

Nutrient recovery from biodigestion waste (water) streams and re-use as renewable fertilizers

Céline Vaneeckhaute^{1,2}, Greet Ghekiere³, Evi Michels¹, Peter A. Vanrolleghem², Erik Meers¹, Filip M.G. Tack¹

¹Ghent University, Lab for Analytical and Applied Ecochemistry, Coupure Links 653, 9000 Ghent, Belgium ²Université Laval, model*EAU*, Département de génie civil et de génie des eaux, 1065, avenue de la Médecine, Québec G1V 0A6, QC, Canada ³Inagro, Provincial Research and Advice Center for Agriculture and Horticulture, leperseweg 87, B-8800 Beitem, Belgium

INTRODUCTION

Nutrient excesses in the environment from animal manure, digestate sludge, waste water, ashes, etc.

Stringent fertilization levels

Increasing use of synthetic fertilizers

Nutrient depletion (P. K) quality ↓ ↔ price ↑

OBJECTIVES

- To evaluate the fertilizer potential and identify potential bottlenecks for agricultural re-use of recovered biodigestion waste derivatives as substitute for synthetic fertilizers and/or as P-poor equivalent for animal manure
- To evaluate the impact of these renewable fertilizers on soil quality and crop production
- To assess an economical and ecological evaluation of the cradle-to-cradle use of these products in agriculture and to explore their marketing value

MATERIALS AND METHODS

1. Experimental set-up

Eight different scenarios for re-use of digestate and its derivatives as substitute for synthetic fertilizers and/or animal manure (Sc 1 = reference, n = 4)

			Synthetic N	Air scrubber water	Mixture digestate/ liquid fraction	Liquid fraction digestate	Synthetic K ₂ O
1	×	×	×	-	-		X
2	ж	Ж	•	×	-	-	K
3	-	×	-	x	-	-	х
4	x	-	x	-	x	-	X
5	K	-	-	×	×	-	X
6	-	-	-	x	X	-	X
7	x	X	-	-	-	X	x
8	-	ж	-	-	-	ĸ	X

2. Product sampling (A), fertilization (B) and sampling of soil (C) and plants (D)

3. Physicochemical analysis

- Fertilizer value: total content and plant available contents of macro- and micronutrients in products, soils and plants
- Soil quality: pH, EC, organic carbon, sodium adsorption ratio, P and heavy metal accumulation
- 4. Nutrient balances: Calculations + modeling with NDICEA
- 5. Biogas potential: Anaerobic digestion batch tests (37°C)
- 6. Economical and ecological evaluation (2011): Vaneeckhaute et al. (2013). Biom. Bioenerg. 49, 239-48.

RESULTS (1)

· Fresh weight biomass yield

Substitution did not lead to significant reduction in crop yield

• NO₂-N residue in soil (0-90 cm)

All scenarios respected local standard for NO2-accumulation at harvest (90 kg ha-1) in 2012

Nutrient balances

N-3 and N-30: simulation over 3 and 30 years

	Scenario 1				Scenario 2				Scenario 3			
kg ha-1 year 1	N-3		P ₂ O ₆	K ₂ 0		N-30	P ₂ O ₆	K ₂ 0		N-30	P ₂ O ₆	K ₂ O
Manure application	186	186	76	216	186	186	76	216	186	186	76	216
Deposition	30	30	3	8	30	30	3	8	30	30	3	8
Total application	216	216	79	224	216	216	79	224	216	216	79	224
Removal with products	228	228	77	301	240	240	78	292	251	251	82	271
Calculated surplus	-12	-12	1	-77	-24	-24	2	-69	-36	-36	-4 ^b	-48°
Leachingo	45	24			41	18			31	2		

Substitution of synthetic N by air scrubber waste water (Sc 1 \rightarrow 3) resulted in: ^a N-leaching ↓, while effect on denitrification, volatilization and organic

b Negative surplus on soil P₂O₅-balance ⇒ soil P₂O₅-recovery ↑ and crop

RESULTS (2)

Soil quality

- No significant differences in EC, pH-H₂O, pH-KCl, sodium adsorption ratio, S-content, P and metal accumulation
- Significantly more organic carbon added to soil when applying digestate or its liquid fraction (Sc 4-8)

Economical (A) and ecological (B) evaluation

CONCLUSIONS

Recycling of nutrients from biodigestion waste derivatives in agriculture can:

- create sustainable substitutes for synthetic fertilizers with high nutrient use efficiencies
- reduce NO₃-leaching and increase soil P₂O₅-recovery
- result in economical and ecological benefits
- ⇒ The use of these products should be stimulated in environmental legislation
- ⇒ Research has started on the modeling of physicochemical nutrient recovery systems for wastewater and sludge streams to sustainably produce these marketable fertilizers with high nutrient availability (BMP Innovation FRQNT-CRSNG)

ACKNOWLEDGEMENTS

This work has been funded by the European Commission under the Interreg IVb Project "Accelerating Renewable Energies through valorization of Biogenic Organic Raw Material (Arbor)" and by the Environmental & Energy Technology Innovation Platform (MIP) under the project "Nutrient Recycling from Manure and Digestates" (Nutricycle). A PhD-scholarship is provided by the Natural Science and Engineering Research Council of Canada (NSERC), the Fonds de Recherche sur la Nature et les Technologies (FRQNT) and Primodal Inc.

