
In: Proceedings WEFTEC2013. Chicago, IL, October 3-9 2013 

Validating data quality during wet weather monitoring of 
wastewater treatment plant influents 

 
Janelcy Alferes1*, Anders Lynggaard-Jensen2, Thomas Munk-Nielsen3 , Sovanna Tik1, Luca Vezzaro3,4, 
Anitha Kumari Sharma4, Peter Steen Mikkelsen4 and Peter A. Vanrolleghem1  
 
1modelEAU, Département de génie civil et de génie des eaux, Université Laval, 1065, Avenue de la Médecine, Québec, 
Canada QC G1V 0A6. 
2DHI, Gustav Wieds Vej 10, DK-8000 Århus C, Denmark. 
3Krüger A/S, Gladsaxevej 363, DK-2860 Søborg, Denmark. 
4Department of Environmental Engineering (DTU Environment), Technical University of Denmark, Miljøvej, Building 
113, DK-2800 Kgs. Lyngby, Denmark. 
*Email: janelcy.alferes@gci.ulaval.ca. 
 

 
ABSTRACT 
 
Efficient monitoring of water systems and proper use of the collected data in further applications 
such as modelling, forecasting influent water quality and real-time control depends on careful 
data quality control. Given the size of the data sets produced nowadays in online water quality 
monitoring schemes, automated data validation is the only feasible option. In this paper, software 
tools for automatic data quality assessment with a practical orientation are presented. The 
developments from three organizations ranging from simple to more complex methods for 
automated data validation are described and evaluated for water quality measurements collected 
at the inlet of wastewater treatment plants, where probably the hardest measurement conditions 
are found. The objective of this collaborative effort is to come up with better tools and improved 
approaches for implementing a successful automatic data quality control procedure.  
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INTRODUCTION 
 
With flexibility and standardisation as main drivers of recent development, important advances 
have been made regarding several monitoring tasks and measurement applications in wastewater 
systems. However, besides the huge amount of real-time data collected by such measurement 
set-ups, the most important steps forward have been made in the field of data quality evaluation. 
As measurements are carried out under challenging conditions such as wet weather flow 
situations (clogging, fouling, flooding, etc.) raw data is frequently affected by faults like drift, 
bias, precision degradation or even complete failure, all of which cause the accuracy and 
reliability of the data to decrease. Those conditions may lead to erroneous conclusions and to the 
improper use of the data. For data analysis and further applications the collected data will thus be 
valuable only if the data is properly validated. Given the size of the data sets, only automated 
data validation is an option. 
 
A wide range of methods have been developed for fault detection and isolation (FDI) in different 
fields (Venkatasubramanian et al., 2003). These cover methods as simple as evaluations of the 
range (min-max values), rate-of-change, cross-correlation of redundant measurements and 



measurement noise to somewhat more complex often time series analysis based methods that 
allow eliminating outliers, trending, etc. There are also model-based methods that make use of 
the generation of residuals (the difference between a measured value and its prediction by a 
model) and their evaluation for data quality assessment. However, it is often difficult to identify 
and validate an accurate model that describes all physical and chemical phenomena occurring in 
the process that is monitored. As an alternative, data-driven methods consider the relationships 
between the process variables without the explicit expression of a process model. 

Many of the aforementioned methods are considered “standard” and can be found in textbooks, 
but it turns out that their actual practical implementation in the water sector is not as 
straightforward as anticipated. Three teams that have developed actual implementations in 
measurement systems have combined their expertise and will present in this paper what the main 
principles and little details are that make for a successful on-line data quality validation scheme. 
All will be illustrated with extensive data sets collected at the inlet of wastewater treatment 
plants (WWTPs), probably the most challenging measurement locations, especially under wet 
weather conditions. 
 
 
METHODOLOGY 
Water quality sensors are typically disturbed by bias, drift, precision degradation or total failure 
effects that cause the reliability of measurements to decrease. The most common errors in the 
raw data include missing values, NaN values, measurement values out of range, peaks (outliers), 
noise and constant measurement values (indicating that the sensor is out of order). In the 
framework of practical water quality monitoring applications three different approaches for 
automatic data quality assessment are presented. While the three methods are aimed to detect 
doubtful and not reliable data based on different principles, their main strength is their possible 
integration into the monitoring and control schemes. The two first approaches, based on simple 
calculations, provide a short-term assessment of the data by using the immediate and recent data 
readings. The third approach, based on the analysis of the time series, uses a longer period of 
time (minutes, hour or days back from the actual time) to assess the quality of the data in the 
short-middle term.  
 
Single data validation methods  
Single data validation methods allow checking the data for some of the typical errors by using 
simple calculations. However, even if these methods are simple it is not common that they are 
implemented directly in programmable logical controllers (PLC) – the range check might be an 
exception. Those methods are usually applied as part of the interaction between the real time 
control (RTC) system and the PLC. 
 
One-step control 
From a control point of view, to guarantee a proper operation of the real time automatic 
controller for WWTPs, a continuous data quality control (DQC) of the available measurements 
being part of the control loops is essential. Basic one-step DQC techniques that are usually 
applied and implemented in practical control platforms are listed in Table 1. Despite the quite 
simple nature of these methods, they allow a quite efficient operation of the plant when more 
measurements are used simultaneously. These DQC techniques are applied at the level of the 
single value (e.g. test of minimum and maximum value), although they can also use some 



information from previous measurements (e.g. test of the minimum and maximum change rate 
and test of standard deviation).  

Table 1. One-step basic controls implemented in control platforms. 
Method Description 
Error message from online meter For example, calibration, cleaning, bad quality 

Manual evaluation of 
measurement quality 

Comparison of laboratory analysis of samples 
with values from online measurements 

Constant value (TCV) A combination of constant value and period. If 
the value is constant for a certain allowed period, 
DQC classifies the value as erroneous. 

Range  Minimum and maximum allowable values. When 
the measured value exceeds the allowable value 
the DQC classifies the value as erroneous.  

Rate of change  The minimum and maximum allowed rate of 
change in 2 minutes. When the measured rate of 
change exceeds the allowable value the DQC 
classifies the value as erroneous. 

Running Variance The minimum and maximum allowed standard 
deviation value. When the observed standard 
deviation exceeds the allowable value the DQC 
classifies the value as erroneous. 

 
Confidence value 
In this DQC method one or more tests are applied to the data that is read from the PLC resulting 
in a confidence value (number between 0 and 100) for each data point (Lynggaard-Jensen et al. 
1998).  If a measurement is within the limits of what can be expected the confidence will be 100, 
and if it is showing values that are highly unexpected or even impossible the confidence will be 
0. However, between these two situations it might be difficult to judge and confidence for each 
single test will gradually decrease when the measurement is moving from expected values 
towards unexpected values (see Figure 1). If the confidence value  is lower than a pre-set 
threshold, different actions can be taken (avoid using data for control, suspend the control based 
on the RTC-algorithm and fall back to default control by local control loops, calibrate/repair 
sensor, etc.). 

Confidence
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OKError Error
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Figure 1. Principle of applying confidence to a measurement. 



Table 2 gives an overview of the calculation of the confidence for the different (short term) 
validation methods, and as can be seen the setting of the parameters for the validation is quite 
important, and these should accommodate both sensor and process response.  

Table 2. Calculation of the confidence for a measurement. 
Method Confidence function 
Gap Filling (GF); 
N = no. of time steps,  
(proportion of data replaced) 
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Rate of Change Check (RCC); 
x = change of measurement per time 
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Univariate time series analysis  
Using the online time series information the method developed by Alferes et al. (2013) integrates 
two main steps: outlier handling and fault detection.  Since the presence of outliers can seriously 
affect the results of statistical tests on the data by altering, for example, the variance, the mean 
and the normality of the data set, they must be first detected and removed to avoid faulty 
conclusions. The core of the outlier treatment method lays in the use of univariate autoregressive 
models to forecast future expected time series data. Outliers are then identified by comparing the 
measured values with the forecast value with their dynamic prediction error interval. 
 
Specifically, at time T two different exponential smoothing models are used to calculate in the 
next time unit T+1: (1) the forecast value of the data x, and (2) the forecast of the standard 
deviation Δ of the forecast error. The coefficients of both models are computed as function of the 
exponentially smoothed statistic 

TS  given by 1(1 )    T T TS x S , with α a smoothing parameter 

between 0 and 1 that controls the speed at which the historical data is smoothed. The best value 
for the smoothing constant in each model is the one that results in the minimal residual between 
the model and a suitable set of calibration data. The calculation of the forecast value of the 
standard deviation provides a better estimation of the local variance 2e . Assuming a normal 



distribution for the forecast error (Dochain and Vanrolleghem, 2001), the estimate 2e  is given by 
ˆˆ 1.25  e T , with ̂T  calculated as     1

ˆ ˆ1 1      T T Te , with (1)Te  the one-step-ahead 

forecast error, defined by ˆ(1)  T T Te x x . The prediction interval ,
ˆ ˆlimT T e Tx x K   is then 

defined by adding or subtracting a multiple K of the standard deviation of the forecast error to 
the forecast data value. At time T, the measurement data is evaluated to determine if it falls 
outside the prediction interval. In that case, it is considered an outlier and it is replaced by its 
forecast value.  Once the outlier has been removed a new time series of accepted data is created. 
For fault detection purposes several statistical data features are calculated together with their 
acceptability limits. Since the presence of noise in the data can corrupt the calculations, the 
accepted data is first smoothed by using a kernel smoother (Schimek, 2000) with a proper 
bandwidth. The data features are then evaluated over the resulting smoothed or treated data time 
series. Figure 2 gives an overview of the complete method. 
 
 

 
 
Figure 2. Univariate time series analysis according to Alferes et al. (2013). 
 
Table 3 summarises the data features calculated over the smoothed data each time T. 
Acceptability limits are defined for each feature and have proven to be sensor, location and 
variable specific.  Data is validated by given a proper mark: 0 - valid (all test are passed), 1 – 
doubtful (some tests have failed, posterior analysis is required), and 2 – not valid. 
 
Table 3. Features used for fault detection purposes 
Feature Definition Purpose 
%replaced data Fraction of forecast values 

used in the data set after 
outlier elimination  

Evaluate the goodness of 
the smoothed data and 
the data features  

Rate of change Slope between two 
consecutive data points in the 
smoothed data 

Evaluation of dynamics 
in the data (gradients and 
sudden changes) 

Locally physical range Range [min max] where 
values are normally observed 
in a specific location 

Evaluate if the data lies 
in the expected range.  

Residual standard 
deviation 

Standard deviation of 
residuals (difference between 
the accepted data  and the 
smoothed data) 

Estimation of the 
variance of the data 

Autocorrelation of 
residuals 

Run test over the residuals  
(Dochain and Vanrolleghem, 
2001) 

Evaluate if residuals are 
randomly distributed  

 



Case study 
To illustrate the potential of the described data quality validation methods, the tools have been 
validated in different practical platforms. Data has been collected by online water quality sensors 
installed at the inlet of different WWTPs under the challenging measuring conditions that prevail 
in those environments. The first approach, one-step control, is integrated into the STAR® control 
platform developed by Krüger (Thomsen and Ønnerth, 2009). The second approach, confidence 
value, is part of the DIMS.CORE RTC system of DHI (Ingeduld , 2007). Finally, the third 
approach – time series analysis – has been implemented as part of the Primodal Systems RSM30 
PrecisionNow software (Copp et al., 2010). Implementation of those tools in practical scenarios 
allows operators and process engineers following the status of current and past measurements 
and the detection of doubtful data and potential sensors faults. Posterior analysis must be carried 
out to identify the nature of the abnormal conditions and to apply the corrective actions in the 
field. 
 
 
RESULTS  
 
One-step 
Figure 3 shows an example of Kruger’s DQC applied to a single ammonia sensor over a time 
series of measurements collected at the Avedøre WWTP in Copenhagen (Denmark).  In the 
specific case the Test of Constant Value (TCV) utilizes different time intervals according to the 
measurement values. For example, for low ammonia values (as in the case shown in Figure 3) 
TCV is performed over 120 minutes, while for higher values of NH4, this interval is reduced to 
only 30 minutes. The NH4-N concentration was constant for more than 120 minutes in the lower 
concentration interval; therefore the DQC test classifies the measurements as erroneous. There 
can be many reasons for the constant values. One of the reasons can be the calibration of the 
sensors, where the signal would be frozen.  In this case the error message from the online meter 
can be used to classify the measurement as erroneous already just after 9 a.m. Another reason for 
constant value could be that the actual concentration is higher or lower than the online sensors 
measuring range. In this case the range value test shown in Figure 4 prevents the DQC to classify 
the measurements as erroneous. The other DQC test illustrated in Figure 3 is the detection of the 
excess change rate, where the rate of change in the concentration is higher than the allowed 1 mg 
NH4-N/l/ 2 min.  

 

Figure 3. Example of erroneous NH4 measurements. Constant value is detected around 
11:00, while the maximum change rate allowed interval was exceeded just before 12:00. 
Erroneous measurements detected by DQC tests are illustrated by the coloured line on the 
x-axis. 

excess change rate 

constant value 



 

Figure 4. Example of erroneous NH4 measurements using TCV and minimum range test.  
Erroneous measurements detected by DQC tests are illustrated by the coloured line on the 
x-axis. 

These simple tests can also be applied to measurements that are related to another.  Figure 5 
shows an example from the Czajka – Warszawa WWTP in Poland, where the flow in the 
recycling flow is stopped (Qr), which results in the DQC classifying the SS in the return sludge 
as erroneous. 

 

Figure 5. Example of DQC classifying SS in return sludge as erroneous based on the flow 
measurements in the return sludge flow.  

An important element in making the control of WWTP reliable is the use of the integration of the 
results of different DQC tests to define the set-points sent to actuators. In the example shown in 
Figure 6, the results of simple DQC tests on different variables (NH4, calculated OUR, 
communication signal) are utilized to define different fall-back strategies and to adopt different 
set-points.  

 

constant value Minimum range 



 

Figure 6. Example of integration between DQC controls and set points sent to actuators. 
Depending on the different number of failed DQC tests, different fall-back strategies are 
adopted. 

Confidence value  
Real time validation methods are also implemented in the DIMS.CORE RTC system from DHI 
and the following practical example is taken from an implementation at the Viby wastewater 
treatment plant in Denmark. Figure 7 shows the results from an ammonium measurement in the 
inlet to the Viby wastewater treatment plant together with the inlet flow for a period of 5 days 
including both dry and wet weather. Both the ammonium and the flow are logged every minute. 
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Figure 7. Measurements from the inlet to Viby wastewater treatment plant, Denmark. 

The dry weather flow shows normal diurnal behaviour, and the wet weather flow is a result of a 
short but quite intense rain causing the flow to the treatment plant to increase rapidly to the 
maximum inlet pump capacity (1300 l/s). When the rain stops the inlet flow decreases to approx. 
500 l/s, which is the capacity of the pumps emptying the retention basin holding the combined 
sewer overflow. During the rain the ammonium concentration decreases as expected and returns 
to normal dry weather values after the rain stops. 

Data validation of the ammonium measurement requires configuration of the parameters for the 
selected methods, which here will be range check, rate of change check and running variance 



check. In order to configure the parameters correctly, it is important to identify normal behaviour 
of the measurement and to look for deviations from normal behaviour over a longer time period. 
The aim is to make the data validation as sensitive as possible, and at the same time minimise 
false positives. The range check should reflect a normal working range of the measurement and 
Figure 7 suggests parameters to be configured as shown in Figure 8. Figure 8 is also an example 
on how configuration of data validation is done within the DIMS.CORE system. 

 
Figure 8. Configuration of data validation using range check. 

Configuration of parameters for the rate of change check and the running variance check is not as 
straightforward as for the range check. However, as DIMS.CORE supports easy setup of 
software sensors it is possible to configure temporary software sensors calculating the rate of 
change and the running variance. These show that the rate of change varies between 1.3 and -4.6 
and that the minimum for the running variance with 5 time steps is 2.1x10-6. The resulting overall 
confidence for the ammonium measurement using these parameters is shown in Figure 9. 
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Figure 9. Overall assessment of the confidence in the ammonium measurement. 

The first drop in the confidence in Figure 9 originates from the running variance check, the 
second from the rate of change check and the more complex decrease in the confidence 



originates in the start from the rate of change check – the ammonium concentration decreasing 
rapidly due to the start of the rain event – followed by a lower confidence due to the range check. 

In a real time control system it is not the confidence itself which is interesting – it is the 
automatic detection of a decreasing/(increasing) confidence crossing certain thresholds, and what 
automatic actions shall be taken, when these thresholds are crossed. This is handled by changing 
the quality of the measurement accordingly. This quality assessment gives an extra dimension to 
the data validation, because confidences for different measurements can be given different 
“weights”. Figure 10 shows the quality assessment of the calculated confidence for the 
ammonium measurement. The quality is judged to be OK if the confidence is higher than 90. 
When the quality drops below 90 the warning state becomes active, below 75 the quality 
becomes critical and below 50 the quality enters the error state. 

 

Figure 10. Quality assessment of calculated confidence for the ammonium measurement. 

Each time a threshold is crossed the system generates an event, which in this case is used to send 
an email when a warning has to be issued and a SMS when the quality becomes critical – both to 
the staff being responsible for the maintenance of the ammonium sensor.   

Time series analysis 
Figure 11 shows the results of the application of Primodal Systems’ time series analysis method 
to a TSS time series collected at the inlet of the primary clarifier from the Lynetten WWTP in 
Copenhagen (Denmark),. The method has been configured by using a representative training data 
set collected over a 7-day period. The band delimited by the red and blue lines represents the 
prediction interval within which normal data should fall according to the calculated time series 
models. Most of the TSS data fall into the prediction interval but a number of outliers and 
doubtful data is identified along the time series as indicated by the percentage of forecast values 
that have replaced the raw data in the calculation of the smoothed data (green line).  

Although the TSS data respected the locally physical range for the whole period, the rest of the 
data features revealed some abnormal behaviour; for example around April 24th (period I in 
Figure 11) and May 3rd (period II in Figure 11). In both cases an atypical variation in the 



dynamics of the TSS measurements is identified with excessive slope values. In these two 
periods the residuals standard deviation also exceeds the typical measurement errors indicating a 
larger variance in the data. Diagnosing the residuals (run test on a moving window) during these 
periods showed the presence of some non-randomly distributed residuals, and the percentage of 
replaced forecast values indicated also the existence of outliers. Once all the data features have 
been evaluated for each data point, data is validated according its degree of reliability. As 
illustrated in the label subplot, some of the measurements from the periods I and II are classified 
as not valid or doubtful data. For the whole period in Figure 11, about 8% of the data is 
considered as doubtful or not valid, which is quite acceptable in view of recent practical studies 
using partially automated data validation that report data losses of 5 to 60% (van Bijnen & 
Korving (2008): 40%; Thomann (2008): 5-15%; Metadier (2011): 40-60%; Schilperoort (2011): 
25-50%). 

    

  

       
Figure 11. On-line outlier detection procedure applied to an actual TSS time series from 
Lynetten WWTP. 
 

Figure 12 shows the results of the application of the same method to the ammonia time series at 
the same location.  The impact of the rain event around April 26th is clearly observed in the NH4 
measurements. The time series analysis method was able to maintain its performance during both 
dry and wet weather conditions. However, higher variance and noise levels than those observed 
for the TSS measurements are revealed.  

Although the forecasting model was able to describe the raw data in an efficient way for the 
whole period, the percentage of replaced forecast values also indicated the presence of outliers 
and abnormal data along the time series. The slope and residuals standard deviation values also 

I II 



exceed their typical limits indicating atypical variations in the NH4 data as shown for example in 
the periods around April 29th , May 4th  and May 29th where some of the measurements have been 
classified as not valid or doubtful.  Similarly to the TSS measurements example, for the whole 
period in Figure 12 about 11% of the data is considered as doubtful or not valid. 

   

                   

       
 
Figure 12. On-line outlier detection procedure applied to an actual ammonia time series 
from Lynetten WWTP. 
 
 
DISCUSSION  
 
The decision about when a value can be considered as “valid” or “not valid” is not simple. 
Properties of the water quality measurements (fast dynamics, autocorrelated time series, non-
random noise, etc.) jeopardize the use of classical methods for data validation. A number of 
criteria based on the data characteristics, sensor, context of the process, final use of the data 
(including modeling, control, decision making, etc.) and expertise should be considered.   
 
From the results previously presented, it can be observed how the single data validation methods, 
based on immediate readings, provide useful information about the current data value. Due to 
their computational simplicity they are usually integrated into the RTC systems. Since each 
typical single DQC method assesses a different property in the data, a robust evaluation would 
only be possible if a combination of those methods is applied. More complex methods need to be 
used to evaluate the quality of the data over a certain time period to identify for example gradual 
drift and presence of noise. The use of the time series analysis method allows dealing with those 



situations and also with the critical process of detecting and removing outliers and noise from the 
raw data for posterior fault detection analysis.   

The implemented methods are aimed to extract information from individual variables, and 
normally do not distinguish between a change in the sensors’ properties or in the process variable 
itself. This requires more complex validation methods using more signals through the application 
of cross validation or multivariable methods that consider the correlation between different 
variables (Alferes et al., 2013; Villez et al., 2008). If more sensors are not available, it is also 
possible to configure software sensors as a real time calculation based on one or more sensors 
(Lynggaard-Jensen and Lading, 2006; Spindler and Vanrolleghem, 2012).  

A sequential process that combines the implementation of simple and more complex univariate 
methods, together with multivariate methods would lead to a complete and successful data 
quality validation scheme. However, the key of a reliable data quality evaluation process will 
depend on the proper setting of the methods and on the right definition of the thresholds or 
acceptability limits for each test. Expert knowledge about expected data variability and sources 
of faulty situations should be combined to set the methods’ parameters for each application. 

 
CONCLUSIONS 
 
Besides the huge amount of real-time water quality data that can be collected nowadays in water 
system monitoring applications, the challenge one is currently facing is the development of 
practical automated data quality evaluation tools that allow detecting and correcting doubtful 
data and that can help users in understanding, analysing and processing the data. Inefficient 
manual data evaluation procedures, typically used today in the water field, are not a feasible 
option to handle such data sets, given their specific characteristics. In fact, one of the difficulties 
for the joint use of monitoring and modeling, control and decision making applications has been 
the lack of good data affecting the proper use of the measurements. To answer that need and 
looking for an effective water quality monitoring scheme, three practical approaches for data 
quality validation that have been successfully implemented in different platforms and in diverse 
water systems have been presented in this paper and their main strengths have been highlighted. 
While the two first approaches provide information about the current single value based on 
simple calculations, the third approach allows evaluating the quality of the data by analysing the 
time series over a longer period of time. Crucial to the good performance of the methods is the 
proper setting of the algorithms for each specific application. Information that can be obtained 
from the two different orientations (short and middle term evaluation) is complementary. When 
combined with multivariable methods (considering different variables at the same time) an even 
more efficient data quality evaluation process can be anticipated. 
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