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Introduction

= WWTP’s main objective

Treatment of wastewater under a set of constraints
(e.g. cost, effluent standards, environmental
impact, etc).

Many of the design inputs are uncertain
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Introduction

= How to tackle the uncertainty in design?

Explicit characterization
of uncertainty and
Applying safety factors Vs estimating the
Probability of
non-compliance
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Objectives

= Development of a dynamic influent generator
that:

Generates time series of flow and pollution
with a fine temporal resolution (15-minute)

Respects the statistical properties of a real influent
(e.g. mean, variance, autocorrelation, and
cross-correlation among rainfall, flow and pollution)

Needs only basic information regarding sewage system

Is not computationally-expensive
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Methodology

= Two different conditions must be considered:

Dry weather flow (DWF)

Wet weather flow
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Methodology

= \Wastewater variation in DWF conditions
= Easier to model compared to WWF conditions

= Periodic behavior
Daily variation
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Methodology

= Simulating the time series of wastewater in
DWEF conditions is easier than the one in WWF
conditions

= Univariate ARMA model (Martin et al., 2007)

Main shortcomings:
1. Wastewater time series have different seasonal variations

2. The cross-correlation between different wastewater
constituents is not respected
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Methodology

= Our Approach:

Modelling the periodicity of the time series using
a Fourier series approximation

Fitting a multivariate auto-regressive time series
model to the residuals

Random generation of time series for different
wastewater constituents
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Methodology

= Wastewater time series in WWF conditions
Difficult to simulate
Rainfall plays an important role
Different processes are involved
Scarce availability of data during WWF
Pure statistical models may not be feasible
Solution?

A conceptual model with stochastic inputs and
uncertainty propagation
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Methodology

System Components

Model Components

A
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Methodology
= Markov-Exponential model I _——

A two state Markov-Chain for the generation of
dry and wet days (Richardson 1981).
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Methodology

= Daily rainfall time series | -
« An exponential distribution for the generation of
the amount of rainfall
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Methodology

= Catchment block

-

Rainfall

(Markov chain exponential model)
|
CATCHMENT CSS
-
DWF
(Multivariate AR model)
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Methodology

= No model can provide accurate results
Deficiency in model structure
Uncertainty in parameters
Measurement error

= Models need to be calibrated
Calibrated parameters may not be unique
Parameters could compensate for each other
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Methodology

= How to take into account the uncertainty in
model’s outputs?

Assigning an initial distribution to uncertain
model parameters (Prior distribution)

Updating the prior distribution using a
Bayesian framework

Monte Carlo simulation for the propagation of
total uncertainty into the model’s outputs
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Results

= Case study: Eindhoven (NL)

Main components of

the Eindhoven area
wastewater system
(750,000 inhabitants)

® wwip Eindhoven catchment area:
= free flow conduits ‘ Nuenen/Son

pressure mains % Eindhoven Stad
¢ % Riool-Zuid

pumping stations
control stations
CsO

sludge proc. inst.
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Results: DWF

= Capturing daily periodicity

Flow (m3/hr)
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Results: DWF

= Capturing daily periodicity

w
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Nitrate Concentration (mg/lit)

° Average nitrate concentration pattern
== Fourier approximation
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Results: DWF

= Determining the order of model using
Schwarz's Bayesian Criterion
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Results: DWF
= Daily flow time series
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Results: DWF

= Daily flow time series

Flow (m3/hour)
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Results: DWF

= Daily TSS concentration time series
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Results: DWF

= Daily TSS concentration time series
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Results: DWF

= Correlation matrices

Observed Time Series
COD_S |C0D7TOT TSS NO3

ICOD_S

ICOD_TOT 0.09
[TSS 0.03
NO3 -0.07

Generated Time Series

CoD_ToT TSS NO3

ICOD_S
ICOD_TOT 0.06
[TSS 0.03
NO3 -0.06
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Results: Rainfall generation

= Removing seasonal variations
using Fourier series

landa (1/tenth of mm)
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Results: Rainfall generation =< _ *—

= Removing seasonal variations (P(\N|W) P(D|W)J
using Fourier series PW|D) P(D|D)

1
=——third-order Fourier approximation
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Results: Rainfall generation <=2 /=

= Removing seasonal variations (P(WlW) P(DfW)j
using Fourier series PWD) P(D|D)

1
! —third-order Fourier approximation
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Results: Rainfall generation

= Daily rainfall series N——
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Results: WWF

= Marginal Posterior distribution
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Results: WWF

= Marginal Posterior distribution
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Results: WWF

= Uncertainty propagation

55% Uncevtainty bamd
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Conclusion and next steps

= Development of a set of statistical and
conceptual models for synthetic generation
of influent time series

Mathematically sound techniques for rainfall time series
generation

Successful application of a multivariate time series for
DWF simulation

Application of a conceptual model with stochastic inputs
and uncertainty propagation to estimate the range of
output variables
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Conclusion and next steps

= Probability of meeting effluent standards

Stochastic input provided by
influent generator
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Other sources of

uncertainty relating

to the WWTP system: o .‘

- model parameters
affecting the biological ‘ ‘ T

and physical treatment m
- wastewater composition

Probability of non-compliance
with effluent standards
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