 17 0.000 0.001 16

QMAX

SRC Morris Screening E-FAST

0.92

R2 i Si STi

3.19 0.59 2.02
i rank   rank Si STi rank

0.051 12 0.000 0.000 16 0.000 0.003 17
-0.330 2 0.304 0.491 2 0.102 0.339 2
0.173 5 0.254 0.408 3 0.038 0.207 6
0.005 16 0.029 0.068 10 0.001 0.015 13
0.061 10 0.042 0.091 8 0.001 0.015 14
0.272 3 0.204 0.315 5 0.076 0.210 3

-0.142 6 0.040 0.090 9 0.016 0.054 7
0.197 4 0.212 0.451 4 0.053 0.185 4

-0.019 13 0.152 0.349 6 0.008 0.145 10
0.005 17 0.004 0.012 15 0.001 0.023 15
0.095 7 0.012 0.036 12 0.015 0.057 8
0.071 8 0.007 0.024 14 0.009 0.038 9

-0.017 14 0.025 0.081 11 0.007 0.056 12
-0.016 15 0.011 0.042 13 0.007 0.046 11
0.052 11 0.104 0.188 7 0.044 0.174 5

-0.416 1 0.350 0.545 1 0.212 0.454 1
0.066 9 0.000 0.000 17 0.000 0.003 16

R2

0.46

SRC Morris screening
CMAX,BOD

E-FAST

 

A new way to discuss the input factor classification among important/non-influential classes is 
presented in Figures 7 and 8. The overlapping area between SRC, Morris screening and Extended-
FAST contains those model input factors that can be considered important or non-influential for each 
method. Figure 7 shows a Venn diagram related to the comparison of SRC, Morris screening and E-
FAST in terms of important model input factors for QMAX (Figure 7a) and for CMAX,BOD (Figure 7b). 
From Figure 7 it is evident that for QMAX the three methods provide the same results. For CMAX,BOD 

(Figure 7b) the three methods provide similar results for those model input factors having the highest 
influence (2, 3, 6, 8 and 16). It needs to be stressed that among the important model input factors for 
CMAX,BOD (Figure 7b) as selected by means of Morris screening method, the model input factor 9 (that 
was selected as interacting by E-FAST) was selected as important. Such result shows a good 
agreement between the results obtained by means of E-FAST and Morris screening methods. It is 
worth mentioning that the model input factor 7 for CMAX,BOD is important for the only E-Fast method 
(Figure7b). Such a result provides the impression that both SRC and Morris screening eliminate 
factors that may turn out to be important. However, looking at the values of the sensitivity 
coefficients, 0.14 and 0.014 for SRC and E-Fast, respectively (Table 2), it comes out that choosing a 
slight higher CTFs for both methods, the same results of E-Fast can be obtained. 
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Figure 7. Venn diagram for important model input factors (factors prioritisation) obtained by applying 
SRC, Morris screening and E-FAST methods related to QMAX (a) and CMAX,BOD (b); numbers refer to 
the input factor order (according to Table 1). 

Figure 8 shows a Venn diagram related to the non-influential factors of QMAX (Figure 8a) and 
CMAX,BOD (Figure 8b). This diagram can only compare the Morris screening and E-FAST methods 
(SRC doesn’t provide such information) From Figure 8a one may observe that Morris screening and 
E-FAST provide exactly the same results in terms of non-influential model input factors for QMAX. 
However, for CMAX,BOD, the Morris screening method overestimates the number of non-influential 
model input factors compared to the E-FAST method. Factors 7 and 11 are identified as being non-
influential with the Morris Screening. This is problematic as the same factors are classed as being 
important with E-FAST (Figure 7). It seems that the Morris Screening is not conservative enough. 
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Figure 8. Venn diagram for non-influential model input factors (factors fixing) obtained by applying 
Morris screening and E-FAST methods related to QMAX (a) and CMAX,BOD (b); numbers refer to the 
input factor order (according to Table 1). 

4 CONCLUSIONS 

 A comparison between three GSA methods (SRC, Morris Screening and E-FAST) was 
performed in order to identify important, non-influential and interacting model input factors of 
an urban drainage stormwater model; seventeen model input factors and seven model outputs 
(quality/quantity) were investigated. 

 It was found that the SRC method is inside its range of applicability for the outputs QMAX, 
VTOT and LTOT,TSS  and outside for CMAX,TSS, CMAX,BOD, CAVERAGE,TSS and CAVERAGE,BOD. 

 The Morris screening results have demonstrated higher standard deviation values for water 
quality related model outputs than for water quantity related model outputs. This points to a 
high interaction among the model input factors for water quality related model outputs. By 
applying the E-FAST method it was possible to properly quantify the interactions of model 
input factors by computing the difference between STi and Si.  

 In terms of factor fixing similar results were obtained between Morris screening and E-FAST 
methods for QMAX. However for CMAX,BOD the Morris screening identified two model factors as 
being non-influential that are classed as important by E-FAST. This shows a potential problem 
when using Morris to screen for non-influential factors.  
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