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1.0 INTRODUCTION 
This chapter provides an introduction to dedicated experiments and modeling tools 
that may be used during certain phases of the modeling process, particularly the cali­
bration step. The chapter discusses methods for wastewater and biokinetic charac­
terization, approaches for analyzing the mixing behavior of unit processes in water 
resource recovery facilities (WRRFs), aeration testing, sludge settling characteriza­
tion, and, finally, a range of tools that support the model calibration itself (i.e., param­
eter estimation methods to optimize for a range of criteria expressing the quality of 
a model with respect to acquired data, sensitivity analysis to select the parameters to 
be estimated, and uncertainty analysis to get a feeling for uncertainty in modeling 
results). The purpose of this chapter is to give enough background for modelers to 
decide which method to use and to provide background for the selection of protocols 
made in the procedures presented in Chapter 8. A wide range of references to litera­
ture, guidelines, and method descriptions are provided in this chapter for the reader 
to refer to for more details. 

2.0 WASTEWATER CHARACTERIZATION METHODS 
Influent chemical oxygen demand (COD), nitrogen (N), and phosphorus (P) fractions 
have to be determined according to the model used. This section focuses on measure­
ment of specific characteristics. 

Required model inputs (state variables) are typically calculated as fixed percent­
ages (fractions) based on averages of the measured components. However, this is an 
assumption, and model inputs often vary over the course of a day or week or with 
wea ther conditions. Special care should be taken when intermittent indllstrialloads 
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are discharged or with seasonal load variations because these atypical conditions 
may require specific investigations to properly characterize the influent loads. 

Table 5.1 provides a lis t of methods that can be used to characterize wastewater 
streams in terms of COD fractions . Experience has shown that the proposed methods 
may lead to different fractions altogether (Fall et aI., 2011; Gillot and Choubert, 2010). 
This also explains why the values obtained through measurements are often modi­
fied in the subsequent calibration step. 

TABLE 5.1 Experimental methods for COD fractionation of STOWA.' 

STOWA WERF 

C°DroT. Long-term BOD tests 

Effluent filtrati on (0.45 ~m) 

Su = 0.9 COO,,,.ro ... (low loaded system) Su = COO'''.IO.45 
Su = 0.9 COO",.IO ... -1.5 BOO,.E!-' (high 
loaded system) 

Xu Deduced from previously determined 
fractions: 
Xu = COOro, - COOTOT .• - Su 

5, Filtration (O.l~m) 
5, = COOIO .• - Su 

XC, Deduced from COD",., and 5, 
XC, = COOroT., - 5, 

XOHO, XANO Neglected 

SBR operation or full-scale data + 
calibration of an activated sludge 
model 

Flocculation + filtration (0.45~) 

5, = COOIfO.45 - Su 
OUR-based respirometric methods 

Deduced from previously 
determined fractions: 

XC, = COOTOT - Xu - Su - 5, 

OUR-based respirometry if required 

'CODror." total biodegradable COD; Sw unbiodegradable soluble COD; Xu, unbiodegrad­
able particulate COD; 5" readily biodegradable (soluble) COD; XC" slowly biodegradable 
(particulate and colloidal) COD; XcHO' ordinary heterotrophic organisms; XANO' autotrophic 
nitrifying organisms; COD, FF,ro . .., COD of a filtered (0.45-~m) effluent sample; CODro .• , COD of 
a filtered (0.1 -~) sample; COO,ro . ." COD of a sample that is flocculated first and then filtered 
(0.45 ~m); CODro" total COD; BOD",.IO,." BOD of a filtered (0.45-~m) effluent sample; and 
BOD, . .",. 5-day BOD of an effluent sample. 

(Roelcvcld and van Loosdrecht, 2002) and WERF (Meleer et a!., 2003) (nomendature according to 
Co,ominos ct 01.120101). 
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No generally accepted method has been established yet and, therefore, the fol­
lowing steps are recommended (nomenclature according to Corominas et al. [2010]): 

• The readily biodegradable fraction (5 ,) should be obtained either by respirom­
etry or by physico-chemical methods that include a flocculation step to ensure 
that the colloidal matter becomes part of the slowly biodegradable fraction. 

• The un-biodegradable fraction (S u) is obtained by COO analysis of a filtered 
(0.45-l!m) effluent sample (COOEFF,f045)' 

• The total biodegradable COD fraction of an influent (5, + XC,) is critical to 
properly simulate the oxygen demand of the process and its total removal 
efficiency. To obtain good values of the total biodegradable COD fraction 
(COOTOT,B)' long-term biochemical oxygen demand (BOD) measurements or 
other types of respirometry can be used. 

The choice between either a physico-chemical or respirometry method is often 
based on available equipment and experience. In general, one can say that the former 
method is easier to carry out (see Chapter 8, Section 2,3.1, for a description and fur­
ther references) , However, it does not measure the biologically relevant property of 
the wastewater that is used in activated sludge models , Rather, it fractionates COD 
on the basis of size and not on the basis of rate of biodegradation, which may be 
important (e.g., for denitrification). 

Nitrogen and phosphorus species such as ammonium-ammonia (NH.-N), nitrite­
nitrate (NO.-N), phosphate (PO,-P), total phosphorus, total nitrogen, total Kjeldahl 
nitrogen (TKN), and total soluble frac tions are typically obtained through standard 
analysis. Organic nitrogen and phosphorus fractions are calculated by difference. 
More information on this topic can be obtained in an early extensive review on char­
acterization methods by Petersen et a1. (2003), an International Water Association 
(IWA) scientific and technical report by Rieger et al. (2012), and a recent critica l 
review of wastewater characterization methods by Choubert et al. (2012). 

An important variable in practice is the concentration of total suspended solids 
(XTSs in model notation). It consists of a volatile part (volatile suspended solids, or 
VSS) and an inorganic part (inorganic suspended solids; ISS = TSS - VSS). However, 
the approach for which XTSS is introduced as a state variable in an activated sludge 
model is not completely described in model publications and needs to be carefu lly set 
up. Only then can it become a useful variable that can be linked to TSS measurements, 

Respirometry is defined as the measurement and interpretation of the oxygcn­
uptake rate, ro, of activated sludge (Spanjers et aI. , 1998). In genera l, 1'0 consists o( 
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the following two components: the exogenous oxygen-uptake rate (ro,,,), which is 
the immedia te oxygen uptake needed to degrade a substrate, and the endogenous 
oxygen-uptake rate (rO~nd ) ' Diffe rent definitions of ro .• nd appear in the literature. The 
definition applied here is that the ro~ is the oxygen-uptake rate in absence of readily 
biodegradable substrate. The exogenous oxygen-uptake ra te is calculated from the 
total uptake rate by subtracting rO" nd ' 

Figu re 5.1 illustra tes th e conceptual idea o f respirometr y. The d egrad a­
tion o f substra te 5\ and 5, (Figure S.la) results in a total exogenous uptake rate ro," 

10 20 30 40 50 
Time (min) 

\ 

10 20 30 40 50 
Time (min) 

FIGUR E 5.1 Degradation of two substrates 5\ and S, (a) leading to the conceptual 
\'0." respirometric data set and (b) endogenous respira tion rates a re al ready sub­
Ira I d from the total respiration ra tes measured. (Petersen et aI. , 2003). 
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(Figure 5.1b). Figure 5.1b illustrates a typical respirogram (i.e., a time course of respi­
ration rates) with an initial peak in 'o~, caused by oxidation of the most readily bio­
degradable matter (5,) followed by, in this instance, one "shoulder" in the ' 0 .. profile, 
where component 5, continues to be degraded . Thus, in this example, the contribu­
tion of 5, and 5, to total ro." can easily be distinguished . It is important to realize 
that the oxygen demand required to oxidize the substrates can be calculated from the 
integral under the curve of respiration rates. Biodegradable COD is then calculated 
as (1 - Y H) times this integral, that is 

5, = (1- YH ) f ,.'."dt (5.1) 

5, = (1- Y,,) f r,\,d t (5.2) 

where 

Y H = the heterotrophic yield coefficient 
r'o." and "'0-", = the oxygen-uptake rates corresponding to the first and second 

substrate, respectively 

Figure 5.2 shows a typical respirometric data set obtained after injection of a 
sample of municipal wastewater in an activated sludge filled batch reactor. In this 
instance, the interpretation of the wastewater composi tion is based on Activated 

40 ~------------------------------------

30 

ro , end 

2 3 
Time (h) 

4 5 6 

FIGURE 5.2 Typical batch respirometric data set after injection of a mun icipal waste­
water sample in activated sludge. (Kappeler and Gujer [1 992]). 
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Sludge Model No.1 (ASM1) with 5. (readily biodegradable) and XC. (slowly bio­
degradable) fractions differentiated on the basis of their kinetic profiles, XC. being 
degraded more slowly. It is important to note that XC. recorded in such relatively 
short respirometric experiments does not represent all XC", rather, only the faster, 
degradable part. Longer respirometric experiments are required such as the BOD 
method proposed by Roeleveld and van Loosdrecht (2002). This method provides the 
total biodegradable COD that allows caleulating XC. by subtracting 5. (Meleer et aI., 
2003). Melcer et a1. (2003) also describe an alternative method using COD analyses 
and filtration. 

3.0 BIOKINETIC CHARACTERIZATION 
The following sources of information can be used to obtain values for the kinetic and 
stoichiometric parameters of activated sludge models (Petersen et aI., 2002): 

• Default parameter values from li terature. It is important to note that default 
parameter values are often not the originally published values (called origi­
nal parameter values), but were derived from a consensus-building process in 
which the profession has agreed that these values are a good starting point for 
a modeling study. 

• Full-scale facility data. 

o Average or dynamic data from grab or time/ flow proportional samples 

o Conventional mass balances of the full-scale data 

o Online data 

o Measurements in reactors to characterize process dynamiCS 

Parameter values are obtained through fitting the model until simulation results 
agree sufficiently with the data (i.e., a calibrated value is obtained). 

• Bioassays, that is, different kinds of laboratory-scale experiments with waste­
water and activated sludge from the full-scale facility under study. There are 
a number of experimental setups that have been created that allow the direct 
calculation of the parameter value from the data. Such value is called a mea­
s/lred parameter value. In a number of other methods, a (simplified) model is 
fitted to the data and one or more parameter values are estimated. In those 
instances, calibrated va lues are obtained . 
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Default kinetic parameters included in activated sludge models generally can 
describe the performance of most systems trea ting typical domestic wastewater. 
However, in some instances, wastewater characteristics and the resulting bacterial 
community in the biological treatment process are so unusual compared to typical 
domestic wastewater that the system performance cannot be explained using typical 
kinetic parameters. Examples of such an instance include a WRRF receiving signifi­
cant contributions of industrial wastewater or the use of external carbon sources with 
unusual degradation kinetics (e.g., methanol and glycerol). In these instances, it is 
beneficial to conduct kinetic studies to better understand the reason for deviations 
from model predictions and to adjust the relevant model parameters. Kinetic studies 
can reveal possible causes for unusually slow (or fast) nitri fica tion or denitrification 
rates. 

As mentioned previously, there are two approaches for determining biokinetic 
parameters (Vanrolleghem et aI. , 1999). Direct methods focus on specific parameters 
that can directly be evaluated from the measured data (e.g., nitrifica tion rate deduced 
from the nitrate data). The values obtained a re known as measllred parameter vallies. 
The second approach uses manual or automated optimiza tion methods that use a 
more or less simplified model that is fitted to the measu red data (i.e., calibration). 
The latter methods use numerical techniques to find para meter values that lead to 
the smallest deviation between model predictions and measurements. The values 
obtained are known as calibrated parameter values. 

Care should be taken when transferring model parameters obtained from labo­
ratory-scale experiments with activated sludge to the full-scale installation (Gernaey 
et aI., 2004). A batch experiment with activated sludge provides much more detailed 
information about the reaction kinetics compared to full-scale WRRF data, but it may 
be that the information is reflecting a different behavior than what occurs in the full­
scale data. This behavior may be altered beca use of differences in feeding pattern, 
environmental conditions such as pH, temperature, mixing intenSity or surface-to­
volume ratio, or sludge history. Petersen et aJ. (2003) provide an extensive discussion 
on this transferability issue. 

Two kinetic characteristics that have been the subject of comprehensive method 
development rela te to the nitrification and denitrification rate, as outlined in the 
following sections. Many dedicated methods have been developed for biokinetic 
charac teriza tion; however, these go beyond the scope of this chap ter. The reader 
is referred to rev iews by Meleer et aJ. (2003) and Petersen et a l. (2003) for more 
information. 



Dedicated Experiments and Tools 

3.1 Nitrification Rate 
The nitrification rate has often been highlighted as one of the most important factors 
influencing the required tank volumel aeration time of a WRRF. Even though param­
eters for nitrification are well documented in the literature, the nitrification rate may 
be affected by inhibiting or even toxic influent components. Meleer et al. (2003) men­
tioned two main approaches to determine the maximum nitrifier growth rate using, 
as mentioned previously, bioassays (a direct method) and full-scale data (interpreted 
with the optimization method). 

3.1.1 Bioassay Methods 
Meleer et al. (2003) describes several bioassay methods. The reader is referred to this 
Water Environment Research Federation (WERF) report for further details on proce­
dures and data interpretation. The following are summaries of the tests: 

• Low food-to· microorganism ratio (F 1M) tests-nitrifying mixed liquor is com­
bined with influent wastewater containing ammonia. Because of the low F/ M, 
the nitra te p rod uction response over time is linear. The main disadvantage of 
this method is that the nitrifier concentration must be estimated or a sequenc­
ing batch reactor (SBR) must be operated for approximately three sludge ages. 

• High F 1M batch tests-in this test, a relatively small concentration of nitri­
fying biomass is spiked with ammonia, and the nitrate and nitrite produc­
tion response is monitored for a period of approximately 4 days (Figure 5.3). 
Determination of the nitrifiers' maximum growth rate using this test does not 
require knowledge of the nitrifier concentration, and it does not require the 
operation of an SBR for an extended period of time. 

• Washout test- this test consists of operating a flow-through reactor with nitri­
fying biomass at a solids re tention time (SRT) shorter than the required reten­
tion time for nitrification. As with the high F 1M tests, the determination of the 
nitrifier maximum growth rate using the washout test does not require knowl­
edge of the nitrifier concentration or operation of an SBR for an extended 
period of time. 

3.1.2 Simulation of Full-Scale Dynamic Behavior 

Determination of the maximum nitrHier growth rate through m odel simulation of 
dynamic response behav ior can be accomplished by fitting a model prediction to an 
observed dynamic response in am,monia and /or nitrate and nitrite concentrations 
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FIGURE 5.3 High F 1M batch test results for direct assessment of the nitrifier growth 
rate. (Meleer et aI., 2003). 

(Kristensen et aI., 1992, 1998). To ensure that the maximum nitrifier growth rate is 
observed, one must use only those data collected in the absence of limitation because 
of ammonia, dissolved oxygen, or other substrates. More sophisticated parameter 
estimation methods (Kristensen et aI., 1998; Van Hulle et aI., 2007) that simultane­
ously estimate half-saturation constants for oxygen and ammonia can be applied to 
deal with these situations. 

To maximize the reliability with which parameters can be estimated from experi­
mental data, the principles of experimental design could be applied (Dochain and 
Vanrolleghem, 2001). While an experiment can be designed using a rigorous model­
based procedure, in practical terms it often boils down to selecting those experimen­
tal conditions in which extensive dynamics are visible in the variables. The more 
variation can be seen in the data (either induced by manipulating the process or by 
external disturbances) the better the estimation will be of nitrification parameters. 
An example of such simulation-based estimation of nitrification (and denitrification) 
parameters is given for an SBR study by Corominas et al. (20JJ). 
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3.2 Denitrification Rate 
Kinetic studies also are common when evaluating specific process changes to achieve 
or improve denitrification, particularly when alternative carbon sources are to be 
used. Indeed, unusual carbon sources may result in specific kinetics parameter val­
ues that were not considered when the default kinetic values for activated sludge 
models were established. More importantly, a specialized microbial population may 
develop that will use the added carbon source with different kinetics than the waste­
water COD that is degraded by traditional heterotrophs (Torres et aI., 2011). This may 
require extension of the model structure. A critical evaluation of the applicability of 
default model parameters is always required, and such evaluation may sometimes 
suggest kinetic testing. For characterization of denitrification kinetics again, bioas­
says and simulation of full-scale data can be used . 

3.2.1 Bioassay Methods 
The parameter eta (11) that characterizes the reduction in rate under anoxic vs aerobic 
conditions can be estimated by comparing the oxygen utilization rate (OUR) ('0) and 
the nitrate utilization rate (NUR) ('N03) in aerobic and anoxic batch tests using the 
same mixed liquor and organic substrate (Kristensen et aI., 1992), as follows: 

11 = 2.86 'N03." 

'O.er 

(5.3) 

The subscript "ex" refers to the exogenous rate, that is, the substrate-induced rate 
that is calculated by subtracting the endogenous rate from the overall ' 0 and r N03 data 
(see Section 2.0 in this chapter) . 

The OUR is determined by monitoring the decrease of dissolved oxygen follow­
ing the addition of a readily biodegradable substrate, such as acetate. The NUR is 
determined by measuring the nitrate decrease when adding the same organic sub­
strate (e.g., acetate) to mixed liquor under anoxic conditions (no oxygen, only nitrate 
present). Details for these tests can be found in work by Meleer et al. (2003). An exam­
ple of high-frequency NUR and OUR data collected using nitrate and dissolved oxy­
gen sensors in a batch setup is given in Figure 5.4. 

3.2.2 Simulation of Full-Scale Dynamic Behavior 

Effluent or in-process nitrate concentration data can be used as a target variable to 
calibrate the denitrification kinetics parameters, the latter of which typically are more 
information-rich and leads to more reliable estimates. It is important to ensure that 
the correct amount of orga nic substrate is being made available to the denitrifiers 
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FleURE 5.4 Comparison of acetate-based OUR (47 mg COD/L acetate added) 
and NUR (39 mg COD/L acetate added) determinations using dissolved oxygen 
and nitrate sensors in a batch setup. Note the endogenous respiration rate (0.2 mg 
O,/L·min; 0.03 mg NO,-N /L·min) that needs to be subtracted to obtain the exog­
enous rates required for the kinetic parameter. (Sin and Vanrolleghem, 2004). 

during the simulation. This means that the influent composition (see Section 2.0) and 
hydrolysis/fermentation parameters (e.g., with methods proposed by Kappeler and 
Gujer [1992]) must be determined beforehand. 

4.0 HYDRAULIC CHARACTERIZATION 
As explained in Section 3.l.4 of Chapter 2, practical mixing behavior in reactors can 
be modeled in two ways. Either the advection-dispersion equation is used, leading 
to the use of a partial differential equation that requires specific solvers that are com­
putationally slow. The alternative approach that has been adopted in the wastewa­
ter industry is based on a discretization of the spatial dimension. This results in the 
tanks-in-series model (Gujer, 2009). 

The following approaches can be used to determine the number of tanks-in-series 
to be used: the empirical equation approach and an experimental approach based on 
tracer testing. These are briefly introduced in the following section. 
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4.1 Empirical Equation Approaches 
Chambers and Jones (1988) at WRc pic (Swindon, U.K.) developed the following sim· 
pIe empirical relationship between the number of tanks-in-series (N) and the geom­
etry and flow-through rate of a reactor: 

(5.4) 

where 
N = the number of tanks-in-series describing the mixing regime of the 

reactor (-) 
W, H, and L = the dimensions of the tank (i.e., width, height, length [m]) 

Q;" = the flowrate through the tank (m' /s) 

For large facility-wide models or complex submodels, this formula may result 
in an overly complex model layout. The modeler should always use common sense 
when balancing model complexity with the model objective. If the formula recom­
mends 10 units in series to simulate an aera tion basin but the modeler knows that 
there are only five different diffuser grid types, it may be sufficient to include only 
five reactors in series. On the other hand, if a square anoxic zone is partitioned with 
three baffle walls, it may be important to indude three reactors in series to simulate 
the plug flow pattern. Model calibration and validation efforts will confirm whether 
what the modeler has developed included the appropriate level of complexity. 

An alternative, more accurate (but also more complex) empirical equation was 
proposed by Fujie et a!. (1 983). It analyzes the number of tanks describing a reactor 
zone, using the Pedet number, Pe, as follows: 

Pe' 
N=-(Pe - l+e-P

, ) 
2 

(5.5) 

With Pe = ).IL (-) with u the average velocity (cm /s), L the zone length of the reac­
EL 

tor (cm), and EL the longitudinal dispersion coefficient (cm' /s) that is calculated as 
follows: 

(5.6) 

<I>=lIu - - -( 
h )1/' ( H)l/' 

' H W 
(5.7) 
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where 

TABLE 5.2 Values of Fujie empirical constants ad and /tid as a 
function of diffuser type and <I> as specified in Eq. 5.7. 

Type of air diffuser <I>(cm'/s) m, a, 

Fine bubble types' <l>S20 0.64 7.0 
<1»20 0.46 12.0 

Coarse bubble typesb <l>S20 0.78 3.5 
<1»20 0.56 4.9 

aporous plates and tubes. 
bPerforated plates and tubes, single nozzles, and others. 

Hand W = the height and width (cm) of the reactor zone, respectively 
ug = superficial gas velocity (cm / s) calculated from the airflow rate and the 

zone surface area 
II = diffuser depth (cm) 

ad and /tid = Fujie empirical constants that can be read from Table 5.2 

Makinia and Wells (2005) reported that Fujie's equation gives satisfactory results 
for most standard cases. A spreadsheet with these two estimation formulae is pro­
vided by Rieger et aJ. (2012). 

4.2 Tracer Testing 
An experimental approach to determine the number of tanks describing the mixing 
regime of a reactor is to perform an experimental tracer study by injecting a pulse 
of an inert tracer or to increase its concentration for a prolonged period at the reac­
tor inlet. The inert nature of the tracer is important because the substance should 
not adsorb to the sludge and should not be degraded. To verify this, a mass balance 
should be made to ensure that all tracers have been recovered by the end of the tracer 
experiment. The time series of recovered tracers is then measured at the outlet of the 
reactor under study. Although this experimental approach is more time-consuming 
and expensive, it is more accurate. It is important to note that this does not account 
for any wet weather flow, unless the tracer test is repeated with different inflow rate 
conditions. Another significant effect on mixing behavior is caused by aeration. High 
aeration intenSity typically leads to increased mixing and, therefore, to less plug flow 
behavior (modeled as fewer tanks in series). 
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FIGURE 5.5 Ilustration of the effect of a different number (N) of continuously 
stirred tank reactors in series to describe mixing behavior. The y axis represents 
RTD and ~'" represents the dimensionless time based on the mean residence time 
in all N tanks. 

Typical model-based responses to tracer injections are given in Levenspiel (1999). 
The pulse injection case is reproduced in Figure 5.5, and similar figures can be found 
for the step change experiment (the reader should note that a step is the integral of a 
pulse and that, because of linear system equations, step responses are the integrals of 
the pulse responses). When performing experiments, recycle flows typically present 
in WRRFs can complicate the interpretation. To allow for the simple interpretation of 
tracer test data, recycling could be switched off. In such instances, simple calculations 
allow finding the number of tanks-in-series from the data (Gujer, 2009). 

In instances where more complicated flow patterns are observed (short-circuiting, 
recycles), an approach using simulation models with different configurations of tanks 
and recycles can be simulated in a facility simulator (using an inert soluble compo­
nent as a surrogate for the tracer). The best-fitting model determines the configuration 
of tanks to be used subsequently. Figure 5.5 shows that using one tank gives rise to 
the typical exponential decay model response of an ideally mixed tank. Increasing the 
number of tanks results in the buildup of a peak, which becomes higher in absolute 
value and whose occurrence is shifted further in time. This is the typical behavior of a 
complete plug flow system. When the number of tanks reaches infinity, a perfect plug 
flow response is approximated, that is, all tracer appears at once at the outlet after a 
time orresponding to hydraulic residence time (HRT). 
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The following procedures are recommended when setting up a tracer experiment: 

• Choice of tracer-the tracer should be a non-biodegradable, non-adsorbing 
compound. Tracer materials tha t are often used are a lithium salt, rhodamine, 

or bromide. The choice depends on measuring accuracy, reachable measuring 
frequency (e.g., through online sensors or only possible with laboratory analysis), 
toxicity of the tracer, or other negati ve effects on the environment. The mea­

suring accuracy / limit of detection together with the flowrate determines the 
required tracer mass load. 

• Injection of the tracer-the tracer should be injected as close as possible to the 
entrance of the reactor/facility section under study. 

• Data collection-samples should be taken as close as possible to the exit of the 
reactor under study. Samples should be collected fo r a period that covers at 
least three to five HRTs. During this period , about 20 to 50 samples should be 
taken. If possible, a first screening of tracer dynamics should be conducted and 
on ly samples taken at times where the highest variations a re visible should 
be analyzed further if the budget is limited . Considering Figure 5.5 and the 
typical mixing regime in bioreactors (three to 10 tanks-in-series), most samples 
should be taken before HRT is reached, with some samples taken to monitor 

the tailing. It may also be useful to wait until the recycle kicks in (i.e., until the 
tracer comes back with the recycle fl ows) . While these additional dynamics 

complicate interpretation, they give va luable information. 

An example of a tracer tes t performed at full sca le is shown in Figure 5.6 
(De Clercq et a!., 1999). In this example, it was observed that using one tank is not 
sufficient to model the mixing behavior. However, when using two tanks-in-series, 
the performance of the model is satisfactory. 

Flow splitting also deserves attention when modeling WRRFs. Splitting cham­
bers are typically modeled as ideal flow splitters. However, in reality, this is often not 
the case, and this can have a large effect on modeling results. One way to investigate 
an influent splitting work is to investigate the sludge concentrations that occur in 
the d ifferent lanes. Theoretically, these should be the same when an equal loading is 
provided. The respective sludge concentrations in the different lanes for the afore­
mentioned example are given in Figure 5.7. In terms of equal flow distribution, a line 
through the origin with a 45-deg slope should be found . Figure 5.7 shows that thi s 
is the case for lanes AS] and AS3. However, lane AS2 ex hibits a much la rger s ludge 
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FIGURE 5.6 Dlustration of model fits to RTDs in train 1 recorded using Lithium 
as tracer, with one tank (dashed line) and two tanks in series (solid line). Note the 
bump on the graph at approximately 35 hours caused by recycle of tracer. 
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FIGURE 5.7 illustration of differences in sludge concentration in different lanes caused 
by an improperly functioning flow-splitting works. 

concentration (+20%), suggesting that more sludge and less wastewater is going to 
that lane, leading to a loss in treatment performance. Closer investigation of the influ­
ent splitting works revealed shortcut flows of both the influent and return activated 
sludge (RAS) from the seconda ry settlers. 
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FIGURE 5.9 Sampling hood. (Credit: Y. Fayolle, lrstea). 

5.1 Dffgas Method 
The offgas method is based on a gas-phase mass balance. The gas bubbles at the liq­
uid surface are collected using floating hoods (Figure 5.9). At each hood location i, 
the offgas flowrate (q.,;) is measured and the molar oxygen concentration is deter­
mined to compute the standard oxygen-transfer efficiency under process water (field 
SOTE, SOTE,), as follows: 

SOTE,.; = 1- Y,(l- y, ) 
y,(l- y, ) 

(5.8) 

where y" y, is the molar oxygen concentration in the insufflated air and in the 
offgas (-). 

The overall SOTE, of the aeration system is obtained by weighting the SOTE, 
values by the offgas flowrates collected at each test location, as follows: 

SOTE, = I q,.; x SOTEr.; 
Iq,,; 

(5.9) 

Fu ll-scale aeration testing using the offgas method requires prior defini­
tion of a representative gas-sampling plan such as that exemplified in Figure 5.10. 
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Internal diameter: 9.9 m 
External diameter: 19.1 m 

56 diffusers Water depth: 5.30 m 

® per grid 

Anoxic Zone 

Hood locations: 

LEGEND 
® A : 0 2 probes (113 depth, 213 depth) 
® B : O2 probes (113 depth, 213 depth) 
® C: 0 2 probes (113 depth, 213 depth) 
® 0 : 0 2 probes (1/3 depth, 213 depth) 
~ HzOz : hydrogen peroxide addition 

FtGURE 5.10 lIIustration of an oUgas sampling plan. (Credit: Capela et al. [2004]) . 

Gas-sampling plans vary from one facility to another depending on the geometry of 
the tank and the distribution pattern of the aeration system. 

5.2 Hydrogen Peroxide Method 
The hydrogen peroxide method allows the determination of kLa! by monitoring the 
dissolved oxygen concentration over time after adding hydrogen peroxide (H,O,) to 
create a perturbation from steady-state conditions. The dissolved oxygen concentra­
tion during the deaeration period can be written as follows (ASCE, 1997): 

C C (C C) - (k,' , ' QIV)." 
= I< - I( - 0 x e (5.10) 
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where 
C = actual dissolved oxygen concentration (mg/L) 

CR = the concentration at steady state in process water (mg/L) 
Co = initial dissolved oxygen concentration (mg/L) 

kLaf = volumetric mass-transfer coefficient in process water (1 IT) 

Q = volumetric wastewater flowrate (m' /h) 
V = tank volume (m' ) 

The addition of H,O, is performed maintaining a constant power level. The goal 
is an increase in the dissolved oxygen concentration above the steady-state dissolved 
oxygen concentration (CR) higher than 10 mg/L. For a 35% H,O, solution, the volume 
to inject is determined as follows: 

VH,O,,35% = 5,376CVlO-6 (5,11) 

where 

V"202~5% = volume of peroxide solution (35%) to inject (L) 
6C = increase in dissolved oxygen concentration (mg/L) 

V = tank volume (L) 

An example of a deaeration curve is presented in Figure 5,11, 

6.0 SLUDGE SETTLING CHARACTERIZATION 
A detailed settling characterization is necessary if the settling performance and the 
reactions during settling influence overall system behavior (e,g" effluent COO, nitro­
gen, and phosphorus), In addition, the target(s) might be the optimization of settling 
or may be the amendment of effluent suspended solids (ESS) removal. Hindered and 
compression settling are the main phenomena taking place in secondary settlers, 
Primary settlers that are characterized by discrete and flocculation-type settling are 
discussed at the end of this section, 

In addition to the sedimentation process, reactions such as denitrification (leading 
to gas-bubble formation that disturbs settling) and phosphorus release in the settler 
may have to be considered (Henze et ai., 1993; Koch et al" 1999; Wouters-Wasiak et al" 
1996), This can be checked by calculating the mass balance over nitrate-phosphate or 
by site observations such as the occurrence of nitrogen gas bubbles trapped in the floes 
(Henze et aI., 1993), Information on flow velocity measurements is given at the end, 
They are of specia l interest when carrying out a detailed evaluation of clarifiers using 
omputational Auid dynamics (CFO) models, 
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F,GURE 5.11 Dissolved oxygen concentration (top) and residuals (bottom) during a 
deaeration test after the addition of hydrogen peroxide. 
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6.1 Full-Scale Tests 
Estimation of a settler model's parameters can be performed by fitting the model 
outputs to time series of flowrates and total suspended solids (TSS) concentrations 
measured at the clarifier's inlet, underflow, and effluent. The latter data can either 
be obtained by offline TSS measurements or by turbidity sensors. Provided they 
are properly handled, the latter have reached a level of reliability and precision that 
allows their use for model calibration (Vanrolleghem and Lee, 2003). It is important 
to realize that best calibration performance will be obtained under dynamic condi­
tions because these better expose the dynamics of the settler. 

For more advanced models, it may be necessary to supply data taken within the 
clarifier. Turbidity sensors that move up and down in the clarifier or ultrasonic pro­
filers may provide time series of the sludge blanket height and even sludge profiles 
(Figure 5.12). 

8~----------~----r 

6 

~4 
o 

2 

2.8 

01-04-030:00 
t (data and hour) 

F,GURE 5.12 Sludge concentration profiles and sludge blanket height (SBH) 
during stress testing a secondary clarifier at the Heist water resource recovery facility. 
(Dc lercq, 2006). 
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Highly informative data sets, in particular, can be obtained from clarifier stress 
tests (Wahlberg, 2002) that involve hydraulically stressing an existing final clarifier 
such that the dynamiC clarifier performance may be monitored in effluent and under­
flow. This is achieved by taking units offline until the targeted surface overflow rate 
(SOR) and solids loading rates (SLRs) are reached . Operating performance is con­
tinuously monitored until performance reaches a determined "failure" point, such 
as hlgh effluent TSS or high blanket level, at which pOint the stress testing is ended 
and the offline units are returned to service. Parameters monitored for each operating 
clarifier include sludge blanket levels, mixed liquor suspended solids, ESS, RAS, TSS, 
sludge volume index (SVI), flowrates, dispersed suspended solids (OSS), and floccu­
lated suspended solids (FSS). 

6.2 Laboratory Testing 
6.2.1 Hindered Settling Parameters 

Hindered zone settling of sludge is typically modeled using the Vesilind equation or 
alike that relates settling velocity to sludge concentration. In simulation studies, the 
two kinetic parameters of the following equation, Vo and k, are often obtained from 
correlations with SVI data (e.g., Oaigger and Roper [1985]): 

Vo = 7.8 m/h; k = 0.148 + 0.0021 SVI 

Critical reviews of such correlations can be found in litera ture by Bye and Oold 
(1999) and Giokas et al. (2003). 

Settling parameters can be determined directly by using a series of batch column 
settling tests, measuring settling velocities at different sludge concentrations (Bye and 
Oold, 1999). Different concentrations are obtained by dilution of RAS with effluent. 
At least six different concentrations should be tested (Ekama et aI. , 1997). The indi­
vidua l settling velocities are measured following the procedure described in Standard 
Method 2710 E for the evaluation of the zone settling rate (APHA et aI., 2005), that is, 
the descent of the sludge-water interface is monitored at regular intervals for 30 to 
60 minutes (Figure 5.13). The slope of the linear part of the curve of the interface dis­
placement is defined as the zone settling velocity. 

Batch settling tests are typically performed in a 1-m tall by 1S-cm diameter set­
tling column provided with a stirring mechanism to minimize wall effects. Automated 
systems that can be installed in the fi eld for online characterization of settling perfor­
mance have been developed (Vanrolleghem et aI., 2006) . 
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FIGURE 5.13 Batch settling curves for different initial sludge concentrations (from 
bottom to top: 3, 5, 7.7, 9.7, 12.7, and 15.6 giL). 

6.2.2 Nonsettleable Fraction 

The nonsettleable fraction of the suspended solids, f,,, can readily be measured in a 
settling column analysis (Takacs et ai., 1991) or, as mentioned previously, from a time 
series of effluent TSS measurements. 

To gain more insight to the ultimate settleability of suspended solids, the DSSI 
FSS test can be conducted (Ekama et ai., 1997; Wahlberg, 2002). Conducting the DSSI 
FSS test requires measurement of TSS in three samples, two of which must be col­
lected in a special manner, as follows: 

• The FSS sample consists of supernatant from a settled mixed liquor sample 
following flocculation in a standard 2.0-L rectangular beaker flocculation 
apparatus. The FSS sample represents the best performance (lowest ESS) 
expected from the secondary clarifier because, theoretically, ideal flocculation 
and settling occurred prior to sampling the supernatant. 

• The DSS sample consists of secondary clarifier effluent co ll ected using a 
mod ifi ed Kemmerer sa mpler at the clarifi er effluent weir (Ekama et aI., 1997; 
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Parker et aI., 1970). Immediately following sample collection, a portion of 
the initial Kemmerer sampler contents becomes the ESS sample. Following 
30 minutes settling in the Kemmerer sampler of solids that did not settle in the 
clarifier, the supernatant becomes the OSS sample. 

Repeating OSS/FSS tests several times provides improved confidence in the 
results because of the high variability in clarifier ESS. The OSS /FSS tes t p resently 
offers the most practical method to analyze secondary clarifier performance. 

6.3 Liquid Velocity Measurements in Clarifiers 
Velocity measurements are important to validate a CFO model. Although the resi­
dence time distribution (RTD) describes the hydraulic behavior of the reactor, it 
only allows indirect knowledge about the flow pattern. Hence, to validate the flow 
field, velocity data are essential. Many possibilities exist to measure liquid velocities, 
which vary between zero and 80 mm/s in secondary settling tanks (Anderson, 1945; 
Bretscher et aI. , 1992; Kinnear, 2000; Ueber! and Hager, 1997). 

The basic method proposed by Anderson (1945) is s till in use, although other 
measurement techniques are available. These al ternative flow velocity devices can 
be subdivided into the following three groups: mechanica l (Lindeborg et aI., 1996; 
STOWa, 2002a,b), electromagnetic, and acoustic Doppler velocity meters (Deininger 
et aI., 1998; Kinnear and Deines, 2001). Whereas the former two techniques measure 
true liquid velocity, the acoustic Doppler velocity meter measures the velocity of 
small particles suspended in the liquid . 

6.4 Primary Clarifiers 
Attention to primary clarifier modeling has been lacking in wastewater treatment mod­
eling for a long time. Often, modeling only started with primary effluent. However, 
increased attention on energy-neutral WRRFs and the role primary clarifier perfor­
mance plays in this has put this unit process back in the spotlight (Crawford et aI., 2010). 

Current primary clarifier models describe settling according to Stokes' law, even 
though flocculent settling conditions may occur. The latter process warrants analysis 
and inclusion in the model description, especially in chemically enhanced primary 
clarifiers. While analysis using coagulation / flocculation tests is well established 
(Me leer et aI., 2010), the models are not really applied and the effect of chemical 
addition is simply included as an improved separation efficiency or higher settling 
velOCity. 
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The parameters of primary clarifier models are typically deduced from inlet­
outlet TSS-removal performance analysis (e.g., Lessard and Beck, 1988) or batch 
settling experiments conducted over different settling times (Otterpohl, 1995). The 
settleable solids analysis after 2 hours of sedimentation gives a good indication of the 
maximal removal efficiency a primary settler can achieve. Supernatant TSS concen­
trations indicate the nonsettleable solids. 

Recently, more detailed experimental methods are developed to characterize set­
tling in primary clarifiers. Using the ViCAs protocol originally developed for storm­
water characterization (Chebbo and Gromaire, 2009), the distribution of settling 
velocities of raw and clarified wastewater can be obtained (Figure 5.14) (Maruejouls 
et aI., 2011). From such graphs, it is easy to deduce which mass fraction will be 
removed by a primary clarifier, and models that use settling velocity classes of par­
ticles are currently being developed to better describe the dynamics of primary clari­
fiers (Bachis et aI., 2012). 
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FIGURE 5.14 Settling velocity (Vs) distribution curves for dry weather wastewater. 
"Dark" is the Vs distribution range of wastewaters from the effluent of primary set­
tling. "Pale" is the Vs distribution range of wastewaters from the influent of primary 
settling. (Maruejouls et aI., 2011). 
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A ViCAs curve must be interpreted as follows: the lower the curve the larger the 
fraction of rapidly settling particles. Considering a sedimentation velocity of 1.6 m / h 
to be the typical design overflow rate for primary sedimentation units (Metcalf and 
Eddy, 2003), Figure 5.14 shows that between 83% and 91% of the particle masses at 
the outlet of the primary settler have a settling velocity lower than their design value 
(1.6 m/h). Furthermore, between 44% and 78% of the influent particle masses have 
settling velocities lower than 1.6 m / h, resulting in 56% to 22% of particle masses that 
can be intercepted by a primary settler. 

The primary clarifiers ahead of the biological reactors also have a vital importance 
because there might be activation and/or interactions between physico-chemical and 
biological reactions. For instance, in addition to biological reactions, COD removal can 
be expressed as a physico-chemical reaction such as flocculation and solubilization of 
the particulate COD fractions into soluble fractions. The biomass in wastewater also 
induces biological processes such as fermentation, acidification, and ammonification. 
The settling and biological reactions should, therefore, be combined in the model if 
the effect of the primary clarifier on the overall process performance becomes evident 
(Lessard and Beck, 1988). The effect of the primary clarifier on wastewater composi­
tion can be evaluated by performing some relevant on-site experimental analyses such 
as filtered/unfiltered COD, ammonium, phosphorus, pH, VFA ana lysis, and so on in 
the influent and effluent streams of a primary clarifier. 

7.0 MODEL ANALYSIS TOOLS 
After data are collected and analyzed for quality, the model is adjusted to them with the 
goal of getting a model that describes the observed reality in an acceptable manner. This 
activity is called calibration, and entails adjustment of (some) model parameters (within 
reasonable ranges) in such a way that the model describes the collected data well and ful­
fills the requirements set out in the objectives of the modeling study. Both the statements, 
"describes ... in an acceptable manner" and "describes the data well", have been used 
in a subjective way in many modeling projects, but there is increased consensus that the 
quality of a model should be quantified by objective criteria (Hauduc et ai., 2011). 

Not all parameters of a facility model (of which there are many) should be adjusted 
during calibration. Some authors even state that, for municipal WRRFs, no adjust­
ment of kinetic and stoichiometric parameters is needed as the model with default 
parameters provides a prediction performance that is sufficient for the model purpose 
at hand. In most model applications, however, some model adjustment is required. 
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Some model parameters may obtain their value directly from some of the aforemen­
tioned dedicated experiments (e.g., settling properties, growth rates, and wastewater 
fractions), although these values could best be considered good initial estimates for 
further calibration steps given the issues with transferability of dedicated experiments 
to full-scale behavior (Gemaey et aI., 2004; Petersen et aI., 2003) . For the remaining, 
often large number of parameters, there is often insufficient data ava ilable to obtain 
good estimates for all of them (i.e., the information content of the data set is insuf­
fici ent to practically identify a ll parameters). Optimal design of experiments is one 
solution to this identifiability problem, yielding data that lead to better estimates of 
parameters (Vanrolleghem et aI., 1995). 

In general, however, resources are not available to estimate all parameters and, 
therefore, one is content with estimating those parameters that make a difference 
with respect to the quality of the model's predictions. Sensitivity and uncertainty 
analysis methods allow dealing with this and are discussed in Sections 7.3 and 7.4. 

7.1 Goodness-of-Fit 
In wastewater trea tment modeling, evaluation of model quality is often based on 
qualitative comparisons between simulation results and observed data . Although 
such visual evaluation is useful, it does not provide an objective assessment of the 
quality of a ca libration param eter set. Moreover, it cannot be used in an automatic 
calibration procedure. 

Environmental sciences (in particular, hydrology) commonly use mathema tical 
comparisons of predicted and observed values (Dawson et aI., 2007). In wastewa­
ter treatment, several target constituents are typically considered simultaneously 
during model calibration (sludge production, TSS, COD, nitrogen, and phosphorus 
in the effluent). Although a review of quality criteria is presented in Dochain and 
Vanrolleghem (2001), quantitative criteria are rarely determined in wastewater treat­
ment modeling (Ahnert et aI., 2007; Petersen et aI., 2002; Sin et aI., 2008). 

Depending on modeling objectives, the goodness-of-fit of a model can be defined 
as the capability of the model to capture one or severa l of the following character­
istics of observed data: mean, timing, and magnitude of peaks or typical periodical 
variations (d iurna l, weekly, seasonal, etc.). For example, if a specific effluent limit of a 
faci lity is based on a monthly average, there is little sense in evaluating the accuracy 
of the fit of each single peak. However, if peak effluent limits have to be met, a crite­
rion evaluating the fit of peaks should be used. Thus, to characterize the goodness-of­
fit of the model, different quality criteria may be needed . 
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Hauduc et a!. (2011 ) selected 31 quantitative goodness-of-fit criteria in a compre­
hensive literature review. They were grouped according to two classification systems. 
The first classification scheme is inspired by Dawson et a!. (2007) and groups the cri­
teria into the following six main classes: 

1. Single event statistics-in instances where modeling objectives require accurate 
simulation of events (e.g., the ability of the WRRF to handle storm flows or toxic 
peaks), criteria are needed to characterize the goodness-of-fit of the model for 
this event. The goal of the single-event statistics peak difference (Gupta et a!., 
1998) and percent error in peak (Dawson et al ., 2(07) is to characterize the differ­
ence between the maximum observed and maximum modeled value. 

2. Absolute criteria from residuals-absolute crite ria are based on the sum of 
residuals (difference between observed 0 ; and predicted P; va lues, respec­
tively, a t time s tep i), generally averaged by the number of da ta, n. A low 
value of this criterion means good agreement between observation and simu­
lation (with y an exponent). 

1 ' 
E, = - L (O; - IW (5.12) 

11 /. \ 

3. Residuals relative to observed values-a t each time step, error is related to 
the corresponding observed or modeled value. A low value of this criterion 
means good agreement between observa tion and simulation. 

RE, =.!. t (O; -P,)' 
tI i_1 0 ; 

(5.13) 

4. Total residuals relative to total observed values-for these criteria, the sum of 
errors is related to the sum of observed values, without any correspondence 
to the time step. A low value of this criterion means good agreement between 
observation and simulation. 

" L(O; -P,)' 
TRE = -';0'-"-::-_ _ _ , , (5.14) 

L OT 

5. Agreement be tween di s tributional s tatis ti cs of observed and modeled 
data-these criteria are not based on e rror comparison, but on a compari­
son between cumulative distributions of modeled and observed data. In the 
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wastewater field, these criteria can be relevant for influent and effluent pol­
lutant loads by summing the fluxes. 

6. Comparison of residuals with reference values and with other models-these 
criteria compare the residuals with residuals obtained with a reference model 
P, such as a model describing the mean value (P; = 0) or the previous value 
(P; = 0,_1) (with a an exponent). 

" 
I,(O~ - p,.)' 

CE •. , = 1 i= l (5.15) 
" 
I,(O~ - P;«)' 
;=1 

In a second classification system, Hauduc et al. (2011) classified the 31 quality 
criteria as six main characteristics of the adjustment of the predicted values to the 
observed data set. Indeed, the study showed that the criteria clustered in only six dif­
ferent types, each focusing on one of the following objectives: 

1. Criteria evaluating the mean error 

2. Criteria evaluating the bias 

3. Criteria that emphasize large errors 

4. Criteria that emphasize small errors 

5. Criteria evaluating peak magnitudes 

6. Criteria evaluating event dynamics 

Strong correlations exist between the values obtained with members of the same 
cluster, indicating that there are redundant criteria that do not add anything to the 
model quality evaluation. On the contrary, the existence of redundant criteria con­
fuses communication because two groups of modelers may use different criteria 
without realizing that they are pursuing the same modeling objective. In addition, 
experience with criteria is divided among members of the cluster, meaning that less 
is known about the criteria and the interpretation of the values they take. 

7.2 Parameter Estimation 
Parameter estimation consists of determining the "optimal" values of the parameters 
of a given model with the aid of measured data. Figure 5.15 presents a schematic of 
the basic idea behind parameter estimation. 
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Fi rst guess of paramete rs 
and initial concentrations 

Integration of model equations Definition of model structure I 

I Calculation of objective function I Experimental data I 

Minimum of YES Best estimate of parameters objective function 
reached? and initial concentrations 

NO 

New estimate of parameters 
and initial concentrations 

FIGURE 5.15 Illustration of pa rameter estimation routine. (Modified from Wanner 
et al. [1 992]). 

Initia lly, mod el structures, of which selected pa ramete rs need to be estimated, 
and experimental d ata need to be d efined. Moreover, first guesses of the parameters 

to be estimated have to be given . The parameter estimation procedure then basically 
consists of minimizing an objective function /, which , for example, can be defined as 
the weighted sum of squared errors between the model output and d ata. When the 

objective function reaches a minimum with a certain given accuracy, optimal param­
eter values are obtained, as illustrated in Figure 5.16. 

The mode ler can conduct this search for the best parameter values in a trial­
and-error manner until he or she finds a satisfyin g result for the qua lity crite­
rion (it is important to keep track of the parameter sets alread y evaluated so that 

searches are not repea ted). Other modelers use automated optimiza tion a lgo­
rithms. Although numerical techniques for automa tic estim ati on will not be dis­
cussed here, the reader is referred to literature by Docha in and Vanrolleghem (2001 ). 
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FIGURE 5.16 Minimization of a model quality criterion value I starting from an initial 
parameter estimate 90 to converge gradually (arrow) to the final, best estimate S. 

It is important to note, however, that because of the high complexity of the optimi­
zation p roblem caused by numerous parameters and the nonlinear nature of waste­
wa ter trea tmen t models (Sin et aI. , 2008), it is cumbersome to apply automated 
calibration techniques. Rather, a combination of tria l and error with intermittent use 
of an optimization algorithm is advised. 

Indeed, a Significant problem encountered in calibration of treatment models is 
the lack of identifiability of model parameters. Identifiability is the ability to obtain a 
unique combination of parameter va lues describing a system's behav ior. This sub­
ject is dea lt with in great detail in literatu re by Dochain and Vanrolleghem (2001). 
Here, it should only be stressed that a typical problem related to the calibration of 
wastewater models is that more than one combination of influent characteristics and 
model parameters can give the same good description of collected da ta (Dupont and 
Sinkjaer, 1994; Kristensen et aI., 1998). While this is acceptable for some model objec­
tives (e.g., description of data), it is not for others (e.g., prediction for new situations 
as typically found in upgrade studies). In the latter instance, one must either reduce 
the number of parameters one can estimate (using expert knowledge or sensitivity 
analysis) or collect additional data to provide the information with which the param­
eter can be assessed. 

7.3 Sensitivity Analysis 
A sensitivity analysis studies the "sensitivity" of the outputs of a system (variables 
of interest) to changes in parameters. It also allows for ranking the model parameters 
accord ing to how much they influence model outputs. Finally, a sensitivity analysis 
ca n be used to identify which model parameters can be estimated based on a given set 
of measurements. Only the most influential para mete rs will be retained for ca libration. 
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There are two types of sensitivity analysis, local sensitivity analysis (LSA) and 
global sensitivity analysis (GSA). While GSA provides an "average" sensitivity of the 
nonlinear model outputs within a defined range of parameter values, LSA evaluates 
how much model outputs will change if only a small change is applied to the param­
eter values in the neighborhood of the assumed parameter values. Typical LSAs are 
carried out by altering the parameters by 1 % of their assumed value, although 
De Pauw and Vanrolleghem (2006) warned of errors that occur when changes that 
are too large are applied. 

A state-of-the-art LSA method for selecting parameters is one proposed by Brun 
et al. (2002). In this method, an overall sensitivity measure (0) is calculated on the 
basis of scaled sensitivity values 5;'1 for each of the n model outputs i with respect to 
the parameters j: 

where 

1 " 2 
0= - ~ s · , n L..J 1,) 

i:sl 

"'P j ay; 
s··= --·-

.., sc· ap . , I 

"'Pj = the uncertainty range of the parameter Pj 
SCI = a scale factor 
n = the number of model outputs considered 

(5.16) 

(5.17) 

A large 0 means that a change of "'Pj in parameter Pj has a substantial effect on the 
considered model output(s). Model parameters are typically assigned to three uncer­
tainty classes according to Brun et al. (2002). Parameters from uncertainty class 1 (e.g., 
stoichiometry) have a low uncertainty (5% of the default parameter value); class 2 
(growth rates) has an uncertainty range of 20% of the default parameter value; and 50% 
is recommended for parameters from uncertainty class 3 (e.g., half-saturation constants). 
Often-used scaling factors are (1) the model output value (or its average if a dynamic 
simulation is performed) or (2) the model output measurement error standard deviation. 
Ranking parameters on the basis of the OJ values is the basis for selection of parameters 
to be estimated. Boltz et al. (2011) calculated OJ for three bulk concentration predictions 
and four biofilm fluxes, respectively, at two different temperatures. It is important to note 
that the choice of output variables (Le., expressing the interest of the modeler) determines 
which parameters are most influential and that temperature has a significant effect on 0i 
values and ranking parameters in terms of importance for the model calibration. 
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With increasing available computing power, GSA methods are gaining in pop­
ularity as they can overcome the main problem of LSA, which is that LSA results 
are only valid for the parameter and input values used during the analysis. Because 
of the strongly nonlinear nature of the WRRF models, LSA results (e.g., the impor­
tance ranking of the parameters) are dependant on these factor values. Conversely, 
GSA methods assess how model outputs are influenced by the variation of the model 
input factors over their entire range of uncertainty (Saltelli et aI., 2004). The GSA may 
help modelers select important factors ("factors prioritization") and noninfluential 
factors ("factors fixing") and identify interactions among factors. More specifically, 
by means of factors prioritization, model input factors that have the greatest effect on 
model outputs are identified. Conversely, the factors-fixing setting leads to the iden­
tification of factors that may be fi xed at any given value over their uncertainty range 
without reducing the output variance (Saltelli et aI., 2004). 

The GSA is based on extensive simulation, typically using Monte Carlo simula­
tion. Depending on the number of parameters to be considered and the GSA method 
used, hundreds to tens of thousands of simulations are required to adequately cover 
the entire range of uncertainty of the factors. 

In SaIteIli (2000), GSA methods are classified as (1) globa l screening methods 
(e.g., Morris screening method [Campolongo et aI., 2007; Morris, 1991]); (2) vari­
ance decomposition methods such as Fourier amplitude sensitivity testing (FAST), 
extended-FAST (E-FAST), and the Sobol indices method (Saltelli et aI., 1999; Sobol, 
2001); and (3) regression / correlation-based methods such as the standardized regres­
sion coefficients (SRCs) method (Saltelli et aI., 2008). Although it is beyond the scope 
of this chapter to explain in detail how these methods actually work, their interpreta­
tion and how they can be used in model parameter selection are relevant. 

Mannina et al. (2012) suggest a common terminology on the basis of definitions 
drawn from literature by Saltelli (2000), Campolongo et al. (2007), and Pujol (2009). 
The first definition comes with the SRC method which, by defining a cutoff threshold 
(CFn, distinguishes between the following two factors (Figure 5.17a): 

• Important factors-if sensitivity> CFT 

• Nonimportant factors-if sensitivity < CFT 

Important factors represent those model factors that have a high sensitivity coef­
fici ent and where, therefore, the modeler shou ld pay more attention. Conversely, 
non important factors are those model factors characterized by a low sensitivity coef­
ficient. Linear models can be fixed anywhere in their variation ranges. For nonlinear 

171 



172 Wastewater Treatment Process Modeling 

c 
.2 .. . ~ 
'C 

(a) l ow c=:> Sensitivity c=:> High ( b~;)~W I"";:lO~W;;-;~~» ~s~e~ns~it~iv~itY~I~;:» ~H~i9;h 
High 

D 
c 
o 

.~ 

!!l 
c 

•• •• • , of' ." ~.;.-." 
•• • e; • 

•

• ... _. • ' 'I', 
e_ • j.~_ •• 

• -•• -•• 'F-"i" ; •• •• ; _ o .~,_,,~. , . 
• -.. • .: r 

-- • -- - •• ~~,~~>~, '.-=--_-=-_-.r: .. 
{.. ,.'­

.J., .... -.. '.--

~t to •• '~ 

\. (: ';'-. 

':.,' 

'to, .' _.~ 

11'." .' "'" .' .' ••..• "" .• ,-, 
"...l,1' ;''''J • , ...•.. v·.~.::. "'.'. _ .... ,t ) . 

- - - CFT 
•••••• , CFTl 

- ,- 'CFT2 

-- Oblique cone line 

~ Interacting factors 
Nonintluential 

factors 

D '--_""/ 
~';" '~"'.'~' ' .. ' , • ,·t·~'·~ ~T":A 4,' ... , -~',' ~- '; , : 

~f'" r.A;'~~'I.· -- Influential factors 
.".,.' ......... -

l ow'-___ -:-_-'-____ -:-__ • 
l ow c=:> Sensitivity c=:> High (c) 

FIGURE 5.17 Schematic overview of the suggested terminology for differentiating 
input factors according to d ifferent GSA methods-(a) SRC, (b) Morris screening, 
and (c) E-FAST. (Mannina et a i. , 2012). 

models (e.g., WRRF models), however, some nonimportant factors cannot be fi~ed 
because of interactions with other input factors (as discussed later in this section). 

Morris screening provides a second type of classification of input factors. It allows 
for implicitly d istinguishing between three different types of factors with respect to 
the mean and the standard deviation of the sensitivity, as follows (Figure 5.17b): 

• Important fac tors-if mean sensitivity > CFT 

• Interacting factors-if mean sensitivity > CFT and the standard deviation of 
the sensitivity is above a specified cone line 

• NoniJlfluential factors- if Illean sensitivity < CFT 
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In particular, the method as modified by Campolongo et al. (2007) basically defines 
a cone whose edges are set by a CFf and an oblique line that is a statistical function of 
the mean and standard deviation of the sensitivity (Figure S.I7b) (quantitative charac­
teristics are given here). 

, The E-FAST method distinguishes four classes of factors on the basis of two CFfs 
(CFfl and CFf2) as follows (Figure S.17c) : 

• Important factors-if sensitivi ty > CFfl 

• Interacting factors-if interaction > CFT2 

• Influentia l factors-if sensitivity > CFfl or interaction > CFT2 

• Noninfluential factors-if sensitivity < CFfl and interaction < CFf2 

Noninfluentia l factors that can be identified by both Mo rris screening and the 
E-FAST method can be fi xed anywhere w ithin their range o f uncertainty without 
changing the model output variance. 

In te rms of computational load, there is nonconcl usive ev idence that the SRC 
method is the leas t computationally expensive, followed by the Morris screening 
method and, fina lly, the E-FAST and Sobol methods. However, issues with conver­
gence of the methods need to be studied further (Benedetti et aI., 2011; Yang, 2011 ) 

7_4 Uncertainty Analysis 

In the field of wastewater trea tment modeling, uncertainty analysis is increasingly 
recognized as an essential tool that, next to simulation results, a lso provides a quan­
tita tive expression of the re liability of those results (Belia et aI. , 2009) . Next to the 
exp ression of uncertain ty bounds on results, uncertainty stud ies can a lso be used 
to provide insight to the role of parameter and input uncertainty on model output 
uncertainty. Finally, uncertainty analysis can a lso be a means to prioritize dealing 
with uncertainties and to focus research efforts on the most problematic points of a 
model. As such, it helps to prepare future measurement campaigns. 

The following steps ca n be taken to conduct a simple uncerta in ty analysis: (1) 
identification of the main uncertainty sources, (2) characteriza tion of parameter and 
input uncertainty, and (3) propaga tion of the uncertainties into the model outputs. 

7.4.1 Step 1- Identification of the Main Uncertainty Sources 
In literature, sources of uncertainty have been considered from the perspective of where 
they a re loca ted in a generic model (Refsgaa rd et ai., 2007; Walke r et aI. , 2003). Thus, 
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these authors identified three or four main areas that introduce uncertainties to model 
predictions. These are model inputs (i.e., any type of data needed to perform a simula­
tion; e.g., influent flow and wastewater characteristics); model structure (e.g., activated 
sludge model and clarifier model); and model parameters. Uncertainty in the inputs 
is caused by random variations of the system (e.g., weather) and to errors in measure­
ments (e.g., imprecise sampling and measurement techniques). Uncertainty in the model 
is caused by incomplete understanding of the modeled processes and/ or the Simplified 
descriptions of the processes chosen to be included in models. A fourth source of uncer­
tainty results from implementation of the models in software packages (e.g., numerical 
integration, bugs, and solver settings) (Claeys et aI., 2010; Copp et aI., 2(08). 

To provide a more intuitive method of identifying sources of uncertainty, Belia 
et al. (2009) proposed that the focus be shifted from the location of uncertainty within 
the model to when this uncertainty is introduced during a typical modeling 
project. To aid in this analysis, typical steps of a standard modeling project can be 
used (Refsgaard et aI., 2005). The five steps, shown in the first row of Figure 5.18, 
are an intuitive sequence of tasks as suggested by the TWA Task Group on Good 
Modeling Practice (Rieger et a1., 2012). 

Uncertainty can be identified and evaluated at key times during a project as sug­
gested by Refsgaard et al. (2007) and shown in Figure 5.18. This figure also includes a 
list of items for each project step that need to be selected or decided on and that iden­
tifya loca tion of uncertainty. The figure, therefore, combines the traditional location 
of uncertainty within the model with a project-step-oriented or sequential approach. 

Belia et al. (2009) provide an extensive list of the sources of uncertainty intro­
duced during a typical modeling project. 

7.4.2 Step 2-Estimation or Calculation of Uncertainty 

Parameter uncertainty can be calculated from the covariance matrix. The latter is 
obtained during local sensitivity analysis or the calibration process if optimization 
methods are derivative-based so that the covariance matrix is calculated during opti­
mization (Beck, 1987). 

If no direct calculations are pOSSible (e.g., for uncertainty on inputs, the uncer­
tainties need to be estimated), one can divide the parameters and data in uncertainty 
classes (i.e., accurately known, very poorly known, and an intermediate class) and 
assign a percentage uncertainty to them. Reichert and Vanrolleghem (2001) adopted 
a similar approach to this. If direct calculation is impossible, other options are expert 
knowledge, questionnaires, or statistica l calculation of uncertainties with historic data. 
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FIGURE 5.1S Typical modeling project steps including instances where model uncer­
tainty and prediction accuracy should be identified and evaluated , (Adapted from 
Refsgaard et al. [2007] and Rieger et al. [2012]) , 

7.4.3 Step 3-Propagate Uncertainty through the Model 
To propagate uncertainty in model outputs, different approaches are available that 
can be divided into the following two main groups: (analytical) uncertainty propaga­
tion equations or (probabilistic) Monte Carlo sampling-based methods, 

7,4.3.1 Error Propagation Equations 

Uncertainty can be propagated analytically through simple, linear, or nearly linear 
models, III the simple form of uncertain parameters and inputs X whose uncertainty 
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can be characterized by the variance 0; of the uncertainty distribution, the variance of 
model output Y can be calculated from 

(5.1S) 

This express ion, and its generalized form that a lso considers correlation 
between the X, is known as the law of propaga tion of uncertainty in the guideline 
titled Un certainty of Measurement- Part 3: Guide to the Expression of Uncertainty in 
Measurement (ISO, 200S). 

This technique has been frequently used in wastewater modeling (Gujer, 2009), 
not only for linear models but also for nonlinear ones. This means that this method 
becomes an approximation in which "even for mildly nonlinear models, the results 
may be rather inaccurate" (Beven, 2009). 

7.4.3.2 MOllte Carlo Methods 

With increasing computer power, Monte Carlo sampling-based methods have become 
more important in overcoming the limitations of analytica l methods. Additionally, 
the uncertainty of model variables can be expressed by any distribution (e.g., uni­

form, normal, lognormal, and empirical distributions) . In Monte Carlo methods, 
uncertain model components (e.g., model parameters and inputs) are sampled from 
prior probability distributions and the corresponding model results are calculated. 
Subsequently, from the distribution of the obtained model outputs, the uncertainty 
bounds (e.g., 5% and 95% percentiles) can be calculated. 

Different methods for sampling the parameter space that are used range from 
random (brute-force) sampling to optimized Monte Carlo methods as Markov Chain 
Monte Carlo simulations (Kuczera and Parent, 1995). In addition, structured sam­
pling of the parameter space is possible through use of a variety of methods (e.g., 
Latin Hypercube sampling). 

Despite significant progress in computational power during the last few years, 
the problem still persists that when dealing with a large number of parameters and 
inputs it is difficult to draw enough samples for an adequate representation of the 
models ' ou tput uncertainty distribution, especia lly when computational require­
ments and model run times are high. Benedetti et al. (2011) reviewed the number of 
simulations that are typically required to obtain an adequate representation and con­
cluded that the number depends on the model used and even the output considered. 
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Overa ll, the necessary number of simulations varied between 15 and 150 times the 
number of uncertain parameters and inputs considered . 
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Preface 

Over the past 20 years, mathematical modeling of wastewater treatment processes 
has become the default tool for process design in many engineering firms throughout 
the world and is beginning to be used at operating facilities to help make day-to-day 

operating decisions. Increased computer processing power and user-friendly simula­
tion software make it possible to model many of the complexities of a water resource 

recovery facility (WRRF) using personal computers. These simulators can be used 
to develop mass-balance models of the plant, linking several unit processes together 
and modeling their interactions. In addition, they can be used to carry out dynamic 
simulations to investigate diurnal and other transient behavior of a WRRF, such as 

the effect of wet weather. 
With an increased use of process models through user-friendly simulators, there 

has been widespread acknowledgment in the industry that good training and expert 
guidance is needed to ensure that these models are developed, used, and docu­
mented correctly. This manual provides a broad range of information to help process 
engineers, operators, regulators, and owners understand general modeling concepts, 

terminology unique to computer modeling, and practical guidance and ideas on how 
to use process models for design and operation of small, medium, and large WRRFs. 
The modeling approach presented in this manual is consistent with the unified pro­
tocol proposed by the International Water Association task group on good modeling 
practice. 
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