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Context
 Real-Time Control systems development

D i Design
 Operation

 Control strategies evolve:
 quantity  quality  impact
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Need for reliable online water quality data

Context
 Process control system at inlet WWTP
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Model configuration in WEST® (mikebydhi.com)
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Context
 Online monitoring stations

Online sensors
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Context
 Online sensors: challenging conditions
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Representativeness??
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Need for advanced data quality 
evaluation
 In situ monitoring stations 

I f ti i h d t t Information-rich data sets
 Pollution dynamics
 Reduce costs 
 Huge/complex data sets
 Errors and uncertainties
 Reliability of sensors insufficient
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 Reliability of sensors insufficient

Data evaluation/validation is crucial

Need for advanced data quality 
evaluation
 Current practice : manual procedures

Ch ll i t t it i ?? Challenge in water systems monitoring ??

Automatic data quality evaluation

 Corrupted, doubtful, unreliable data
 Sensor faults
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Sensor faults
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Data quality assessment tools
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 Univariate methods
O tli d t ti

Data quality assessment tools

 Outlier detection
 Autoregressive models
 At T forecasting (T+1):

• variable         
• std of error

 Prediction interval:
ˆe

x̂
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lim ˆ ˆex x K  
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 Univariate methods

Data quality assessment tools

 Fault detection 
• % replaced data --» data goodness
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% replaced data » data goodness
• Slope --» rate of change
• Residuals correlation --» good fit of model
• Residual std (RSD) --» variance

Data quality assessment tools
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Data quality assessment tools
 Multivariate methods 

R d di i f d t X ( ) Reduce dimension of data X (x1, x2..xn)
 New variables (p1,p2 … pn) as linear combinations
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 Axes of a new coordinate system
 Directions of max. variability

Data quality assessment tools
 Multivariate methods 
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 Multivariate methods 
F lt d t ti ithi th PC

Data quality assessment tools

x

x3 p1

p2

Point with a large Q Fault detection within the PC 
space

• T2: normalized sum of scores: 
variations within the model

• Q: sum of squared residuals: 
goodness of fit of samples to 

x1

x2

Point with a large T2
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g p
the model

• Detection limits are defined.

Results
 Case Study: WWTP, primary clarifier (Québec)

 Redundant 
turb, pH, 
temp, cond. 
sensors

 Sample time: 
5 sec 

16



9

Results
 Raw turbidity data
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Data treatment results
 Univariate method – Filtered turbidity data
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Results
 Univariate methods: Filtered data
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Results
 Univariate methods – Analysis sensor turb 1

High % 
replaced data

High variability
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High variability
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Results
 Multivariate methods

Training Testing

 8 variables
 First 3 PC > 

90% variability
 Training: 3-day

Training Testing
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Results
 Multivariate methods – PCA results

• Contribution of each 
parameter to pc1 and pc2

• Each point corresponds 
to a sample in the new 
space (scores)

pc
2

I
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pc1

I

II
• Visual detection of some 

abnormal periods
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Results
 Multivariate methods – PCA results

pc
2

I

Statistics for area I
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pc1

I

Results
 Multivariate methods – PCA results

pc
2

Statistics for area II
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pc1

II



13

Results
 Multivariate methods – PCA results

Drift situations detected 
for conductivity sensor 1

* pH1
* pH2
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Drift situations detected 
for pH sensor 1

* cond2

* cond1

Conclusions and perspectives
 Univariate methods

tli l th ti i outliers removal, smoother time series
 detection of individual faults

 Multivariate methods
 dimension reduction
 detection of multiple faultsdetection of multiple faults

 Next step: online implementation 
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