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• We monitored a full-scale membrane bioreactor for one year.
• Six operating variables and three fouling indicators are used.
• SRT, temperature, flux and organic loading are correlated with long-term fouling.
• MLSS and iron additions have a limited impact on long-term fouling.
• Statistical prediction of long-term permeability evolution is attempted.
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Even if fouling in membrane bioreactors (MBRs) has been extensively studied during the last decade, its
causes and mechanisms are not well understood yet. Furthermore, few full-scale and long-term experiments
have been published, and their results do not always match with the models developed from lab-scale
studies.
A statistical approach linking long-term and short-term permeability evolution with operational variables in
full-scale membrane bioreactors for domestic waste-water treatment is presented. Data originate from a
66,700 P.E. MBR plant monitored for more than one year. Permeability and several fouling indicators were
calculated in each of the four hollow-fibre membrane tanks of the plant. The influence of SRT, temperature,
MLSS, F:M ratio, iron dosing and membrane flux on daily permeability evolutions, instantaneous permeabil-
ity evolution and hydraulic backwash efficiency was studied. In order to minimise the bias due to correlations
between input variables, a statistical approach using principal component regression and partial least-square
regression was tested. Flux, temperature, SRT and F:M ratio are the most influential input variables on
long-term permeability evolutions. Iron dose and MLSS are less correlated with fouling indicators. The pro-
posed approach may be improved by integrating the history of the membrane to better describe and predict
the permeability evolution.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Over the last decade, filtration in membrane bioreactors (MBRs)
has been extensively studied since fouling and the related energy
consumption to mitigate it are one of the main bottlenecks for the
development of this technology [1]. To help filtration design and
operation, different models have been proposed and calibrated, es-
sentially based on lab-scale and pilot-scale experiments.
: +33 5 57 89 08 01.
e).
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On the one hand, mechanistic models based on physical filtration
laws have been proposed. Resistances in series coupled with mass bal-
ances are the most common approach [1–5]. Applications of these
models have been restricted to relatively short-term periods, mostly
in the range of 1 h–10 d and exceptionally up to 65 d. These models
contain a large number of parameters and variables, such as sludge
supernatant composition and especially soluble microbial products
(SMPs) concentration, shear stress, or size distribution of particles and
membrane pores. A few other mechanisms have been highlighted in
exploratory studies, but they are poorly quantified and formalised in
models. Examples include the protection of membranes against deep
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Fig. 1. Simplified MBR layout.

Table 1
Main characteristics and operational variables of the MBR during period 1.

Plant-wide dataDesign capacity 66,700 P.E.
10,500 m3·d−1

11,100 kg COD·d−1

Average influent flow rate 8200 m3·d−1

Activated sludge tanks volume
(anoxic + anaerobic + aerated tanks)

2 × 7550 m3

Membrane tanks volume 4 × 70 m3

Pre-treatment Grit removal, fat removal,
sieving 0.8 mm

SRT 50–70 d
HRT (for average flow rate) 38 h

Membranes Membrane type Hollow fibre ZeeWeed
500d (GE-Zenon)

Mean pore size 0.04 μm
Material PVDF
Membrane area 4 × 4550 m2

Filtration flux 10–50 LMH
Instantaneous SADm 0.62 Nm3·m−2·h−1

(50% of the time)
Activated
sludge

Average organic loading 4200 kg COD·d−1

Average F:M ratio 0.052 kg COD−

1·kg MLVSS−1·d−1

MLSS (aeration tanks) 5–9 g·L−1

MLSS (membrane tanks) 6–10 g·L−1

MLVSS 4.5–6 g·L−1

Temperature 10–21 °C
Average iron dose Winter: 90 kg Fe·d−1

(8.8 mg Fe/Linfluent)
Summer: 140 kg Fe·d−1

(18 mg Fe/Linfluent)
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fouling by the cake layer [6], or the role of the nature of SMP
(protein/polysaccharides/humic substances) in their ability to attach
to the membrane. Many studies highlight polysaccharide predominance
in fouling [7–9] but for others, the protein content in the colloidal phase
[10,11] or humic substances [12] is the main factor. Since experimental
conditions and analysis methodologies differ, comparing these studies
can be very complex. Furthermore, they allow to identify mechanisms
but not to quantify their contributions to overall fouling.

On the other hand, empirical models based on statistical analysis
of data can integrate unknown mechanisms in multivariate linear
correlations [13–15].

On full-scale plants, only two of the reviewed studies aim at
modelling permeability [16,17]. The model of Wintgens et al. [16]
was upgraded and implemented in the GPS-X software by Sarioglu
et al. [5] on a long pilot plant monitoring period. The model is based
on resistances in series with cake deposition and a mass balance of
SMP inside the membrane to make internal fouling increase with
the cumulated filtered volume. Cake deposition has an impact only
when filtration experiences a process upset. Ludwig et al. [17] use
almost the same concepts and obtain good results for transmembrane
pressure (TMP) simulation, but only for short periods (1–4 day vali-
dation periods). Unlike in most full-scale data found in literature
[18], no progressive increase of permeability is modelled in these
studies. This is probably because mechanical and chemical cleaning
(backwashing, maintenance cleaning) is not, or poorly, accounted
for in the models. Also, some of the more complex mechanisms de-
scribed previously are not considered in models calibrated on large-
scale experimental setups. In full-scale MBRs, the limited monitoring
of operating conditions doesn't allow this kind of detailed study. A
prior statistical analysis between sludge characteristics, operating
conditions and fouling may provide a deeper insight into the predom-
inant fouling mechanisms and their respective weights.

The aim of this study is to present a statistical analysis of opera-
tional conditions (flux, FeCl3 dose), sludge characteristics (SRT, F:M
ratio, temperature, and MLSS) and fouling indicators. A full-scale
MBR with four parallel membrane tanks (MTs) equipped with
hollow-fibre membranes was monitored for one year. Appropriate
sequences of flux used in pilot-scale membrane bioreactors to charac-
terise fouling are not feasible in full-scale. However the availability of
a wide range of flux variations (15 to 50 LMH) in the full-scale plant,
even erratic, can be used with appropriate data processing. Three
fouling indicators were calculated to get the most information out
of full scale data that are not initially designed for fouling characteri-
zation in a research context.
First, a principal component analysis (PCA) was conducted on
input variables to identify their correlations, and a principal compo-
nent regression (PCR) was conducted to analyse links between main
groups of variables and fouling indicators. Then a partial least square
regression (PLSR) was used to highlight which variables or groups of
variables are best correlated with these indicators. The prediction
ability of these approaches is then discussed and the perspective of
improving the models is commented.

2. Materials and methods

2.1. MBR plant description

A MBR plant in the Paris area designed for 66,700 P.E. (Fig. 1) was
monitored for one year. The mixed liquor from the two biological
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Fig. 2. Input variables trend over the whole monitoring period.
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treatment trains (anoxic, anaerobic and alternating aerobic/anoxic
tanks) is mixed and then filtered by hollow fibre modules (Zeeweed
500d, Zenon) installed in four separate membrane tanks (MTs).
Their air flow rate could not be measured directly, but it was very
likely identical since the air blowers were identical and independent
for the 4 MTs. Furthermore measured power consumption was the
same four all 4 blower engines. The cyclic air flow rate (10 s on/10 s
off) was constant during the whole monitoring period. The specific
aeration demand per membrane area (SADm) is 0.62 Nm3·m−2·h−1

when aeration is on. Filtration is sequenced as follows: 10 min
Fig. 3. Example of flux and TMP var
filtration/1 min backwash,withmaintenance cleanings (short chemical
cleanings with bleach and citric acid) every 3 or 4 d. The main plant
data are summarized in Table 1.

The monitoring period was split into two periods. During period 1
(January 13 to August 23, 2011), additional online sensors were set
up in the influent and permeate streams to monitor COD and nitrogen
(NH4, NO3) (S::CAN,MesstechnikGmbh, Austria;Hach Lange, Germany),
and in the biological tanks to monitor MLSS, DO and pH. Almost twice a
week sampling enhanced the setup for probe calibration and additional
analyses (BOD5, TKN, NO2, TP, PO4). The samples were analysed using
iations over 5 filtration cycles.
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Fig. 4. Overview of the four statistical approaches.
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the French or European standard methods (NF–EN) in the Irstea labora-
tory, and on site using rapid test kits (Hach Lange, Germany). The plant's
existing data acquisition system provided flow rates, transmembrane
pressure, temperature, sludge wastage and equipment operation logs.
The protein and polysaccharide contents of influent wastewater, sludge
supernatant and permeate were analysed at the beginning of period 1.
The limit of quantification for protein and polysaccharides in our lab
was respectively 5 mg BSA·L−1 and 10 mg Glucose·L−1, based on
error on standard solution of BSA and Glucose b20%. The concentrations
found in sludge supernatant and permeate were near 10 mg BSA·L−1

(protein) and below 5 mg Glucose·L−1 (polysaccharides). These low
values incited us to give up measuring this variable. The low concentra-
tion may be explained by the long SRT above 50 d [19] and/or the high
iron dose that could help flocculation and chelating of SMP [20].

During period 2 (August 23, 2011 to January 31, 2012), a fraction of
the online probes had been removed. Influent, permeate and sludge
monitoring were limited to routine operation analysis conducted about
twice a week (24-h composite samples for influent and permeate, and
grab samples in aeration tanks for dry matter analysis). The results for
period 2 were corrected if necessary according to correlations between
lab-measurement and operator measurements made during period 1.

2.2. Variations of the main operational variables

Operational variables selected to characterise the sludge are temper-
ature, MLSS, F:M ratio, SRT, and iron dose. These variables are plotted in
Fig. 2. They have been chosen because they are available to operators,
which is a prerequisite for potential application of our method. pH
and MLVSS (63–73% MLSS) were also available but not used in this
study since they were respectively quite stable (7.0–7.6) and too
much correlated with MLSS.

Since SRT varied strongly during themonitoring period, it was calcu-
lated dynamically using themethod of Takács et al. [21], to better repre-
sent the real floc retention time, according to the following equation:

dSRTd ¼ dSRTd−1 þ 1−
SRTd−1⋅Fp

Md
: ð1Þ

where Md is the total solids mass in the whole plant (kg) and Fp is the
daily sludge production (kg). Fp was calculated by two means in order
to ensure the reliability of the results. On the one hand Fpwas calculated
as the product of a solids production yield (YSP) and influent COD load.
Average YSPwas calculated as the slope of cumulated solids balance and
influent COD load, and validated using a COD balance over the whole
plant [22]. On the other hand Fp was calculated with the volume and
concentration of wasted sludge and validated versus the weight of
hauled dewatered solids. There are no differences in this calculation be-
tween the two periods, but in rawdata used. Sludge production calcula-
tion during period 1 was based on our own sensors and analysis,
whereas during the period 2, it was based on operators' data. Sludge
production yield calculated during the second period is still in agree-
ment with the results available when MLSS and COD balances were
performed over the whole plant.

The iron chloride dose added into the anoxic tanks for enhanced
phosphorus removal was quite high (Table 1) to comply with strin-
gent effluent quality requirements, especially in the summertime
(0.4 mg TP·L−1 during the lowwater period in the receiving stream).
Upsets of the iron chloride dosing pumps explain the sudden dose
variations seen in Fig. 2. High variations of MLSS between April and
July 2012 (Fig. 2) were performed intentionally for the study by
increase/decrease of sludge wastage.

2.3. Permeability calculation

For each MT, the permeate flux and TMP are recorded every 10 s.
Due to a complex flux automation system to control the water level in
the MTs, flux and TMP fluctuate a lot. The flux can vary between 10
and 50 LMH within the same filtration cycle. An example of these
variations is presented in Fig. 3. A programme has been developed
with the R language (R Development Core Team, 2009) to isolate
stable flux-steps and remove TMP stabilisation phases. About 20% of
the total filtration time could finally be selected for permeability
calculations. Permeability (Lp) was calculated with corrections for
(i) temperature, (ii) head loss in permeate pipes, and (iii) pressure
sensor drift, using the following equation:

Lp ¼ μp

μ20
p

⋅ J
TMPmeasure−TMP0−αJ2Ltube

ð2Þ

where J is the membrane flux, α the head-loss coefficient, Ltube the
tube length between membrane modules and pressure sensors, and
μp and μp20 are respectively the permeate viscosity at temperature T
assuming Eq. (3) [1] and at 20 °C (water viscosity). TMP0 is the resid-
ual pressure measured by the TMP sensor during relaxation phases
that last more than 10 min, and averaged on 5 d.

μp ¼ μ20
p ⋅1:78 e−0:041 T0:875

: ð3Þ

After these corrections, the instantaneous permeability is no lon-
ger affected by the instantaneous flux, which tends to reject hypoth-
esis about filtration mechanisms that depend instantly on flux (cake
compressibility and concentration polarisation) (see Section 3.3).

2.4. Fouling indicator calculation

Due to the particular behaviour of flux, specific fouling indicators
were developed for this WWTP. Even if it doesn't allow dissociating
properly between different fouling types like with some dedicated
flux-step sequencing strategy used in pilot-scale studies, it is an
attempt to get the most information out of these full-scale data. The
indicators are calculated based on the corrected permeability as
presented in Section 2.3. It was chosen because it doesn't depend on
instantaneous fluxes which presented lots of variations, and repre-
sents well the fouling status of membranes.

Two short-term (2–10 min) and one mid-term (one day) fouling
indicator have been defined and calculated:

- iBW (impact of hydraulic backwashes on permeability): when
permeability can be calculated less than 2 min before and after a
backwash sequence (at least 40 s stable flux-step each side), the
difference between the two values is an indicator of the backwash
efficiency. iBW is then calculated as the daily average of this

image of Fig.�4


Fig. 5. (a) Contribution of each principal component to the total variance of the input dataset. (b) Composition of each component in terms of scaled input variables.
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indicator (in LMH·bar−1). It represents a part of the physically
reversible fouling, which may include both surface and internal
deposits.

- iPE (instantaneous permeability evolution): on each flux-step, a
time-linear regression is performed on permeability. iPE is
then calculated as the daily average of the permeability slopes
(in LMH·bar−1·s−1). It represents short-term (about 1–9 min)
fouling, often associated in literature with particles deposition on
membrane surface.

- dPE (daily permeability evolution): dPE is the difference between
the average permeability of day d minus that of day d − 1
(in LMH·bar−1). It represents a numerical derivative of the long-
term permeability drift.
2.5. Statistical modelling of permeability

The aim of the study was to link the fouling indicators defined
above to operational variables. In the rest of the paper, operational
variables refer to flux, temperature, MLSS, F:M ratio, dSRT and Iron
dose.

A statistical multivariate analysis was performed to highlight cor-
relations between different elements: (i) daily operational variables
themselves, (ii) daily operational variables and dPE, (iii) operational
variables and short-term fouling indicators (iBW and iPE), and (iv)
short-term fouling indicators (measured or predicted) and dPE.

Two types of regressions were used: Principal Components Re-
gression (PCR) and Partial Least Square Regression (PLSR). Their advan-
tage, especially for PLSR, is that they allow determining independent
effects of each input variable even if they are correlated.
Table 2
Pearson correlation matrix between operational variables (significant correlations are
bolded).

Flux Temperature MLSS F:M dSRT Iron dose

Flux 1.00
Temperature −0.63 1.00
MLSS −0.02 0.19 1.00
F:M −0.02 −0.17 −0.75 1.00
dSRT −0.37 0.52 0.38 −0.54 1.00
Iron dose −0.17 0.23 −0.04 −0.03 0.17 1.00
PCR aims at defining components (linear combinations of input
variables) that are both uncorrelated and represent the maximum
of the total variance of input variables. It highlights correlations be-
tween the original input variables. A linear regression between one or
several of these components and output variables is then performed.

PLSR is the same type of regression, but differs in the construction
of components: instead of maximising only the total variance of input
variables, PLSR aims to maximise the combined variance of input and
output variables, which improves the prediction ability for output
variables.

To apply these methods to our data, four approaches have been
used (Fig. 4):

The first two approaches aim at highlighting correlations between
operational variables themselves and between operational variables
and the long-term fouling indicator (dPE).

Approach 1: a PCA is used to study input variable correlations, and
the associated PCR links dPEwith the resulting principal components.
Approach 2: PLSR is used to fit dPE, but it uses a different set of
input components for each output dataset (i.e. for each of the
four MT). Approaches 3 and 4 aim at investigating fouling mecha-
nisms. They highlight links between input variables, short-term
permeability evolutions (iPEs), fouling reversibility by backwashes
(iBWs) and long-term permeability evolutions (dPEs).
Approach 3: PLSR is fitted to predict instantaneous permeability evo-
lution (iPE) and reversibility (iBW) based on operational variables.
The couple of parametersweighting iPE and iBW in a bilinear relation-
ship to predict dPE is then optimized with a Nelder–Mead algorithm.
Approach 4: dPE is calculated directly from a linear combination
of the measured values of iPE and iBW using the parameters
optimized in approach 3. It is a kind of validation of approach 3.

In approaches 1 to 3, input variables are the 6 operational variables,
whereas in approach 4, input variables are the two short-term fouling
indicators.

All four approaches yield a linear relationship (Eq. (4)) between
operational variables (approaches 1 and 2) or short-term fouling indica-
tors (approaches 3 and 4) and daily permeability evolutions:

dPE ¼ Lp;dþ1−Lp;d ¼ Σai⋅Xi ð4Þ
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Fig. 6. Permeability evolution over one year in the four membrane tanks. Vertical arrows represent regeneration cleaning.
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where ai is the regression coefficients and Xi the operational variables
(approaches 1 and 2) or the short term fouling indicators (approaches
3 and 4).

The value of daily permeability evolution (dPE) obtained from
Eq. (3) is then used to calculate the daily average permeability (Lp)
using a numerical integration with a one-day time step. Lp is initialized
to its measured value at d = 0 and after each regeneration cleaning.
That way, all four approaches can eventually estimate the long-term
evolution of permeability.

Correlation tests between predicted and measured values of dPE,
iPE, and iBW yield very low correlation coefficients (R2 ≤ 0.3) due
to the scatter of measured data. To assess the efficiency of the four
statistical methods, the relative mean square error between the pre-
dicted and measured daily average permeability was preferred
(Eq. (4)):

rRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ

Lp;m−Lp;pð Þ2
Lp;mð Þ2
n

vuuut ð5Þ

where Lp,m (LMH·bar−1) is the measured value for daily average per-
meability, Lp,p (LMH·bar−1) is the predicted value and n the number
of days considered.

It allows comparing the four methods in a fair manner, even if
their predicted variables are not the same. Calibration of the model
was done with the data of period 1 (210 d) and validation with
those of period 2 (174 d).
Table 3
Permeability values in other hollow-fibre full-scale studies.

Reference Permeability range (LMH·bar−1) Membrane type

[23] 100–280 Zenon Zeeweed 500c
[18] 200–480 Zenon ZeeWeed 500d
[24] 150–200 Zenon ZeeWeed 500c and 500d
[25] 60–160 Zenon ZeeWeed 500c
[26] 100–250 Zenon ZeeWeed 500c
[16] 60–370 Zenon ZeeWeed ??
Present study 150–600 Zenon ZeeWeed 500d
3. Results

3.1. Correlations between input variables

One of the by-products of approach 1 is an overview of input vari-
able correlations. The first component (PC1) mainly represents sludge
characteristics (F:M ratio, dynamic SRT, MLSS and to a smaller extent,
temperature). It accounts for 30% of the total variance of operational
variables (Fig. 5). The second component (PC2) represents mainly flux
and temperature, which are fortuitously negatively correlated: the
highest flow rates occur in the winter time due to the rainfall pattern,
whereas the flow rates decrease in the summer time due to a reduced
population during the holiday season. The third component represents
mainly the iron dose, that is quasi independent from other variables.
These results show the strong correlations between input variables,
which are also illustrated by the Pearson correlation matrix shown in
Table 2. SRT is typically strongly correlated with F:M. In our case, the
correlation is weaker because variations ofMLSS and F:M ratio occurred
and SRT was calculated dynamically. As a result, variations of SRT were
delayed and smoothed compared to those of MLSS and F:M.

The observed correlations justify the use of PLSR, an appropriate
method to dissociate correlated variables in the input dataset, to obtain
a descriptive model for the fouling indicators.

3.2. Long-term permeability evolution

Permeability varied over a large range within a year, between 130
and 650 LMH·bar−1 (Fig. 6). Surprisingly there are significant differ-
ences between the behaviour of the four MTs, even though they were
filtering the same sludge and their configuration and operating condi-
tions were almost identical (except for MT4 that received a 20–40%
lower flux than the other MTs). The most likely reason is heterogeneity
of the air flow scouring efficiency in the different membrane tanks. The
permeability inMT3was initially higher because a regeneration cleaning
was performed in December 2010. The reason why the permeability in
MT2 didn't decrease between July and September 2011 like in the
other 3 tanks remains unknown. The efficiency of air scouring in this
tank could possibly be better than in the others.

However, like in other full-scale studies, the main trend was that
corrected permeability is higher in the summer time and lower in the
winter time [18].
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Fig. 7. Contribution of the input variables in the PLS regression for the three fouling indicators.
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Another point to behighlighted is that permeability values corrected
according to Eq. (2) are very high compared to other studies with the
same type of membranes (Table 3). This may be explained by several
specific features of the studied plant: (i) the low SMP concentration
found at the beginning of the study and confirmed by the good sludge
filterability found in a parallel study, and (ii) the small size of the
membrane tanks, that implies a high specific scouring aeration density
per unit tank volume, even if the specific aeration density per mem-
brane surface area was in the usual range. Another hypothesis is that
the permeability calculated in other studies may not have been
corrected for pressure sensor drift and head-loss in permeate tubes.
3.3. Influence of operational variables on fouling indicators

The contribution of operational variables to dPE identified with a
PLSR is shown in Fig. 7(a). Among the input variables the flux is as
expected the main contributor to permeability decrease. It is closely
followed by dynamic SRT, temperature and F:M ratio. SRT is often
highlighted to be inversely correlated with SMP and thus to mem-
brane fouling. But in most studies, its variation range is 10–40 d [9].
It has already been related that above 50 d as in the studied plant,
Table 4
Relative mean square errors between calculated and measured permeability on period
1.

Approach 1 Approach 2 Approach 3 Approach 4

MT1 2.94 2.94 4.44 4.45
MT2 7.88 5.11 4.88 5.76
MT3 5.49 3.61 11.18 11.56
MT4 3.09 3.62 3.37 4.33
the correlation between SRT and SMP concentration [27–29] or their
fouling potential [9] is less clear or even reversed.

Temperature impacts several sludge characteristics (viscosity, bio-
logical and chemical kinetics, chelating balances) that potentially
influence fouling in both ways. For example Miyoshi et al. [11] found a
positive correlation between temperature and fouling, whereas some
contradictory results were found elsewhere [30]. Other studies highlight
the influence of rapid temperature variations instead of its absolute value
[31]. Therefore there is no predominant trend in literature.

MLSS seems to be a weak contributor to permeability increase in
its variation range (6–10 g·L−1). Iron dose is also a weak contributor
to permeability increase whereas it is highlighted to be a filterability
enhancer at similar doses in other studies [32,33]. The trend is similar
in all four MTs. The role of suspended solids in membrane fouling
seems more correlated to its composition (influenced by F:M ratio
and SRT) than to its concentration.

Before presenting links between operational variables and short-
term fouling indicators, it has to be mentioned that values of iPE
and iBW are low compared to their precision. It confirms that fast
fouling kinetics are weak. This may mean weak cake formation and
compressibility inside a filtration cycle, and weak concentration
polarisation. This is probably due to a very high critical flux, above
50 LMH. It confirms that the weak instantaneous relationship be-
tween flux and permeability allows us to use permeability as a vari-
able to analyse fouling (see Section 2.3). It also explains partly the
poor links between operational variables and the short-term indica-
tors. Nevertheless, some trends can be highlighted in Fig. 7(b) and
(c). The four MTs show clear divergence, the contribution of input
variables on these indicators, especially on iBW, can even be opposite
between the membrane tanks, suggesting different short-term foul-
ing behaviours in each MT. If we only consider the variables for
which the contribution is significant, it appears that flux, temperature
and SRT seem to increase instantaneous fouling (iPE), while the F:M
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Table 5
Relative mean square errors between calculated and measured permeability for the validation period, before and after regeneration cleaning.

Approach 1 Approach 2 Approach 3 Approach 4

Before cleaning After cleaning Before cleaning After cleaning Before cleaning After cleaning Before cleaning After cleaning

MT1 77.4 32.9 22.1 52.5 47.0 32.5 26.7 25.8
MT2 6.5 51.6 7.0 37.3 13.9 57.6 8.9 54.1
MT3 69.9 28.3 13.9 26.4 133.8 32.7 149.5 36.7
MT4 49.7 18.6 40.9 20.3 26.0 16.4 68.6 NAa

Bold numbers refer to most relevant approach for each membrane tank.
a Inconsistent TMP sensor data.
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ratio tends to diminish it. The only clear trend that can be highlighted
for iBW is that the reversibility of short-term fouling is positively
correlated with the mean flux and temperature.

3.4. Statistical modelling of permeability

This part shows results for the prediction of long-term permeability
evolution by the different statistical approaches. Results from the 2
types of approaches will be presented separately: Ap. 1 and 2 (that
links directly operational variables and dPE) and Ap. 3 and 4 (that deter-
mine relevance of links between short-term and long-term fouling).

Among the first type of approaches, approach 2 is more relevant
than approach 1 for both calibration (Table 4) and validation period
(Table 5) because the set of variables and parameters used to model
dPE is built taking into account the maximisation of dPE variance
representation. Thus, only the results of approach 2 will be discussed
(1st column in Fig. 8).

Among the second type of approaches, approach 4 seems more
relevant than approach 3. In approach 3, the uncertainty of dPE
modelling combine the uncertainty of prediction of short-term indi-
cators and that of prediction of dPE (Table 5). Whereas approach 4
is based only on the prediction of dPE with measured short-term
indicators. As a result only the results of approach 4 will be discussed
(2nd column in Fig. 8).

Furthermore, three categories of MT have to be distinguished:
MTs 1 and 2 (that present large permeability evolution starting at a
low level); MT3 (permeability starting at a high level due to a regen-
eration cleaning performed two months before the beginning of cal-
ibration period); MT4 (low permeability variations during the whole
Fig. 8. Predicted and measured permeability values in the MTs 1 and 3 using the approache
sured value.
calibration period). The results on MT4 won't be further discussed
because the weak variations of permeability during period 1 don't
allow proper calibration of the model.

Approach 2 seems to predict properly long-term trends on perme-
ability only before regeneration cleaning on MTs 1 and 2, and even
after regeneration cleaning on MT3, certainly because it was calibrated
not long after a regeneration cleaning only in this tank.

Before regeneration cleaning, approach 4 is far less relevant on MT3
than on MTs 1 and 2, suggesting that long-term permeability evolution
is more driven by short-term mechanisms when initial permeability is
low. That phenomenon can be explained by the following assumption:
fibre network clogging (that was minimised on MT3 by the recent re-
generation cleaning) can lead to a higher local flux, and would increase
irremovable fouling due to short-term mechanisms by strengthening
cake ability to resist physical cleaning and scouring [34].

To conclude this part, two main assumptions will be highlighted:

- When a sudden change in membrane status occurs, models have
to be recalibrated.

- Short-term fouling seems to be less removable (and thus a more
relevant driving force for long-term fouling) when membrane
has not been intensively cleaned for several months.

4. Conclusion

A statistical analysis was performed to highlight the relevance of six
conventional variables that can be monitored using standard WWTP
instrumentation and sampling on three fouling indicators (one long-
term and two short-term).
s 2 and 4. Permeability was reinitialized the day after regeneration cleaning to its mea-

image of Fig.�8
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Flux was the main factor that impacted long-term fouling in our
study. Other variables that increase fouling were temperature, F:M
and SRT. Iron dose and MLSS were poorly correlated with long-term
permeability evolutions.

The link between short-term and long-term evolutions of fouling
seems to depend strongly on the initial fouling state of membranes
and other differences between membrane tanks that are unknown.

Linking long-term permeability evolutions with the considered
operational variables seems successful for a period of several months,
but may become less reliable after a regeneration cleaning.

A statistical approach that integrates the history of membrane
cleanings, continuous calibration, new input variables or interrela-
tionships between several of the input variables could help to bet-
ter understand and predict filtration behaviour. Such an approach
could help plant operators in their management of operational
variables and regeneration cleaning planning.
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