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Introduction
 WWTP’s main objective

T t t f t t d t f t i tTreatment of wastewater under a set of constraints 
(e.g. cost, effluent standards, environmental 
impact, etc).

Many of the design inputs are uncertain
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Introduction

 How to tackle the uncertainty in design?

Explicit characterization 
of uncertainty and 

estimating the 
Probability of 

non-compliance

Applying safety factors VS
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Introduction

Effluent Standards are met!

WWTP System
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Introduction

Effluent Standards are NOT met!

WWTP System
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 Conclusion and next steps

Objectives
 Development of a dynamic influent generator 

that:that:
 Generates time series of flow and pollution

with a fine temporal resolution (15-minute)

 Respects the statistical properties of a real influent 
(e.g. mean, variance, autocorrelation, and 
cross-correlation among rainfall, flow and pollution)  

 Needs only basic information regarding sewage system

 Is not computationally-expensive
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Methodology
 Two different conditions must be considered:

1. Dry weather flow (DWF) 

2. Wet weather flow 
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Methodology
 Wastewater variation in DWF conditions

Easier to model compared to WWF conditions Easier to model compared to WWF conditions
 Periodic behavior
 Daily variation
 Seasonal variation
 Industrial variation
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Methodology
 Simulating the time series of wastewater in 

DWF conditions is easier than the one in WWFDWF conditions is easier than the one in WWF 
conditions 

 Univariate ARMA model (Martin et al., 2007)
 Main shortcomings:

1. Wastewater time series have different seasonal variations
2. The cross-correlation between different wastewater 

constituents is not respected 
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Methodology
 Our Approach:

M d lli th i di it f th ti i i Modelling the periodicity of the time series using  
a Fourier series approximation

 Fitting a multivariate auto-regressive time series 
model to the residuals

 Random generation of time series for different 
wastewater constituents
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Methodology
 Wastewater time series in WWF conditions

Diffi lt t i l t Difficult to simulate
 Rainfall plays an important role
 Different processes are involved
 Scarce availability of data during WWF
 Pure statistical models may not be feasible

Solution?Solution?
 A conceptual model with stochastic inputs and 

uncertainty propagation 
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Methodology
System Components               Model Components
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Methodology
 Markov-Exponential model

 A two state Markov-Chain for the generation of 
dry and wet days (Richardson 1981). 
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Methodology
 Daily rainfall time series

• An exponential distribution for the generation of• An exponential distribution for  the generation of 
the amount of rainfall 
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Methodology
 Catchment block

Rainfall                                    
(Markov chain exponential model)

WWF

18

DWF                                
(Multivariate AR model)
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Methodology
 No model can provide accurate results

D fi i i d l t t Deficiency in model structure
 Uncertainty in parameters
 Measurement error 

 Models need to be calibrated
 Calibrated parameters may not be unique 
 Parameters could compensate for each other Parameters could compensate for each other
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Methodology
 How to take into account the uncertainty in 

model’s outputs?model s outputs?
 Assigning an initial distribution to uncertain 

model parameters (Prior distribution)
 Updating the prior distribution using a 

Bayesian framework
 Monte Carlo simulation for the propagation of 

total uncertainty into the model’s outputs
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Results
 Case study: Eindhoven (NL)

Main components of 
the Eindhoven area 
wastewater system
(750,000 inhabitants)
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Results: DWF
 Capturing daily periodicity
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Results: DWF
 Capturing daily periodicity
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Results: DWF
 Determining the order of model using 

Schwarz's Bayesian CriterionSchwarz s Bayesian Criterion
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Results: DWF
 Daily flow time series
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Results: DWF
 Daily flow time series
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Results: DWF
 Daily TSS concentration time series
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Results: DWF
 Daily TSS concentration time series
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Results: DWF
 Correlation matrices

Observed Time Series
Flow COD_S COD_TOT TSS NO3

Flow 1.00

COD_S 0.17 1.00

COD_TOT 0.09 0.59 1.00

TSS 0.03 ‐0.10 0.71 1.00

NO3 ‐0.07 0.16 ‐0.18 ‐0.39 1.00

Generated Time Series
Flow COD S COD TOT TSS NO3

30

_ _

Flow 1.00

COD_S 0.13 1.00

COD_TOT 0.06 0.55 1.00

TSS 0.03 ‐0.10 0.74 1.00

NO3 ‐0.06 0.17 ‐0.19 ‐0.42 1.00
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Results: Rainfall generation 
 Removing seasonal variations 

using Fourier seriesusing Fourier series
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Results: Rainfall generation 
 Removing seasonal variations 

using Fourier series
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Results: Rainfall generation 
 Removing seasonal variations 

using Fourier series
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Results: Rainfall generation 
 Daily rainfall series
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Results: WWF
 Marginal Posterior distribution
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Results: WWF
 Marginal Posterior distribution
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Results: WWF
 Uncertainty propagation
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 Development of a set of statistical and 
conceptual models for synthetic generation

Conclusion and next steps

conceptual models for synthetic generation 
of influent time series
 Mathematically sound techniques for rainfall time series 

generation
 Successful application of a multivariate time series for 

DWF simulation 
 Application of a conceptual model with stochastic inputs Application of a conceptual model with stochastic inputs 

and uncertainty propagation to estimate the range of 
output variables
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Conclusion and next steps
 Probability of meeting effluent standards

Stochastic input provided by 
influent generator

Other sources of 
uncertainty relating
to the WWTP system: 
- model parameters
affecting the biological 
and physical treatment

40

and physical treatment 
- wastewater composition

Probability of non-compliance 
with effluent standards
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