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Abstract: To make water quality monitoring networks useful for practice, the automation of data 
collection and data validation still represents an important challenge. Efficient monitoring depends on 
careful quality control and quality assessment. With a practical orientation a data quality assurance 
procedure is presented that combines univariate off-line and on-line methods to assess water quality 
sensors and to detect and replace doubtful data. While the off-line concept uses control charts for 
quality control, the on-line methods aim at outlier and fault detection by using autoregressive models. 
The proposed tools were successfully tested with data sets collected at the inlet of a primary clarifier, 
where probably the toughest measurement conditions are found in wastewater treatment plants.   
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INTRODUCTION 
Thanks to important technological developments regarding on-line water quality 
sensors, in situ monitoring stations are increasingly being used to identify and 
describe pollution dynamics in water bodies. Huge data sets consisting of a large 
number of physical-chemical parameters are then generated with those systems. Since 
sensors are still subject to functional, technical and operational constraints, and even 
more under the challenging measuring conditions that prevail in wastewater systems, 
they are disturbed by bias, drift, precision degradation or total failure effects that 
cause the reliability of measurements to decrease. Those situations can lead to faulty 
conclusions and to incorrect use of the data. Consequently, meaningful water quality 
data will intrinsically depend on the application of quality assessment and quality 
control practices to ensure that high quality data is being collected.  

Different methods have been developed for data quality assessment in different 
fields, the main goal being the identification of out-of-control situations caused by 
systematic or gross errors (Thomann, 2008). However, there is still a long way to 
bring the many academic developments into practice in the water sector, nowadays 
most of the data assessment process is done by using inefficient and laborious manual 
procedures. The sheer size of the data sets to be dealt with makes the data assessment 
process crucial for an effective monitoring strategy. In this paper an automatic data 
quality assurance procedure with a practical orientation is presented. By combining 
off-line methods for data quality control and univariate on-line methods for data 
quality assessment, information from single variables is extracted to assess sensors 
measuring quality and to identify outliers, noise, and potential sensor faults. Once the 
individual signals are data quality controlled they can be used for multivariate 
analysis (Alferes et al., 2013). The developed algorithms are illustrated with 
automated monitoring systems installed at the inlet of a wastewater treatment plant.  
 
MATERIALS AND METHODS 
Case study 
Two automated monitoring stations (RSM30, Primodal Systems, Canada) have been 
installed at the inlet and at the outlet of a primary clarifier line of the 700,000 PE 
municipal treatment plant Lynetten (Copenhagen, Denmark) to study the inflow 



dynamics and the performance of the primary clarifier. Both monitoring stations 
comprise sensors for conventional physical-chemical parameters (temperature, pH, 
turbidity, conductivity), a UV spectrometer (TSS, CODt, CODf) and ion selective 
electrodes for ammonia, potassium and chloride. Data were recorded at intervals of 5 
to 60 seconds, generating information-rich data sets that can be used among others to 
provide a better understanding of the behaviour of the WWT during dry and wet 
weather conditions, for modelling and forecasting influent water quality and real-time 
control. The particularly hard measurement conditions at the WWTP’s inlet represent 
an important practical challenge to achieve good quality of the on-line measurements.  
 
Data quality assurance procedure 
The two principal components of a quality assurance program include quality control 
and quality assessment. According to the monEAU vision (Rieger and Vanrolleghem, 
2008), data quality monitoring encompasses two different tasks: off-line and on-line 
analysis. While the off-line analysis uses comparative reference measurements to 
detect systematic errors and poor calibration, the on-line analysis of the time series 
allows the detection of deviations from a normal state. In the framework of the 
monEAU vision the proposed quality assurance procedure is presented in Figure 1. 
Concerning the off-line analysis, on-line sensors are normally controlled with grab 
samples measured with a reference method (Thomann et al., 2002). Control charts are 
then built with appropriate out-of-control criteria to detect systematic or gross errors. 
In the presented procedure, to improve the maintenance routines the quality control 
with respect to fouling and calibration is done by building additional control charts 
which compare standard solution values with sensor measurements. 

 
Figure 1 Univariate methods for data quality assurance of water quality data 
 

Concerning the on-line analysis, the proposed tool for automatic data quality 
assessment is aimed at outlier detection and fault detection in consecutive steps 
(Figure 1). Based on forecasting of time series data by using autoregressive models, 
the unknown parameters in the autoregressive model are estimated and then the model 
is projected into the future to obtain a forecast. Outliers are identified by comparing 
the measured values with the calculated forecast values with their dynamic prediction 
error interval. Since it is required that the model be a good representation of the 
observations in any local segment of time close to the present, a trade-off between 
responsiveness and stability of the forecasting system is key in setting up the outlier 
detection algorithm. A third-order exponential smoothing model was chosen due to its 
simplicity, its computational efficiency, the ease of adjusting its responsiveness to 
changes in the process and its adequate accuracy (Taylor, 2010). At time T, the 
forecast value of the data x in the next time unit, T+1 is calculated as follows: 
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   where ˆˆ ˆ, ,a b c  are the coefficients of the model, computed using the first three 

exponentially smoothed statistics (    2 3, ,T T TS S S ). The smoothed statistic 
TS  given by 



1(1 )    T T TS x S , constitutes a geometrically weighted average of past 
observations. The smoothing constant α determines the behaviour of the forecast 
system. Small values of α give more weight to the historical data promoting a slow 
response. With large α values more weight is placed on the current observation 
leading to faster response. Once the forecast value is obtained, outliers are identified 
by analysing the one-step-ahead forecast error (1)Te  calculated as ˆ(1)  T T Te x x . To 
provide better estimations of the local variance and to quantify the extent by which 
the actual value differs from the forecast, a simple exponential smoothing model is 
also chosen to estimate the variance of the forecast error 2 e  through the estimation of 
the mean absolute standard deviation, Δ. At time T, supposing that the forecast error is 
normally distributed, the estimate of 2 e  is obtained as ˆˆ 1.25  e T , with ̂ e  the 

estimate of the standard deviation and ̂T  calculated as follows:  
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The goodness of the two models depends on the right choice of the smoothing 
constants  std ,  that minimize the residuals between the model and a representative 

set of calibration data. The prediction interval xlim is defined based on a probability 
statement about the forecast error as 

,
ˆ ̂ T T e Txlim x K , with K being a proportional 

constant that can be adjusted to make the limits more or less restrictive. If Tx  breaks 

the prediction interval it is considered an outlier and it is replaced by the forecast 
value. A new accepted data series is then generated. Figure 2 gives a graphical 
representation. 

  
Figure 2 Outlier detection and method Figure 3 Fault detection method 

Potential sensor faults are identified by calculating some data features and their 
acceptability limits, as shown in Figure 3. To avoid corruption of the calculations by 
signal noise, the features are computed over the smoothed data (Figure 1) that are 
obtained by using a kernel smoother. The calculated data features comprise the slope, 
the locally realistic range, the fraction forecast values that have replaced the raw data, 
the autocorrelation of the residuals and finally the residuals’ standard deviation. After 
a fault is detected, an alarm is generated and posterior analysis is carried out to 
identify the fault and to apply the required corrective action in the field.  
 
RESULTS AND DISCUSSION 
The univariate methods were successfully applied to the on-line TSS and conductivity 
time series collected at the inlet of the primary clarifier. In Figure 4, even if most of 
the TSS data fall into the prediction interval (blue and red zones), a large number of 
outliers is identified. Once the outliers have been replaced by the corresponding 
forecast values and smoothing is applied (green line) the daily TSS-pattern becomes 
apparent. Notably the developed and tuned method maintains its outlier removing 
performance under the unusually wet weather conditions around December 24th and 



27th 2012. In the last step of the on-line analysis, fault detection (Figure 1 and 3), the 
calculation of the different features on the smoothed data did not reveal significant 
faults. The smoothed TSS time series can thus be properly used for further analysis. 

 
Figure 4 On-line outlier detection procedure applied to an actual TSS time series from Lynetten WWTP 

For the conductivity on-line measurements in Figure 5 some abnormal behaviour 
was detected. Acceptance limits for the data features are shown as red lines. 
Diagnosing the residuals (by carrying out a runs test on a moving window) allows 
checking whether the forecasting model is adequately describing the raw data. Most 
of the data pass this test. A snow-melt road salts event is clearly observed around 
December 15th 2012 when the conductivity values increased twofold from the normal 
values. Larger slope values for that period demonstrate the more important dynamics 
in the variable. Around December 17th the residuals’ standard deviation (RSD) 
exceeds the typical measurement standard deviation. This coincides with a high 
percent of forecast values that replace the raw data and larger slope values suggesting 
an atypical variation of the data. This was due to the sensor being out of the water.  

Due to space limitation no illustration is given of the off-line analysis but its 
application has been useful for detecting for example drift of the ammonia and 
chloride sensor and missed calibration steps in the pH sensor and UV spectrometer.  

 
Figure 5 On-line outlier and fault detection procedure applied to an actual conductivity time series 
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