

Presentation overview

- Context
- Need for advanced data quality evaluation
- Data quality assessment tools
- Results
- Conclusions and perspectives

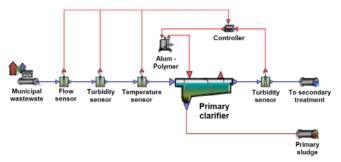
Context

- Real-Time Control systems development
 - Design
 - Operation
- Control strategies evolve:
 - quantity → quality → impact
- Need for reliable online water quality data

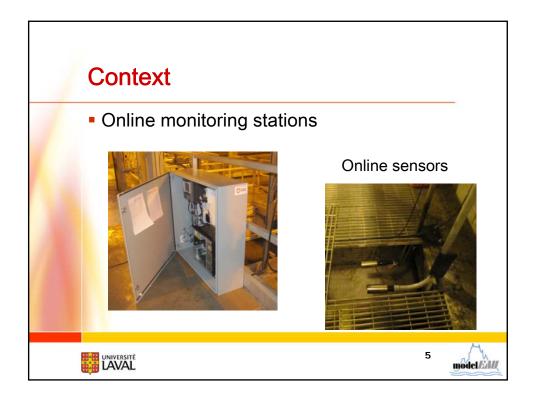
3

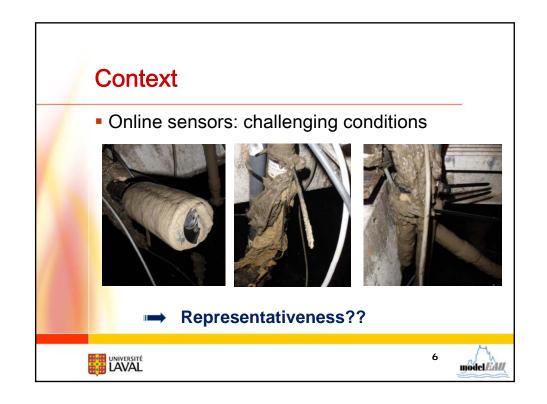
Context

Process control system at inlet WWTP



Model configuration in WEST® (mikebydhi.com)





Need for advanced data quality evaluation

- In situ monitoring stations
 - Information-rich data sets √
 - Pollution dynamics √
 - Reduce costs
 - Huge/complex data sets
 - Errors and uncertainties
 - Reliability of sensors insufficient

Data evaluation/validation is crucial

7

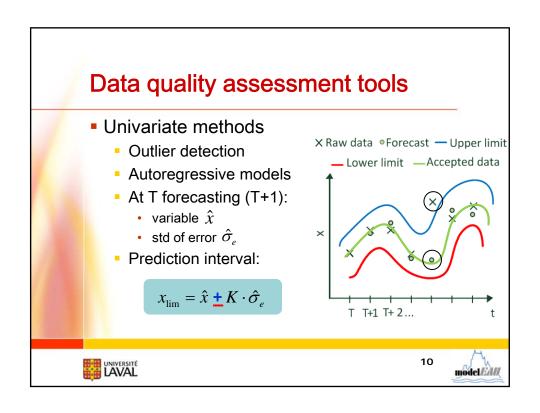
Need for advanced data quality evaluation

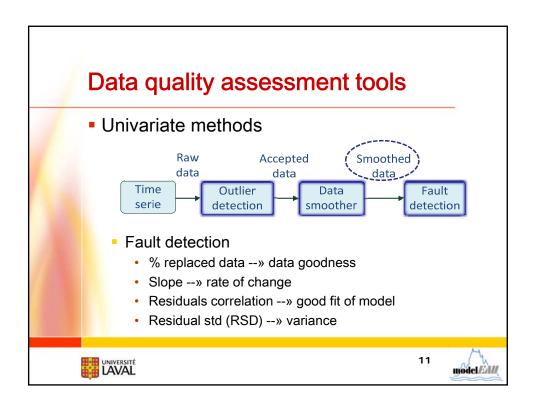
- Current practice : manual procedures
- Challenge in water systems monitoring ??

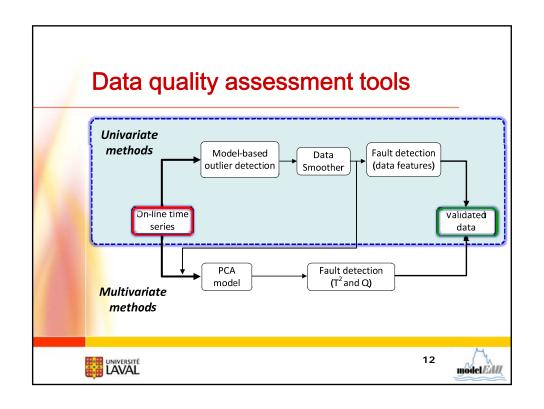
Automatic data quality evaluation

- Corrupted, doubtful, unreliable data
- Sensor faults



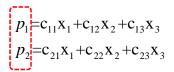




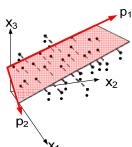


Data quality assessment tools

- Multivariate methods
 - Reduce dimension of data X (x₁, x₂..x_n)
 - New variables (p₁,p₂ ... p_n) as linear combinations



- Axes of a new coordinate system
- Directions of max. variability



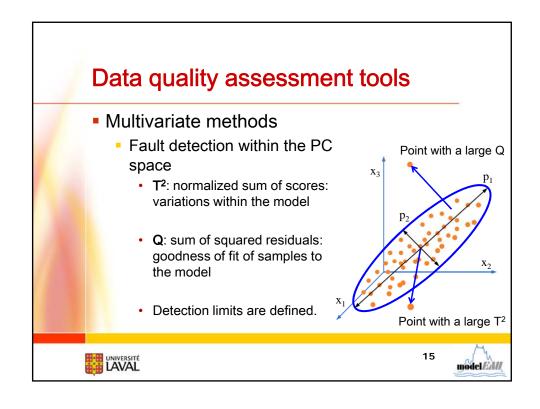
12

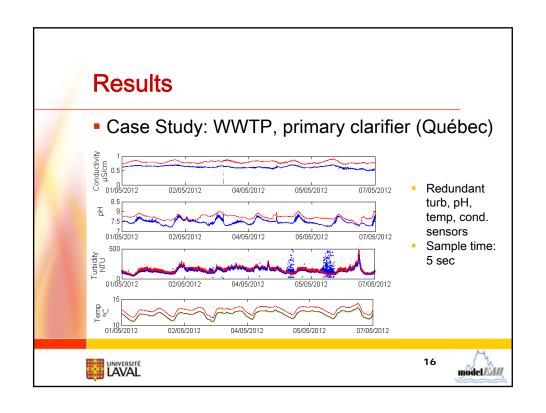
Data quality assessment tools

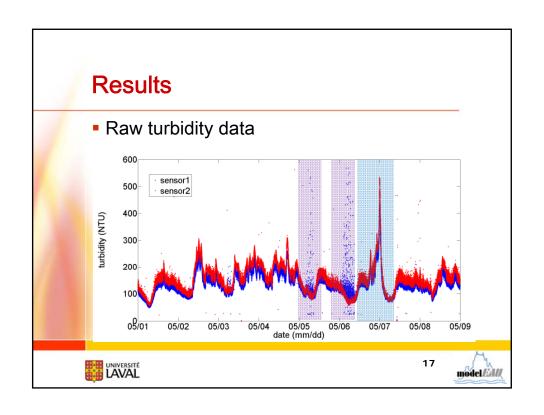
- Multivariate methods
 - PCA model: $X = TP^T \longrightarrow Model matrix from correlation matrix C$

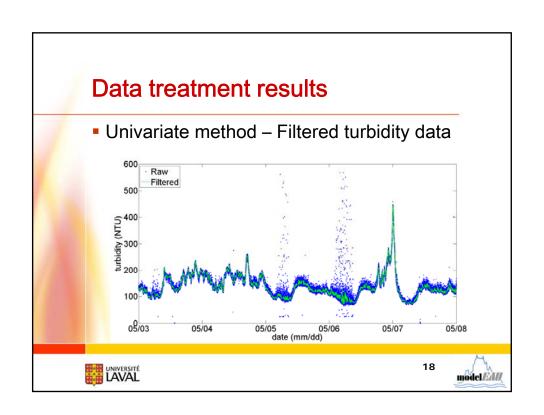
$$\mathbf{C} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots \\ \vdots & \vdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \bullet \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \bullet \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$

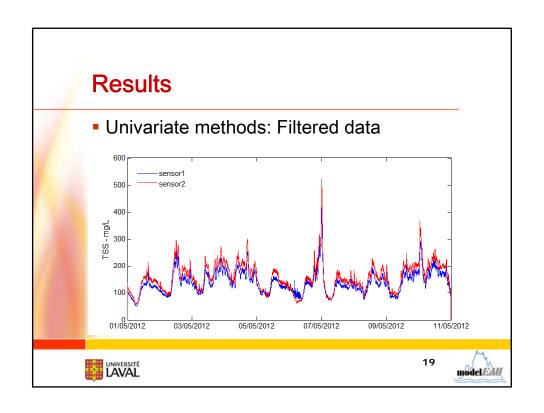
... choosing the # of components --» largest variances

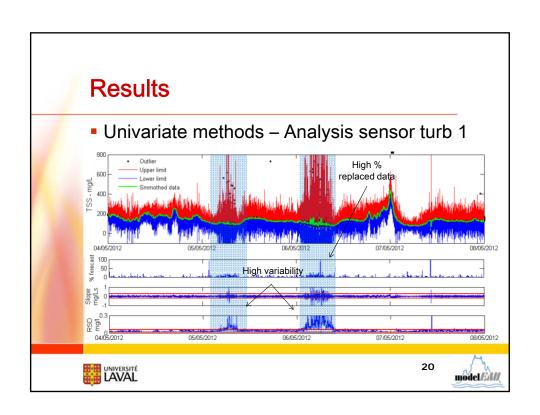


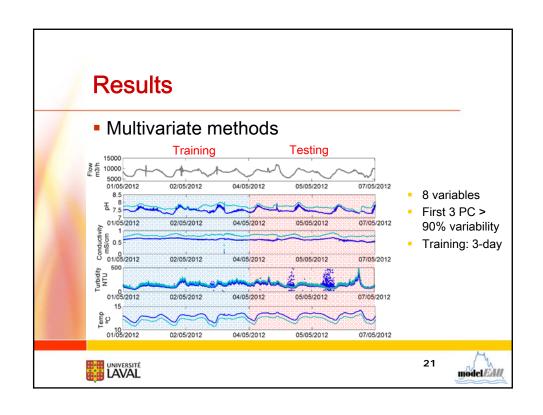


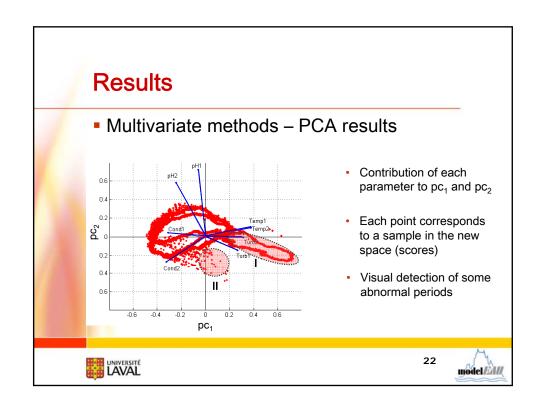


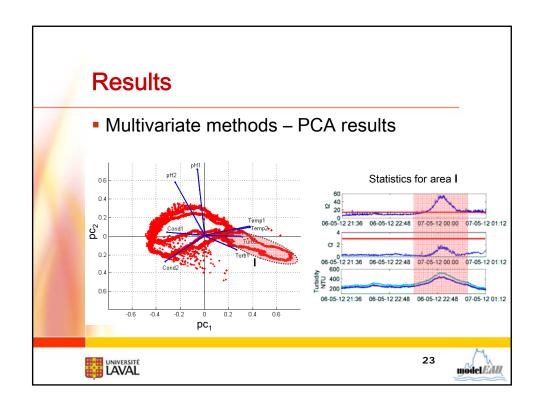


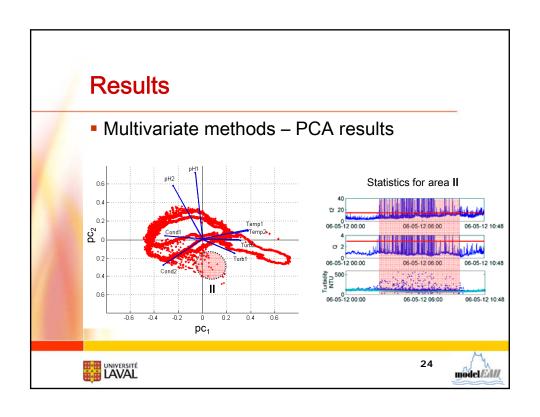


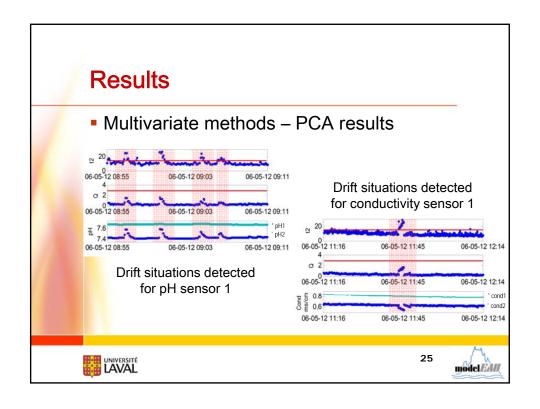












Conclusions and perspectives

- Univariate methods
 - outliers removal, smoother time series
 - detection of individual faults
- Multivariate methods
 - dimension reduction
 - detection of multiple faults
- Next step: online implementation

