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Advanced monitoring of water systems using in situ

measurement stations: data validation and fault detection

Janelcy Alferes, Sovanna Tik, John Copp and Peter A. Vanrolleghem
ABSTRACT
In situ continuous monitoring at high frequency is used to collect water quality information about

water bodies. However, it is crucial that the collected data be evaluated and validated for the

appropriate interpretation of the data so as to ensure that the monitoring programme is effective.

Software tools for data quality assessment with a practical orientation are proposed. As water quality

data often contain redundant information, multivariate methods can be used to detect correlations,

pertinent information among variables and to identify multiple sensor faults. While principal

component analysis can be used to reduce the dimensionality of the original variable data set,

monitoring of some statistical metrics and their violation of confidence limits can be used to detect

faulty or abnormal data and can help the user apply corrective action(s). The developed algorithms

are illustrated with automated monitoring systems installed in an urban river and at the inlet of a

wastewater treatment plant.
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INTRODUCTION
A new generation of in situ automatic water quality moni-

toring stations is proposed adhering to the monEAU
vision (Rieger & Vanrolleghem ). With flexibility
and standardization as the main drivers of recent develop-
ments, important advances have been made regarding

several monitoring tasks and measurement applications
(water bodies, wastewater treatment plants (WWTPs),
etc.) (Winkler et al. ). However, besides the huge

amount of real-time data collected in these types of
implementations, the most important steps forward
have been made in the field of advanced data quality

evaluation. As measurements are carried out under
challenging conditions (clogging, fouling, electrical inter-
ferences, flooding, etc.) raw data are frequently affected
by faults like drift, bias, precision degradation or even

complete failure, all of which cause the accuracy and
reliability of the data to decrease (Yoo et al. ).
Those conditions may lead to erroneous conclusions and

to the improper use of the data (Bertrand-Krajewski
et al. ). For data analysis and further applications,
the collected data will be valuable only if the data are

properly validated. Given the size of the data sets, auto-
mated data validation is the only viable option.
In the last few years in different fields a number of

methods have been developed for fault detection and iso-
lation (FDI) (Venkatasubramanian et al. ; He et al.
). Traditional model-based approaches make use of
the generation of residuals (i.e. the difference between a

measured value and its prediction by a model) and their
evaluation for FDI. However, it is often difficult to identify
and validate an accurate model that describes all physical

and chemical phenomena occurring in the process. As an
alternative, data-driven methods consider the relationships
between the process variables without the explicit

expression of a process model (Qin ). Despite these
developments, methods for data validation and fault recog-
nition used today in water systems usually follow
inefficient procedures based on time series charts with a

lack of systematic analysis (Branisavljevic et al. ;
Mourad & Bertrand-Krajewski ).

In the framework of practical monitoring applications

an important challenge is to develop automated data evalu-
ation tools that can detect and correct erroneous data and
assist in processing the data. This paper deals with these

different issues. Data quality assessment tools that have a
practical orientation and are based on multivariate analyses
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are proposed for faulty data detection. The tools have been

successfully tested on water quality time series obtained
from in situ automatic monitoring stations installed in two
different water systems. According to the monEAU vision,

the final objective is to achieve advanced monitoring with
efficient and automatic data collection, evaluation, correc-
tion and alarm triggering to create a long-term database
with validated and valuable ‘good’ water quality data that

can be used, for example, for decision support and control
of water systems.
Figure 2 | Installation of sensors at the river.
MATERIALS AND METHODS

In situ monitoring stations

Primodal Systems Inc.’s RSM30 monitoring stations were
used to automatically collect in situ real-time water quality
data. In the first application (Figure 1), a monitoring station

was installed at the inlet to the primary clarifier of the
municipal WWTP of Québec City, Canada. The measure-
ment station included multiple pH, conductivity,

temperature and turbidity sensors to determine if redundant
signals would improve the short and long-term accuracy of
the data and the detection of abnormal situations. The
data for this study were collected in the spring of 2012. In

the second application (Figure 2), a monitoring station was
installed in a small urban river (Notre Dame) in Québec,
Canada. The measurement station included several on-line

sensors for collecting a large number of conventional
physico-chemical parameters (temperature, dissolved
Figure 1 | Installation of sensors at the WWTP.
oxygen, conductivity, turbidity, etc.), a UV spectrometer
(nitrates, total organic carbon (TOC), dissolved organic
carbon (DOC), turbidity) and ion selective electrodes (pot-

assium, ammonia). In this case, data from the summer of
2012 are used.

To properly describe the dynamics of both water systems
all sensors were set to record data at short intervals (5–60

seconds). This implementation generated information-rich
but also complex and huge data sets. To increase the likeli-
hood of good quality data from the on-line measurements,

the application of a maintenance protocol including cleaning
and systematic calibration tasks was essential (Poirier ).

Faulty data assessment

Ensuring the data quality from on-line measurements is one

of the most important issues concerning effective monitor-
ing today. In hostile environments like wastewater systems,
sensors are subjected to failures that compromise the pre-

cision and the reliability of the measurements (Rosén et al.
; Yoo et al. ), which may result in incorrect percep-
tions of the monitored system and/or in erroneous control

actions. Typical faults in online sensors are shown in
Figure 3. The detection and diagnosis of these kinds of
sensor faults are crucial if the water system is to be success-
fully monitored. Even if most researchers and practitioners

agree with this statement, the reality is that little attention
has been given to the study of sensors in a realistic
manner (Rosén et al. ).

The tools for faulty data assessment proposed in this
paper are based on multivariate methods. The multivariate



Figure 3 | Common sensor faults (Yoo et al. 2008).
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process monitoring methods based on principal component
analysis (PCA) and partial least squares (PLS) models have

been shown before to be practical approaches for fault
detection and diagnosis (Villez et al. ). These methods
exploit the redundant information present in highly corre-

lated variables (typical for real water quality data) to
reduce the dimensionality. By exploring the original data
set, PCA is used to find a new set of uncorrelated variables,

called principal components (PCs), which explain most of
the data variability in a more visual coordinate system
with fewer dimensions. Given an autoscaled [m × n] data
matrix X for n process variables and m samples, performing

PCA allows decomposing X as follows:

X ¼ X̂þ E ¼ TPT þ TePT
e ¼

Xa

i¼1

tipTi þ
Xn

i¼aþ1

tipTi (1)

where X̂ is the model matrix which describes the system
variations and E is the residual or error matrix which cap-
tures the noise or unmodelled variations. The matrix P
[n × a] is the loading matrix and its column vectors (pi) are
called loadings or PCs of X. The matrix T [m × a] is the
score matrix and its column vectors (ti), called scores, rep-

resent the values of the original data in the new
coordinate system. Finally, a represents the number of PCs
to be retained in the model. The matrix P can be obtained

by performing a singular value decomposition (SVD) on
the covariance matrix Cx of X that can be written as
Cx ¼ RΛRT , Λ being the diagonal matrix of the eigenvalues

of Cx sorted in decreasing order (λ1> λ2>…> λn) and R the
eigenvectors of Cx. As the λi values are a measure of the var-
iance of X along each PC pi, the reduced dimension matrix P
is obtained by choosing the a eigenvectors of Cx associated

with the a largest eigenvalues capturing the largest fraction
of the data variance. The Pe matrix is generated with the
remaining n–a eigenvectors. The goodness of the model
depends on the right choice of a and should consider both

the dimensionality reduction and the loss of data infor-
mation. In this case, the method based on the eigenvalue
scree plot (Jolliffe ) was used. Once the PCA model is

obtained new data Xnew can be projected onto the existing
model while preserving the matrix P. New scores are calcu-
lated as T ¼ XnewP.

Using the transformed data, sensor faults can be

detected by measuring variations from the normal con-
ditions both in the model and in the residual space. The
‘normal’ conditions are defined by the choice of the data

set with which the PCA model is built. For fault detection,
two statistical metrics are calculated and their violations of
confidence limits are monitored. In contrast to univariate

tests, the monitoring of these statistics takes into account
the correlation in the data. A measure of the variation
within the PCA model is obtained at time k by the T2 stat-
istic which is defined as the sum of normalized squared

scores:

T2(k) ¼ xT (k)PΛ�1
a PTx(k) (2)

where x is the sample vector and Λ�1
a is the diagonal matrix

containing the a eigenvalues associated with the a eigenvec-
tors or PCs retained in the model. Statistical confidence

limits T2
α for T2 are obtained by using the α-percentile

Fisher distribution Fa,m�a,α with (a, m� a) degrees of free-
dom and a level of significance α (usually between 0.01

and 0.05) (Yoo et al. ). A measure of the variation out-
side the PCA model space (residual space) is obtained at
time k by the Q statistic which is defined as the sum of

squared residuals:

Q kð Þ ¼ xT kð Þ I � PPT� �
x kð Þ (3)

The Q statistic not only detects events that are not taken
into account in the model space but also indicates the lack
of model fit for each sample. An upper control limit Qα for

Q can be obtained assuming that x follows a normal distri-
bution (Montgomery ). The process is therefore
considered normal if T2 < T2

α and Q<Qα. An increase in

T2 can be interpreted as an abnormal increase in the main
normal source of variance of the model, whereas an
increase in Q can be seen as the introduction of an

additional source of variance that breaks the normal corre-
lation between the variables (Perera et al. ). A
geometric interpretation of Q and T2 is shown in Figure 4.
The T2 statistic defines an ellipse on the model plane defined

by the PCs within which the operating points normally



Figure 4 | Geometrical interpretation of T2 and Q statistics (Montgomery 2009).
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project. While the Q statistic measures the orthogonal dis-
tance from the sample to the model plane, the T2 statistic
is a measure of the distance from the sample to the intersec-

tion of the PCs.
The proposed sensor validation procedure is shown in

Figure 5. The first step includes the development of the

PCA model using a set of training data. In order to obtain
a representative and valid PCA model, data are pre-treated
to remove outliers and perform auto-scaling (mean centring

and variance scaling). Outlier detection is carried out by
using univariate autoregressive models which compare
measured values with forecast values. Details of this pro-

cedure can be found in Alferes et al. (). Pre-treated
data are then used to build the PCA model and to determine
the confidence limits for the T2 and Q statistics.

The second step involves auto-scaling of the new data

and the projection of these new data onto the reference
PCA space. If one or several variables are found to deviate
from the normal model region (expected variability) the T2

and/or Q statistics will increase above their normal values.
Faults or abnormalities in the data are thus detected by com-
paring the T2 and Q values against their thresholds. After a
Figure 5 | Proposed sensor validation procedure.
fault is detected, an alarm is generated and further analysis

is carried out to identify the fault. This identification will
then lead to the application of the necessary corrective
actions in the field to eliminate or reduce the abnormal

condition.
RESULTS AND DISCUSSION

To illustrate the potential of the proposed procedure the
figures below show some of the results obtained from the
time series of the first application with redundant sensors.

While the difference between two redundant sensor signals
can already be used for outlier identification, multivariate
methods allow more analysis including the identification

of multiple sensor faults and the detection of abnormal
trends.
WWTP case

Time series from eight on-line variables at the inlet of the
WWTP (Figure 6) were considered including: Conductivity

sensor 1 (Cond1), Temperature at Conductivity sensor 1
(CondTemp1), Conductivity sensor 2 (Cond2), Temperature
at Conductivity sensor 2 (CondTemp2), pH sensor 1 (pH1),

pH sensor 2 (pH2), Turbidity sensor 1 (Turb1) and Turbidity
sensor 2 (Turb2). All sensors recorded data at 5-second
intervals. A representative training data set over a 3-day
period was used to build the PCA model. Prior to the PCA

modelling, training data were properly auto-scaled (mean
centring and variance scaling) and outliers were removed.
Performing the PCA showed that the first three PCs explain

more than 90% of the total variance of the process. There-
fore, three PCs were retained in the PCA model for further
analysis. After calculation of the Q statistic and its threshold,



Figure 7 | PCA representation, WWTP application (1/5/2012–7/5/2012).

Figure 6 | On-line measurements of flow, turbidity, conductivity, pH and temperature at the inlet of the primary clarifier of the WWTP of Quebec City.
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less than 1% of the samples were determined to be abnor-
mal, demonstrating that the model was able to capture the
main correlations and variability among the process vari-

ables. The time series of these variables (Figure 6) shows
how the two conductivity signals describe similar dynamics
but in the presence of a time variable bias of about 20%.
Some divergence is also shown for pH and turbidity sensors

although in the latter case the bias is less significant. All
temperature signals present the same behaviour with a con-
stant 5% bias for CondTemp1. These differences were

assumed to be caused by missed calibration steps and the
different ages of the sensors.
Figure 7 shows the scores of the testing data set once the

reference PCAmodel is applied. Each variable is represented
in the PC-space by a vector and its length and direction indi-
cate the contribution of the variable to the two first PCs (PC1,

PC2) for eachobservation. Each point in the plot corresponds
to ameasurement. Points that cluster represent similar behav-
iour and points that deviate pertain to process changes. It can

be seen from this analysis how the vectors for the redundant
temperature sensors have the same contribution to PC1 and
PC2 suggesting a strong correlation between the two sensors.

As expected, vectors for redundant pH and conductivity sen-
sors indicate a considerable divergence, accounting for the
bias presented between these sensors.

When considering the variation of the data in the PC-

space, an analysis of the scores allows the identification of
different clusters and outlying points. For example, a cluster
in area I (in the direction of the turbidity measurements)

reveals changes in these variables. In fact, these samples
are associated with an unusual discharge on 7th May (see
Figure 6) which induced an important variation in turbidity.

Some outlying points are also identified around area II in
the direction of the turbidity sensors suggesting an abnormal
behaviour or disturbance for these samples.

Monitoring of the T2 and Q statistics (Figure 8) allowed

for the detection and isolation of some fault situations in the
process. While T2 accounts for data variability, Q measures
the goodness-of-fit of each sample to the PCA model and is

directly associated with the noise level. Figure 8(a) shows
how, for samples in period I, the Q statistic is maintained



Figure 8 | T2 and Q statistics for data corresponding to certain periods of Figure 6. (a) Period I, (b) period II. Horizontal lines are limits that allow detecting faults in the monitored data

series.

Figure 9 | T2 and Q statistics for individual faults during certain periods of Figure 6. (a) pH, (b) conductivity. Horizontal lines are limits that allow detecting faults.

Figure 10 | PCA representation of the redundant turbidity data of Figure 11.
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inside the limit while T2 detects variations in the data that
are larger than the variations expected under normal

operation. The turbidity data indeed show a variation that
is indicated by the high T2 statistic. In period II, T2 reveals
important variations in the measurements (Figure 8(b)),

but Q also reveals important noise. With reference to the
location of the faulty data in Figure 7, the turbidity data
were scrutinized and it turned out that the Turb1 data
were a probable cause of the fault detection.

Similar conclusions could be drawn from the pH and
conductivity measurements (Figure 9). For instance, some
faulty situations are identified by the T2 statistic around 6th

May (end of period II). Time series for the process variables
revealed some abnormal behaviour in the pH and conduc-
tivity measurements by sensors pH2 (Figure 9(a)) and

Cond2 (Figure 9(b)), respectively. Although in both cases
the Q statistics remained inside the limit, the T2 statistics
detected some drifts that changed the normal trend of those
variables. The underlying causes could not be diagnosed.

Multivariate methods can also be applied to investigate
correlations between redundant sensors. Figure 10 shows
for example the representation in the resulting PC-space of

the turbidity testing data set when only those sensors are
considered. While PC1 accounts for the dominant variability
in the turbidity data set, PC2 accounted for the remaining var-

iance between the turbidity sensors. Three clusters are
identified: (1) area I, in which both sensors have the same be-
haviour; (2) area II, in the direction of the sensor Turb1

suggesting an abnormal behaviour for these samples; and
(3) area III, in the direction of the sensor Turb2 accounting
for disturbances in these samples. Traditional analysis of

redundant signals through calculation of their differences



1028 J. Alferes et al. | Advanced monitoring of water systems using in situ measurement stations Water Science & Technology | 68.5 | 2013
and standard deviation (StD) allow detecting outliers and

some drift situations. However, multivariate methods help
in the detection of abnormal trends and identifying which
sensor is misbehaving. As shown in Figure 11, while monitor-

ing the Q statistic mainly detected divergences between the
two sensors (areas II and III), the T2 statistics revealed also
changes in the operating conditions not taken into account
in the StD analysis shown in Figure 11 (area I).

River case

The following figures show some results obtained from the
time series of the second application in which a small
Figure 11 | Time series for T2, Q, turbidity and StD for redundant turbidity sensors.

Figure 12 | Data and statistics time series for the second application in an urban river.
urban river was monitored. In this case, the data set

included time series for turbidity, total organic carbon
(TOCeq), pH, temperature, nitrates (NO3) and potassium
(Kþ). Figure 12 shows some of the collected data. Perform-

ing PCA over a representative training data set showed
that three PCs can explain more than 87% of the total var-
iance of the process. Figure 13 shows the scores from the
12-day testing data set. Some clusters and outlying points

are identified, for example in the marked areas (I, II) in
the direction of turbidity and potassium measurements,
respectively. Graphical representation of the T2 and Q stat-

istics time series in Figure 12 also allows the identification
of different faulty or abnormal events.

Samples around period I are associated with an unu-

sual event on 18th September (rain event), which mainly
caused an important variation in the turbidity and TOC
behaviour. In that period an abnormal condition was
detected by the Q and T2 statistics for a short time. How-

ever, T2 remained longer outside the limits revealing still
larger variations in the data than expected in normal con-
ditions. On the other hand, around period II both

statistics confirm an abnormal behaviour around 25th
September. In this case, not only T2 showed abnormal
variations in the measurements but also Q identified

events not taken into account in the model, clearly indi-
cating a faulty condition that mainly affected the
potassium measurements.



Figure 13 | PCA representation, urban river case.
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CONCLUSIONS

As water quality measurements might be carried out in
difficult environments, dealing with faulty sensors rep-

resents a challenge for the reliable real-time continuous
monitoring of water systems. To address that challenge
multivariate methods based on PCA have been tested

on data sets obtained from in situ automatic monitoring
stations storing several physical and chemical variables.
After training the PCA model with normal operating
data, faults or abnormal conditions can be detected by

monitoring some statistical metrics and their violation
of confidence limits. It was shown in two case studies
that this procedure enables the detection of different

kinds of faults in individual sensors. These can be used
to trigger process and/or maintenance alarms. Once
faults are detected and correctly diagnosed corrective

actions can be applied to the measurement system.
The availability and practical application of these
methods to multiple and redundant water quality
sensors represents a further step towards effective data

quality assessment and better monitoring of water
systems.
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