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Abstract The effectiveness of distributed execution of computationally intensive ap-
plications (jobs) largely depends on the quality of the applied scheduling approach.
However, most of the existing non-trivial scheduling algorithms rely on prior knowl-
edge or on prediction of application parameters, such as execution time, size of input
and output, dependencies, etc., to assign applications to the available computational
resources. A major issue is that these parameters are hard to determine in advance,
especially if the end user does not possess an extensive history of previous application
runs.

In this work we propose an online method for execution time prediction of appli-
cations, for which execution progress can be collected at run-time. Using dynamic
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progress information, the total job execution time can be predicted using extrapo-
lation. However, the predictions achieved by extrapolation are far from precise and
often vary over time as a result of changing application dynamics and varying re-
source load. Therefore, to compute the actual job execution time we match a number
of predefined prediction evolution models against the consecutive extrapolations, by
adopting nonlinear curve-fitting. The “best-fit” coefficients allow for more accurate
execution time prediction.

The predictions made are used to enhance a dynamic scheduling algorithm for
workflows introduced in our earlier work. The scheduling algorithm is run with and
without curve-fitting, showing a performance improvement of up to 15% in the for-
mer case.

Keywords Application distributed execution · Execution time prediction ·
Optimization

1 Introduction

When dealing with application complexity and long execution times, one often con-
siders distributed solutions such as clusters and grids. However, the benefit of dis-
tributed approaches largely depends on the scheduling strategy applied. Most of the
currently existing schedulers for distributed systems require sufficiently accurate in-
formation to be provided on the applications scheduled and on the available resources,
to perform effective job–resource matchmaking. Unfortunately, this information is
hard to obtain in advance, due to high job diversity, large variation in input parame-
ters and the dynamic nature of distributed resources.

One of the major issues in the domain of distributed computing is considered to be
prediction of application run-times. Taking into account the diversity of the existing
applications, it seems extremely difficult to define a general solution for the problem.
Therefore, in this work we concentrate on the category of applications for which the
execution progress can be monitored at run-time. We propose a dynamic prediction
mechanism that iteratively refines estimates of job execution time based on periodic
run-time updates on the job progress.

Concretely, there exists a broad group of applications for which execution progress
can either be collected periodically or at particular time-points during the application
execution. Examples of such applications are simulations with a total simulated time
T total that is known a priori (see Table 1 for a listing of symbols). If, for instance,
the current simulated time (t) can be collected at run-time, we can predict the total
execution time of our job J (Eest

J ) using extrapolation: Eest
J = TJ ∗ (T total/t), where

TJ is the processing time of J thus far. Other examples are applications consisting
of a number of consecutive runs. When the total and the current number of runs
are known, we can extrapolate as above, to predict Eest

J . The problem of this sim-
ple approach is that the predicted execution time Eest

J can strongly vary over time,
depending on system dynamics, complexity of individual job runs and changes in
resource load. To address this dynamic behavior of applications and distributed re-
sources, we modify Eest

J at run-time, taking into account the previous job execution
time predictions.
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Table 1 Listing of frequently
used acronyms and symbols Parameter Description

A Amplitude of estimates’ oscillations

b Factor determining speed in increase/decrease of A

B Network bandwidth

CR Computational Resource

CRref Reference Computational Resource

CS Checkpoint Server

DAG Directed Acyclic Graph

Eact
J

Actual execution time of task J

ECR
J

Execution time estimation of task J on resource CR

Eest
J

Estimated execution time of task J

Eref Reference execution time used in progress models

F Oscillation curve period

Func Set of prediction evolution functions

GS Grid Scheduler

Hist Set of previous estimates and progress collection
timestamps

i Initial parameter value

Init Set of initial parameter values for optimization

IS Information Service

LAN Local Area Network

LASP Double Exponential Smoothing

MIPS Million Instructions Per Second

MIPSCR Computational capacity of resource CR

MIPSCR
J

Computational capacity of resource CR allocated to J

MPI Message Passing Interface

nCR Number of tasks running on resource CR

nmax
CR Maximum number of tasks on CR

ψ Prediction evolution function

PJ Progress of task J

P
perc
J

Percentage of task J completed

PS Parent Set

r2 White noise coefficient

ResNorm Squared 2-norm of the residual

S Grid Site

t Current simulated time

TJ Processing time of task J thus far

T total Total simulated time of a simulation job

UI User Interface

ϕ Oscillation curve phase

WAN Wide Area Network

X Vector with best-fit parameter values for certain input
data
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We make the realistic assumption that Eest
J converges over time to a certain end

point, which means that the longer a job is running, the closer Eest
J converges to the

actual job execution time (Eact
J ). Therefore, we can match the course of Eest

J against
a number of prediction evolution models, determined using historical information on
previous application runs. The matchmaking is realized using a curve-fitting opti-
mization procedure. Parameters determined by the optimization provide an accurate
estimate of the convergence point and thus of the total execution time.

Obviously, only a dynamic scheduling approach can benefit from the proposed
prediction mechanism. A scheduler should be able to assign arriving jobs randomly
to the available resources and to reschedule them at run-time as more information on
individual job progress becomes available. Therefore, to evaluate the performance of
our prediction method, the latter is incorporated into a dynamic scheduling algorithm
for workflow applications that is introduced in our previous publication [2]. The al-
gorithm was simulated in a grid simulation environment (DSiDE [3]), using realistic
workload derived from a modeling and simulation tool for environmental systems
(Tornado [5]).

The remainder of this paper is structured as follows: Sect. 2 introduces related
work; Sect. 3 describes the job/task execution time prediction method proposed; the
simulation scenario utilized for evaluation of the prediction method is discussed in
Sect. 4; simulation results can be found in Sect. 5; and, finally, Sect. 6 concludes the
paper.

2 Related work

Currently existing approaches for estimating execution times of jobs running in dis-
tributed environments can be subdivided into two main categories: application com-
ponent performance modeling and historical prediction.

Application component performance modeling considers the number and the com-
plexity of instructions executed for particular input parameters. A concrete example
of this approach can be found in [13], where a job is run initially with several small-
size input problems. The computational complexity for each run is determined as a
function of the number of floating point operations performed and the memory ac-
cess pattern. After the data collection phase, least square curve-fitting is applied on
the collected data to make prediction for a specific input data set. The main disad-
vantage of this approach is that it operates at a fine-grained instruction level and is,
therefore, only applicable to small, deterministic applications with a limited number
of input parameter combinations. A slightly different mechanism is proposed in [9].
Here the execution time prediction is taken to a next level of abstraction, by iden-
tifying a number of primitive routines performed by a job. The total execution time
prediction is derived from the job performance within the routines. Other applica-
tion model-based prediction solutions are discussed in [20] and [17]. In [20] dynamic
models of workload evolutions are designed to predict the execution time of non-
deterministic bulk synchronous computations on multiprocessors. In [17] a modeling
approach to estimating the execution time of long-running scientific applications is
presented. The approach is based on the observation of resource usage behavior of a
job and job profiling.
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In general, it can be concluded that while exhaustive profiling within application
performance modeling provides for very accurate estimates, correct application mod-
els are hard or sometimes even impossible to obtain. Furthermore, the approach yields
insufficient insights on the impact of input data changes on application execution.

On the other hand, the historical prediction method that utilizes sets of past ob-
servations to predict execution times, seems to be more effective and more generally
applicable. Therefore, it is frequently applied within recent research projects. For
instance, in [10] the ScoPred performance predictor is discussed, which applies mul-
tiple linear regression using rough estimates of application execution time provided
by the end user and historical application run data to predict the execution times.
Other regression-based methods are described in [11] and [8]. Here regression mod-
els and filtering techniques are applied on a subset of previous application runs in
order to discover the relationships between variables that affect the run-times of ap-
plications (e.g., application input, resource capacities). In [14] and [15], similarity
template based approaches are proposed. A similarity template refers to a set of se-
lected attributes. In [14] matchmaking of templates is supervised by an expert user,
who is supposed to indicate the relevance of each attribute for a particular application.
In [15], on the other hand, similarity distance calculations are performed on attributes
in a predefined order. Hereby, the similarity calculation of the second most relevant
attribute will occur only for those cases that get high similarity for the most relevant
attribute.

The main disadvantage of the historical approach is that a large number of histori-
cal records must be stored before matchmaking of a job against the available records
can provide a sufficiently accurate estimate. However, the more records are stored,
the longer the matchmaking procedure takes.

The approach proposed in this work can be classified as high level application
performance modeling, where the possible models of job execution progress evolu-
tion are provided by end users in advance. The advantage of our approach is that it
requires a relatively limited number of prediction evolution models to deliver accept-
able prediction accuracy.

3 Prediction algorithm description

The algorithm proposed is primarily designed for dynamic schedulers assigning jobs
with a priori unknown execution times within dynamic distributed environments.
The mechanism is implemented as an independent module that can be plugged into a
scheduler. The idea is that the scheduler periodically consults the prediction algorithm
to determine a new job execution time estimate, based on the earlier collected job
progress history. The remainder of this chapter presents the algorithm pseudocode
and gives explanation on consecutive steps.

The functionality of the proposed algorithm can be formalized as follows:

Input: Job name: J ,
Set of (estimate, progress timestamp)-pairs: Hist = {(E1, T1), . . . , (En,Tn)},
Set of initial parameter values: Init = {i1, . . . , im},
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Set of prediction evolution functions: Func = {(ψ1, . . . ,ψk}
Output: Job execution time estimate: Eest

J

1: if Size(Hist) ≡ GetPreviousEstimatesNo(J ) then
2: Eest

J ⇐ En

3: else
4: SetPreviousEstimatesNo(J,Size(Hist))
5: if Size(Hist) ≡ 1 then
6: Eest

J ⇐ E1
7: else
8: for all ψj ∈ Func do
9: [Xψj

,ResNormψj
] ⇐ MatchCurve(ψj , Init,Hist)

10: end for
11: ψj ⇐ MinResNormGet(ResNorm)

12: Eest
J ⇐ CalculateLimit(ψj ,Xψj

)

13: end if
14: end if

The input to the algorithm consists of the following parameters: the name of a job
(J ), for which a new estimate of the execution time is required; the prediction history
Hist, containing pairs of execution time predictions E, computed by extrapolation
of consecutive progress measurements, and progress collection timestamps T ; and a
set, Init, of initial parameter values (i). The initial parameters serve to initialize the
optimization performed in the scope of curve-fitting. The parameters within Init are
provided by end users, which are presumed to possess sufficient application knowl-
edge to provide for the appropriate initial values. A good choice of the latter is highly
important for the accuracy of the prediction mechanism, since it avoids the optimiza-
tion ending in a local optimum. Also the set, Func, of functions, ψ , is provided to
the algorithm. Each function ψ describes a possible evolution over time of job exe-
cution time estimates. The historical input-data (E) is matched against the available
functions to provide a new estimate, Eest

J , which is the output of the algorithm.
Before proceeding with calculating Eest

J , the algorithm first checks whether new
information on job progress has become available since the last algorithm run. If the
latter is not the case, the previous value of Eest

J still applies (see lines 1–2). On the
other hand, when the number of extrapolated estimates increases (Size(Hist)), this
number is saved for the next run and the algorithm proceeds with computing the new
Eest

J (see lines 3–14).
Obviously, it is assumed that the prediction algorithm is called only after at least

one progress indication is collected. However, since no curve fitting can be performed
for a single point, the algorithm simply returns the initial estimate value E1 (see lines
5–6). When the set Hist contains multiple estimates, for each predefined function ψ

the curve-fitting optimization procedure MatchCurve is called (see lines 7–9). The
MatchCurve method takes as arguments a function ψ , the initial parameter values
and the execution time estimate data points, together with the estimate timestamps.
The outputs of the method are two vectors: X contains the parameter values that best-
fit function ψj (X,T ) to the data Hist; and ResNorm, which represents the residual
norm, used by the prediction algorithm to determine the function ψj that best fits the
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provided input data. ResNorm is calculated as the squared 2-norm of the residuals
(see Formula 1), which means the parameter depicts the squared difference between
the optimized function and the input data. Clearly, the smaller the difference, the
better the curves fit.

ResNormψj
=

∑

k

(ψj (Init, Tk) − Ek)
2. (1)

Finally, the limit of the function with the minimum ResNorm is calculated, which
provides us with the a new execution time prediction (see lines 11–12). As was men-
tioned previously, we assume that the longer a job is running, the closer its execution
time prediction gets to the real execution time value. This means that the function rep-
resenting the execution time evolution converges over time to a certain limit-value.
Since there are always only a limited number of functions provided, the limit ex-
pression can easily be determined analytically by an end user and provided to the
algorithm together with the prediction evolution functions (Func). Afterwards, the
predictions can be calculated by substituting the X-parameters into the limit expres-
sion of the ψj -function.

4 Simulation experiment description

To evaluate the performance of the proposed prediction algorithm, we integrate the
latter into the dynamic workflow scheduler introduced in our previous work [2]. The
scheduler is implemented in an existing grid simulation environment, called DSiDE
[3], which allows for easy modeling and monitoring of dynamic resource and ap-
plication behavior. To get an accurate indication on the overhead periodic prediction
and rescheduling introduce in distributed environments, a realistic medium-sized grid
model and a workload model deduced from a real-world application are considered.

In the remainder of this section, the workload and the grid models, together with
the utilized dynamic scheduling approach are discussed in more details.

4.1 Workload model

The performance of the proposed algorithm is simulated using a workload model
derived from Tornado [5], an existing application for modeling and virtual experi-
mentation with complex environmental systems. Tornado is particularly interesting
as a use case since it generates jobs with strongly varying properties in terms of job
execution times, mutual dependencies, size of input/output data, etc.

In this work we consider Tornado jobs composed of tasks with input dependen-
cies. It means that some tasks require inputs generated by other tasks, before they can
proceed with their execution. This type of dependency can significantly benefit from
distributed execution, compared, for instance, to MPI-based (Message Passing Inter-
face) [7] dependencies, since it does not require extensive communication between
tasks at run-time.

In general, a Tornado job with input dependent tasks can be represented as a DAG
(Directed Acyclic Graph) of the form shown in Fig. 1. As depicted in the figure, each
job contains a single initial task, which generates inputs for one or several dependent
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Fig. 1 Example of a workflow
consisting of tasks with
input-dependencies, organized
into a DAG structure

tasks, which in turn generate inputs for their dependent tasks, etc. The procedure
continues until the final level of the dependency hierarchy is reached, where a single
final task produces job results. An example of such a dependency structure within
Tornado is the Scenario Analysis experiment: the initial task determines different pa-
rameter values, input variable values and/or initial conditions; afterwards, individual
simulation experiments (dependent tasks) are run with each combination of inputs
and during each run the simulated trajectories of a number of selected quantities are
saved; the final task is executed to compute a variety of objective values.

Due to a large diversity of possible inputs for Tornado experiments, it is hard to
predict the execution time of an experiment in advance. However, for a large group
of Tornado jobs the execution progress can be monitored at run-time and their total
execution time can be predicted using extrapolation:

Eest
J = 100% × TJ × MIPSCR

PJ × nCR
(2)

where J is a Tornado task running on a distributed computational resource CR; TJ

is the wall clock execution time of J thus far; MIPSCR is the speed of the resource
CR; PJ is the percentage of the task J completed within the time period TJ ; and
nCR is the total number of tasks running on CR. In fact, we compute the execution
time prediction on a theoretical reference resource CRref, having MIPSCRref = 1 and
nCRref = 1.

To provide for a realistic model for evolution of execution time estimates, a num-
ber of Tornado experiments were observed. From these observations can be con-
cluded that the estimate curves show strongly alternating evolution (see Fig. 2). How-
ever, a common tendency can be distilled by defining the following three approxima-
tion models:

– The overestimate model represents estimates that are gradually decreasing until the
stable state is reached. In the stable state the exact execution time is known and
the predictions no longer change. An example of this model is the “Galindo_CL”
simulation experiment [4].

– The underestimate model is the opposite of the overestimate model. Here the execu-
tion time prediction increases until the stable state. “BSM1_CL” [4] is an example
of this model.
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Fig. 2 Examples of evolution of execution time estimates for the “Galindo_CL,” “Galindo_OL,”
“BSM1_CL” and “Bamberg” simulation experiments

– The fluctuating model represents an erratic pattern, whereby predictions oscillate
over time. In the case of “Galindo_OL” [4] and “Bamberg” [4] we can talk about
the fluctuating model.

The above-mentioned models can be approximated mathematically by the fol-
lowing exponential functions: Eest

J = Eref
J + r1Ae−bt ± r3, r1 > 0 describes the

exponentially decreasing overestimate model; Eest
J = Eref

J − r1Ae−bt ± r3, r1 > 0
represents the exponentially increasing underestimate model; and, finally, Eest

J =
Eref

J ± r1Ae−bt sin(2πF t + r2ϕ) ± r3, r1 > 0 represents the fluctuating model. In
these equations, Eref

J is a reference execution time value for the job J that pre-
vents the models from having too short initial execution time estimates; r1 and r2
are pseudo-random weight factors that can take values between 0 and 1; A is the
amplitude of estimate oscillations; b is a weight factor that determines the speed in
the increase/decrease of A over time; F stands for the oscillation curve period; ϕ

represents the oscillation curve phase; and, finally, r3 = pA is white noise that is
defined as a small percentage p of the amplitude. Obviously, the larger p, the more
noise is imposed on the model and the more difficult it is to classify the curve. To
eliminate/reduce noise, filtering or smoothing can be applied on the input data before
the optimization step. Using these techniques, an approximate function can be con-
structed that captures the important patterns in the data and leaves small oscillations
out.

Another issue is that it is often difficult to distinguish noise from the oscillating
model pattern. However, we are not really interested in oscillations but rather in the
end values, which remain after the oscillations have decayed. We partially address
both issues by providing to the prediction algorithm the following two prediction
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Fig. 3 Considered grid model: Computational Resource (CR), Grid Scheduler (GS), User Interface (UI),
Information Service (IS), Checkpoint Server (CS)

evolution functions: ψ1 = x1 + x2e
(−x3t) and ψ2 = y1 − y2e

(−y3t), where xj and yj

stand for the parameter values to be determined. To a certain extent, the functions
have the effect of a smoothing technique, since after sufficiently long task run-times
they capture the increasing/decreasing data pattern and manage to eliminate noise and
oscillations. The limits of the functions can be analytically determined as x1 and y1.

4.2 Grid model

We model a grid environment (see Fig. 3) consisting of a number of distributed Sites
(S), aggregating heterogeneous dedicated Computational Resources (CR).

In practice, resource capacity is a complex quantity, which is influenced by dif-
ferent hardware components. In this work, we use a simplified metric, called MIPS,
which is often applied theoretically to compare resource capacities.

Another assumption relates the sharing of CR capacity among simultaneously ac-
tive tasks. Normally, each application requires different and alternating amounts of
hardware resources (CPU, IO bus, etc.), but we assume that each task J is allocated
an equal share of a resource capacity (MIPSCR

J ), which is determined using the fol-
lowing equation:

MIPSCR
J = MIPSCR

nCR
. (3)

To avoid overzealous partitioning of MIPSCR, the number of tasks allowed to run on
a CR simultaneously is limited by the boundary nmax: nCR ≤ nmax.

Next to CRs, the considered grid infrastructure includes a number of general ser-
vices, such as a Grid Scheduler (GS), which maintains a job queue and is responsible
for task-resource matchmaking; several distributed User Interfaces (UIs), utilized by
end users to submit their applications to the grid; an Information Service (IS) required
to collect information on the grid status; a Checkpoint Server (CS) where checkpoints
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are saved; and a Storage Resource (SR) where output data is transferred after a job
execution.

Often, a real-world grid infrastructure contains several SRs. The allocation of in-
put/output data to an appropriate SR is then performed using a certain data scheduling
policy. Since data scheduling is out of the scope of this work, we limit the considered
grid infrastructure to a single SR.

The performance evaluation of the proposed prediction algorithm would not be
accurate if we would not consider different types of overhead, related to the dynamic
information collection and the rescheduling process.

The first important source of overhead relates to the grid middleware services:
querying IS for dynamic resource/task status, periodic task execution time predic-
tions, (re)schedule computations by GS, and, finally, checkpointing and migration
slow down task execution. These types of overhead are taken into account by adding
constant delays to our model.

The second significant cause of task slow down originates from network transfers,
such as input/output file staging, workflow rescheduling and rollback. In our model
all grid sites are interconnected by a Wide Area Network (WAN), while the commu-
nication within the sites go by different Local Area Networks (LANs). It is assumed
that network transfers within LANs originate exclusively from grid jobs, while WANs
are open to external network traffic. Therefore, two different models, described in [1],
are used for bandwidth (B) sharing among simultaneous transfers: every data transfer
route going through a WAN link gets a small equal share of the total link capacity;
while capacities of LAN links are proportionally shared among simultaneous active
grid transfers. For simplicity we assume that total link capacities do not change over
time and that links are not subject to failure.

4.3 Dynamic scheduling algorithm

In this work we integrate our execution time prediction module into a dynamic
scheduling algorithm, to observe to what extent the predictions made improve the
algorithm performance. The algorithm, originally proposed in [2], operates in dy-
namic grid environments where tasks with input dependencies and unknown execu-
tion times (for which, however, periodic progress information can be collected) are
run. The algorithm makes use of information services to collect dynamic system up-
dates and applies these updates to (re)schedule dependent tasks. Figure 4 gives a brief
overview of the different algorithm steps, which are described in more details in the
remainder of this section.

The objective of the algorithm is to reduce the execution time of a job (see
Fig. 1) running on a set of distributed heterogeneous resources, by taking into ac-
count task interdependencies. Before we proceed, we define the notion of a parent
set (PS), which is a set of tasks generating input for the same group of dependent
tasks. For example, in Fig. 1 tasks {0}, {1}, {2,3,4}, {4}, {6,7,8}, {9,10}, {11},
{5,12,13,14,15} form parent sets for respectively tasks 1–4, 5–8, 9, 10–11, 12, 13–
14, 15 and 16. Clearly, each task in the considered workflow, except for the initial
task, has a parent set. Parent sets of different tasks are not necessarily unique and
they can overlap, which is the case for the sets {2,3,4} and {4} in the example above.
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Fig. 4 Flow of the operation
phases of the dynamic
scheduling algorithm

Several issues arise when we are dealing with input-dependency constraints. First
of all, if jobs arrive with high frequency into a grid, initial tasks, which do not have
input dependencies and can be started immediately, occupy the available resources
to a large extent. This leads to a delay in the execution of dependent tasks and thus
prolongs the job execution as a whole. Secondly, not all tasks within a parent set
are computationally equally intensive, which means that some tasks may finish much
faster than others, when executed on resources with similar capacity. The imbalanced
task execution, however, is not advantageous because the output of a whole parent
set is required to proceed with the execution of its dependent tasks.

Since we are usually not interested in partial results but only in the results pro-
duced by final tasks, the algorithm tries to reduce the execution time of a job at the
cost of possibly slower execution of individual tasks. The idea behind the algorithm is
to give the processing of dependent tasks a higher priority than the execution of initial
tasks. In fact, the latter are scheduled only when no dependent tasks are waiting for
the execution. Furthermore, the execution of parent sets is balanced by scheduling the
computationally most intensive tasks within a set to the fastest available resources,
leaving slow resources to short tasks. Our optimization criteria can formally be de-
fined as:

⎧
⎪⎨

⎪⎩

min∀PS

(
max

∀Ji∈PS
{EJi

}
)

∀PS: min∀Ji ,Jj ∈PS
|EJi

− EJj
|.

(4)

The above equations mean that the maximum execution time (max∀Ji∈PS{EJi
}) as

well as the difference of task execution times (|EJi
−EJj

|, ∀Ji, Jj ∈ PS) within each
parent set should be minimized. Clearly, to satisfy these criteria and to provide an ap-
propriate schedule, the algorithm requires a good task execution time estimate mech-
anism. The better the provided estimate, the less rescheduling needs to be performed
on each system/task dynamic information update.

Concretely, the algorithm of Fig. 4 proceeds as follows:

– Collection of dynamic information. The information on resource load and avail-
ability, as well as the information on job status and progress of running jobs is
collected. Important to mention is that the data collected can be outdated, depend-
ing on the length of the interval used by the IS to query the grid.

– Execution time prediction. In this step, the execution time predictions of tasks
within running PSs (RPSs) are (re)computed, based on updates in task progress
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and resource status. By the term running PS we understand a PS that exclusively
contains finished tasks and tasks actually running on active grid resources, but not
waiting tasks.

– Rescheduling of Running PSs. Tasks within RPSs are reassigned to balance their
predicted execution times: the longest task is assigned to the fastest available re-
source (minimizing maximum execution time), while other tasks are assigned such
that their execution times are as close as possible to the execution time of the
longest task within the RPS, without actually exceeding it (minimizing process-
ing time difference). This means that the shortest tasks are migrated to slowest
resources, leaving the fastest resources to the tasks requiring fast execution.

– Scheduling of idle tasks. The parent sets containing idle tasks are assigned to the
resources remaining after the rescheduling step. The PSs are processed in the order
of their arrival into the GS-queue. For some applications we may possess an initial
estimate of the total tasks execution time. In this case the scheduler proceeds as
described in the previous step. Otherwise, tasks are assigned randomly.

More detailed information on the different steps of the algorithm can be found
in [2].

5 Algorithm performance evaluation

To measure the benefit of the proposed prediction algorithm for complex jobs with
unknown execution times, a number of simulation experiments were performed in the
DSiDE simulation environment. In this section we describe the simulation scenario
parameters (see Table 2), together with the performance results.

5.1 Simulation experiment description

A grid consisting of 4 computational sites, with 32 CRs each, is observed during
24 hours of simulated time. Each CR within the grid has a computational capacity
between 0.5 and 4 MIPS (uniformly distributed among CRs) and is limited to run a
maximum of 2 tasks simultaneously. To focus on the variation of the execution time
progress and on the accuracy of the predictions, we assume that once initialized, the
computational speed of CRs remain unmodified during the whole simulation experi-
ment.

The WAN links connecting the 4 distributed sites transfer data at a constant rate of
5 Mbit/s, with a latency uniformly distributed between 3 and 10 ms per link. On the
other hand, intra-site transfers occur with a maximum speed of 1 Gbit/s. However,
since link capacity within LANs is shared among the active data transfers, the more
data traffic has to be processed, the lower the transfer rate. Finally, all the LAN links
possess a fixed latency of 1 ms per link within a transfer route.

As was mentioned earlier, job parameters for the simulated grid model are derived
from an existing tool for modeling and virtual experimentation with environmen-
tal systems, called Tornado. Tornado possesses a broad category of jobs, or virtual
experiments, with input dependencies. In this work, we consider a group of input de-
pendencies resulting from model sweeps. It means that tasks are derived from differ-
ent mathematical models and have strongly varying execution times. The considered
execution times (Eact) on CRref and their variations are depicted in Fig. 5.
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Table 2 Listing of model
parameters Parameter Value

A U(Eref × 150%,Eref × 200%)

Activation interval of IS 5 min

b U(0,1)

B of LAN links 1 Gbit/s

B of WAN links 5 Mbit/s

C 2 s

CJ 1 GB

CR number 128

F U(Eref × 5%,Eref × 10%)

IJ 1 GB

Latency of LAN links 1 ms

Latency of WAN links U (3 ms, 10 ms) ms

MIPSCR U (0.5 MIPS, 4 MIPS)

MIPSCRref 1 MIPS

nmax
CR 2

nmax
CRref 1

OJ 1 GB

P U(1%, 100%)

Scheduling interval of GS 10 min

ϕ U(Eref × 1%,Eref × 2%)

Fig. 5 Task length distribution
for model sweep-based jobs

In this work, we simulate jobs containing 10 dependent tasks on average, orga-
nized into a 3-level dependency hierarchy. For simplicity, we assume that input,
output, and checkpointing data of all tasks are equally sized and amount to 1 GB.
A checkpointing delay of 2 s is also identical.

The task parameters considered correspond with the actual task properties ob-
served when running Tornado experiments on the UGent grid infrastructure [18].
The UGent grid is a part of the Belgian grid infrastructure and consists of 76 CRs
having a total of 222 CPUs, 304 GB memory and 4.4 TB disk space.
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Fig. 6 Job arrival pattern with
daily cycle. U(Umin,Umax) =
uniform distribution within
Umin and Umax

The workload described above is submitted into the considered grid environment
according to the Lublin job generation model [12]. The model implies that most of
the jobs (about 80%) arrive during day time, between 8 AM and 8 PM, resulting
in peak hour loads alternating with relatively idle periods, as shown in Fig. 6. This
cyclic behavior largely corresponds to the behavior of Tornado users observed on the
UGent grid.

We assume that an equal number of tasks following the overestimate, the under-
estimate and the fluctuating progress evolution models are submitted. The model pa-
rameters are initialized as follows (see also Table 2): Eref for the overestimate model
is uniformly distributed between Eact × 150% and Eact × 200%; Eref for the un-
derestimate model equals Eact × 10% + A; Eref for the fluctuating model equals
Eact; A is uniformly distributed between Eact × 150% and Eact × 200%; b is uni-
formly distributed between 0 and 1; F is uniformly distributed between Eact × 5%
and Eact × 10%; ϕ is uniformly distributed between Eact × 1% and Eact × 2%; and,
finally, we observe 3 types of noise r2 = 0 (no noise), r2 = 0.05A (low noise oscilla-
tion amplitude) and r2 = 0.5A (high noise oscillation amplitude). The task execution
progress is updated every Eact × 0.5%.

Finally, it is also important to mention that we utilized the Tornado modeling and
virtual experimentation framework for fitting periodic extrapolated execution time
predictions to a number of predefined functions within the prediction algorithm. Tor-
nado routines were called from the DSiDE code using the TornadoCPP Software
Development Kit (SDK) that consists of a Dynamically Linked Library (DLL), an
import library and corresponding header files. In particular, to perform nonlinear
curve-fitting (data-fitting) within Tornado, the following procedure is to be followed:

– Implementation of the prediction evolution functions as algebraic models, specified
in one of the two modeling languages supported by Tornado: Model Specification
Language (MSL) [19] or Modelica [6].

– Creation of a Simulation Experiment (ExpSimul) that simulates the models over
the desired time interval.

– Creation an Objective Evaluation Experiment (ExpObjEval) that calculates the
Sum of Squared Errors (SSE) between the values simulated by ExpSimul and the
input data.

– Creation of an Optimization Experiment (ExpOptim) that executes ExpObjEval
iteratively for different model parameters, until the minimum SSE is reached. We
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have used the Simplex [16] optimization solver to provide initial model parameter
values.

5.2 Simulation results

In this section we compare the performance of the dynamic algorithm when using two
different task execution time prediction approaches. In the first approach the predic-
tion value is simply derived by extrapolation from the last task progress measurement.
The second approach is the proposed curve-fitting-based prediction mechanism. The
performance of both methods is observed for job progress curves with different am-
plitude white noise. An example for the overestimate model in Fig. 7 suggests that
we consider job execution time predictions with a perfectly exponential course (or a
sinusoidal course in the case of the fluctuating model), as well as jobs with noise with
low and high amplitudes.

The simulation results on the performance of the two prediction algorithms are
depicted in Fig. 8. Concretely, Fig. 8(a) shows the mean fraction of useful workload
processed by the dynamic scheduler in both cases. The term useful workload refers to
the total processing time on CRref, spent running successfully executed jobs. Formally
this definition can be written as follows:

E =
∑

J∈Done ECRref

J∑
J∈Submitted ECRref

J

(5)

where Done is a set of jobs, for which the final result is successfully computed within
the observed time interval; and Submitted is a set of all submitted jobs. We have to
emphasize that successfully executed tasks, belonging to jobs that have not managed
to execute within the predefined interval, do not contribute to the useful workload.

The simulation results suggest that when use is made of the curve-fitting-based
prediction method, the dynamic algorithm achieves up to 15% better performance (in
the optimal case of “Low Noise”), compared to the extrapolation method. The advan-
tage of the curve-fitting procedure is particularly remarkable in the case of noise with
low amplitude (“Low Noise”). In this case the trend of the progress curve is preserved,
simplifying the selection of an appropriate prediction evolution function and thus giv-
ing a correct indication of the total execution time in an early stage of a task process-
ing. It means that the task can be assigned to the best suited resource at the beginning
of its execution. Furthermore, matchmaking with an exponential curve largely elim-
inates oscillations in prediction values, reducing overzealous checkpointing and mi-
gration. The latter statement is confirmed by the simulation results in Figs. 8(b)–8(d),
which shows respectively the proportions of rescheduling operations, network traf-
fic and checkpoints performed by the curve-fitting-based and the extrapolation-based
algorithms.

Obviously, when the prediction curves show smooth evolution (“No Noise”),
extrapolation-derived values show less variation and thus need less rescheduling op-
erations to calibrate task execution times. Therefore, the performance of the dynamic
algorithm with extrapolation gets closer to the performance of the curve-fitting-based
algorithm, compared to the “Low Noise” case.
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Fig. 7 Examples of white
noise, used to evaluate the
prediction algorithm
performance: (a) exponential
progress evolution without
noise, (b) exponential progress
evolution with low amplitude
noise, and (c) exponential
progress evolution with high
amplitude noise

Finally, large amplitude white noise (“High Noise”) conceal the trend of the pre-
diction curve, obstructing the curve matchmaking procedure. The curve-fitting algo-
rithm takes in this case wrong fitting decisions regularly, by selecting an inappropriate
prediction evolution function to match with. In Figs. 8(b)–8(d) it can be observed that
the numbers of checkpoints and migrations performed by both algorithms get close
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Fig. 8 Performance comparison between extrapolation-based and curve-fitting-based prediction ap-
proaches: (a) proportion of successfully processed useful workload; (b) network load comparison;
(c) rescheduling proportion comparison; (d) checkpointing proportion comparison

to each other. As the result, both algorithms start performing similarly with respect
to the useful workload processed.

6 Conclusion

In large distributed environments it is difficult to determine the execution time of
applications due to a variety of input parameters, internal application dynamics and
changing properties of distributed resources. However, knowledge of the total job ex-
ecution time is essential for the implementation of an efficient scheduling policy. As
this issue is difficult to address in a generic way, we consider a group of applications
for which the execution progress can be monitored at run-time. An online prediction
approach is proposed that uses the progress history to determine the course of the
prediction curve and thus to estimate the total execution time. To achieve this goal,
the approach makes use of curve-fitting of the current prediction evolution data to a
number of predefined models.

To evaluate the prediction approach performance, the latter is integrated into an
existing dynamic scheduler for workflow applications. The scheduler is in turn im-
plemented in a grid simulator, called DSiDE, where a realistic medium-sized dis-
tributed environment with computational load derived from a real-world biological
application is simulated. Under these conditions, the performance of the dynamic
scheduler was evaluated for two situations: the scheduler uses the proposed predic-
tion mechanism; the scheduler uses an extrapolation-based execution time predictor.
The simulation results suggest the performance improvement of up to 15% in the
former case.
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