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CHAPTER 1.0 
 

INTRODUCTION 
 

1.1 Uncertainty and Variability in the Design Process 

Water Resource Recovery Facility (WRRF) design is most often based on static design 
procedures. However, inputs and outputs of WRRFs are neither stationary nor perfectly known 
(Belia et al., 2009). WRRF influent and operation are determined by both environmental and 
anthropogenic phenomena – local and global – which are both variable (changing in time) and 
uncertain (we cannot predict them with complete certainty) (Benedetti et al., 2013). Furthermore, 
forecasting of loads for design horizons of 10-30 years is based on the assumption that many of 
the legal, socio-economic and environmental factors will not change substantially, or are 
predictable, across the design horizon of a treatment plant (Dominguez, 2008).  

The recent WERF study: Nutrient Management Volume II: Removal Technology 
Performance & Reliability (WERF, 2011) highlighted plant performance variability and the fact 
that it depends on site specific conditions: ‘Local conditions impact the performance achieved on 
average and in terms of statistical variability. These factors include process design, climate 
impacts, wet weather flow influences, attributes of the service area, variation in influent flows 
and loadings, presence or absence of industrial contributions, whether solids processing is 
accomplished on the same site, sustained or interrupted supplies of chemicals, construction 
impacts, mechanical failures, the difficulty in operating the process, the ability to automate the 
controls of a process, the closeness of operation to design flows and loadings and others.’ The 
factors mentioned above constitute sources of variability and uncertainty introduced at different 
stages in the lifecycle of a WRRF. 

In conventional design guidelines, variability and uncertainty are handled with the use of 
semi-arbitrary safety factors and the evaluation of “worst case scenarios”. These safety factors 
are lumped expressions of individual sources of uncertainty and variability. Uncertainty and 
variability in the influent is often evaluated with the assumption that multiple worst case 
conditions occur simultaneously. Uncertainty in the response of the biomass or in the reliability 
of a process is accounted for through the multiplication of a design parameter (e.g., sludge 
retention time, SRT) with a specific safety factor. For example, in the 1993 EPA Manual on 
Nitrogen Control, as part of a design approach for a nitrifying suspended growth system the 
following is mentioned: ‘the anticipated variations in process conditions and the uncertainty in 
the kinetic coefficients warrant a safety factor of 2.0’ (EPA, 1993). 

This approach has several drawbacks: i) it does not make use of the knowledge that the 
industry has acquired over the years on plant dynamics and plant evolution, ii) it results in 
inflexible designs by lumping uncertainty rather than quantifying the relative importance of the 
individual sources of variability and uncertainty, iii) it often results in inefficient designs, 
assuming a combination of worst case conditions that may never happen, iv) it does not provide 
any information on the likelihood or frequency of any particular load reaching the plant within 
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the selected design horizon, and v) it does not provide any information on the likelihood or 
frequency of non-compliance. 

In the current regulatory environment of extremely low effluent nutrient standards, which 
require plants to operate to very low TN and TP effluent limits, a new approach is warranted 
which quantifies probability of non-compliance and provides new opportunities for more 
efficient, resilient and flexible plant designs. This approach must identify the key individual 
sources of uncertainty for each process, suggest methods to evaluate uncertainty and variability 
and provide a correct way to apply these methods. The recent work, under the WERF Nutrient 
Removal Program on quantifying effluent variability for low effluent nutrient concentrations, 
highlighted the role of variability in design and the need for quantification of the probability of 
non-compliance: ‘...A major finding of the WEF/WERF investigation was that statistical 
variability is a characteristic of all the exemplary plants and that this variability should be 
recognized in both evaluation of technologies (e.g., stratifying them in terms of their capabilities) 
in an engineering environment as well as determining the appropriate effluent limits in the 
regulatory permit setting environment......It is the obligation of the regulators, regulated 
community, and the design engineering profession to recognize the process variability and higher 
risks that are attendant with the design for very low nitrogen and phosphorus concentrations or 
very low maximum day ammonia concentrations’ (WERF, 2011). 

Dynamic, process-based water resource recovery facility models can be used as the tools 
to implement this approach. These models provide a structure which allows the identification of 
individual sources of variability and uncertainty and can complement or even replace design 
guidelines if they are expanded with methods to quantify uncertainty and probability of non-
compliance. Such approaches are currently under development and the wider research 
community is using case studies and statistical techniques to quantify uncertainty in model 
predictions.  

By extending the one-parameter-at-a-time scenario analysis that most engineers use to 
test design alternatives, with explicit uncertainty evaluations, the models can provide quantitative 
results on the ability of a plant to meet a given effluent permit when looking into the future. 
These methods are necessary if models are to be used to design for very low effluent standards to 
avoid the pitfalls identified in the WERF report (WERF, 2011): ‘In design, highly parameterized 
plant process models are routinely used. When designing for effluents close to zero, these models 
do not accurately capture the statistical variability of nutrient removal processes. For such 
situations there are many unknowns that are not resolvable early in project implementation and 
are only partially compensated by conservatism in design. In such cases, success will only be 
statistically defined in the first years of plant operation’. 

The industry needs a peer-reviewed method which establishes the good modeling 
practice for explicit uncertainty evaluations in model-based WRRF plant design for very low TN 
and TP effluent limits that can be used by practitioners. The method will leverage the power of 
current models and simulators and bridge the gap between the application of models for design 
by the engineering community and uncertainty evaluation techniques used in academia. Recent 
publications have shown that probabilistic design may potentially reduce key processes design 
variables (Bixio et al., 2002; Cox, 2004; McCormick et al., 2007). This would translate to direct 
savings in the order of millions to tens of millions of dollars for typical construction projects. 

To address this need, in 2008, a Design and Operational Uncertainty Task Group 
(DOUT) initiative was established. The group is working on several coordinated projects with 
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the ultimate goal of developing a methodology for the explicit evaluation of variability and 
uncertainty in model-based WRRF design.  

This report presents the state of the art and research needs for the development of this 
methodology. It is related to the work of the IWA Task Group on Design and Operational 
Uncertainty (DOUT), (http://www.iwahq.org/f9/networks/task-groups/task-group-on-
uncertainty.html) currently under way, which will generate a detailed summary on the state of 
the art of uncertainty evaluation and identify knowledge gaps. 

1.2 Uncertainty, Low Nutrient Removal, and Current Regulatory Standards 

The vast majority of WRRFs in North America have permit limits that require 100% 
compliance at the specified concentration or mass load – e.g., a maximum month permit or 
annual average permit need to be fulfilled every year. Having very stringent effluent limits 
implies that the safety that needs to be incorporated increases to guarantee no non-compliance 
events. As the cost for guaranteeing such safety becomes excessive, this suggests that the utility 
must be prepared to accept some probability of non-compliance, inherent in the system, but not 
explicitly stated. This aspect is widely understood, but not often directly addressed by engineers, 
utilities, and regulators (Bott et al., 2009; WERF, 2011).  

There is a clear benefit in using probabilistic models as a process design tool by the 
stakeholders in this process. Such models are capable of generating predicted statistical 
distributions of effluent parameters and give regulators and utility managers the ability to define 
the level of risk they are willing to accept in terms of meeting permit. Model-based probabilistic 
analysis allows engineers to make the following type of statements: Given all the information 
available, the model predicts with 90% confidence that the plant will be out of compliance one 
month in five years when treating the design load. 

1.3 The Umbrella DOUT Initiative (UDOUT) 

The academic and engineering communities have been aware of the need for the 
incorporation of explicit uncertainty evaluations in model based design for some time as is 
evident from several efforts on both sides of the Atlantic. Examples include WERF Project 
00CTS3, titled Tools for Rating the Capacity of Activated Sludge Plants (WERF, 2003) which 
focused on incorporating uncertainty in a nitrification plant design and the European Union 
Harmoni-QuA project (Refsgaard, 2002) from the field of water resources management.  

Discussions on knowledge gaps and requirements for the development of a methodology 
for the explicit evaluation of variability and uncertainty resulted in a workshop during the 1st 
IWA/WEF Wastewater Treatment Modeling seminar (WWTmod2008), held in Mont-Sainte-
Anne, Canada (Belia et al., 2008) which focused on providing an overview of the uncertainties 
introduced during WRRF modelling. As a consequence the Design and Operational Uncertainty 
Task Group (DOUT) (http://www.iwahq.org/f9/networks/task-groups/task-group-on-
uncertainty.html) was formed. The task group has documented the status quo on this topic and its 
results are being published in a Scientific and Technical Report (STR) (Belia et al., 2013 in 
preparation).  

Following the initiation of the DOUT, several coordinated projects were initiated under 
the Umbrella DOUT initiative (UDOUT). Each project is focusing on specific research needs 
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ranging from reviewing current design guidelines to developing new model-based 
methodologies. Figure 1-1 shows an overview of the UDOUT projects under way. 

The UDOUT initiative intends to bring together the collective knowledge of consulting 
engineers, researchers, utilities and water boards, from several countries and continents. It will 
incorporate specific tools, examples, and alternative design methodologies.  

 
Figure 1-1. Outline of the UDOUT Projects Contributing to the Development of a Methodology for the Explicit 

Evaluation of Variability and Uncertainty in WRRF Design and Operations. 
 

The goal of UDOUT is the identification, quantification, and propagation of the most relevant 

sources of uncertainty during the design of nutrient removal systems. The most important 

outcome will be improved design methods resulting in facilities that are adaptive to uncertain 

inputs and future technology changes. The aim is to generate robust, resilient, and flexible 

designs. To achieve this, uncertainty and variability must be explicitly evaluated. 

1.4 Scope of the Report 

This report has the following objectives: 

 Discuss the need for the incorporation of explicit uncertainty evaluations and probability of 
non-compliance assessments in design, in response to current regulatory demands.  

 Introduce to stakeholders the state-of-the-art of uncertainty analysis with a brief literature 
review 

 Discuss the need to extend good modeling practice in the area of model reliability and 
explicit uncertainty evaluations. 

 Present the research needs for the development of a methodology that assists engineers in the 
incorporation of uncertainty evaluations in model-based WRRF design.  

 Highlight the opportunities that explicit uncertainty evaluation provides to trade-off cost and 
probability of non-compliance associated with designing high-level nutrient removal 
systems.  

UDOUT

IWA DOUT    
(IWA)

Establish the 
state of the art

NSERC DOUT 

(Primodal Inc., Canadian 
Government, Canada 

Research Chair in Water 
Quality Modelling)

DCWATER, HRSD

Evaluate current 
design guidelines

Propose a risk based 
design methodology

De Dommel DOUT

(Waterboard De Dommel, 
Netherlands)

Translation of design 
safety factors into 

stochastic variables 
Post project appraisal  

WERF Nutrient 
Challenge

Summary literature 
search and 
research needs 

Future research 
needs 

(not funded)



Uncertainty Evaluations in Model-Based WRRF Design for High Level Nutrient Removal 2-1 
 

CHAPTER 2.0 
 

UNCERTAINTY AND DESIGN: LITERATURE REVIEW 
 

Design engineers that have to make decisions under uncertainty have traditionally relied 
on design guidelines. These guidelines include safety factors, which are based on the 
accumulated experience of the industry, and account for the uncertainty and variability inherent 
in the wastewater treatment process. 

More recently, through the development and implementation of mathematical models, 
engineers and researchers have been able to use more advanced mathematical and statistical 
methods for the optimization of the key parameters used for design. These methods include 
sensitivity analysis and model based plant optimization. 

Looking into the future, as the incorporation of models and statistical methods increases, 
probability-based designs will offer a real alterrnative to traditional approaches. In probability-
based designs the quantifiable sources of uncertainty are explicitly desribed in terms of 
probability distribution functions and the compliance of the WRRF to the effluent standards is 
evaluated probabilistically. 

This section covers a brief literature review of how conventional and model-based 
methods approach the design of WRRFs under uncertainty. More details can be found in 
Karmasin et al. (2013) and Sprouse et al. (2013). 

2.1 Current Practice 

Uncertainty and risk of non-compliance is currently handled in the wastewater treatment 
practice through the use of design guidelines. Historically, process design criteria have been 
based on regulatory requirements, industry-accepted design standards or state specific 
regulations (industry standards, adapted to specific state conditions with additional 
requirements). Some examples of these design standards include: 

 Water Environment Federation Manual of Practice 8 (WEF MOP 8, 2009) 
 Wastewater Treatment Disposal and Reuse, Metcalf and Eddy (Tchobanoglous et al., 2003) 
 Recommended Standards for Wastewater Treatment Facilities (Ten States Standards, 2004) 
 ATV Guidelines (ATV, 2000) 
 EPA Nitrogen Control Manual, (EPA, 1993). 
 EPA Phosphorus Removal Design Manual, (EPA, 1987) 
 Biological Wastewater Treatment, (Grady et al., 2011) 
 Methods for Wastewater Characterization in Activated Sludge Modeling, (Melcer et al., 2003) 
 WERF/CRTC Methodologies for Evaluating Secondary Clarifier Performance, (Wahlberg, 

2001) 
 Virginia's Sewage Collection and Treatment Regulations (Virginia DEQ, 2008) 
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 Biological Nutrient Removal (BNR) Operation in Wastewater Treatment Plants, (WEF MOP 
29, 2005) 
 

Design guidelines address risk by using relatively conservative design criteria. How the 
criteria are to be applied is frequently open to interpretation, but engineers tend to evaluate 
several scenarios that include combinations of critical design parameters. This approach can 
result in conservative and expensive designs without necessarily providing a worthwhile benefit 
(Doby, 2004). Russell (2006) states that most municipal WRRFs are 30-50% overdesigned based 
on municipal codes and, after safety factors are used by consultants, are overdesigned by 100% 
or more.  

2.1.1 Key Process Variables as Sources of Uncertainty  

Typically design engineers will place safety in their design in a few key process 
variables, most of which describe the most important sources of uncertainty. They are: influent 
flows and mass loads, SRT, SVI, overflow rates, denitrification rates, and the design of the 
process air system. 

2.1.1.1 Influent Flows and Mass Loads 

In most projects historical information is used as the design basis for a facility. This 
includes plant data (e.g., influent flow), population growth projections, zoning of the service 
area, and capital improvement projects (e.g., infiltration and inflow improvements). In most 
cases, the risk and uncertainty regarding population growth projections and zoning changes is 
accepted by the owner.  

Engineers will typically use coinciding peaking factors to account for variability in flows 
and wastewater strength at the treatment facility. Hydraulic peaking factors are used to verify 
that facilities will perform at peak flow conditions as well as to confirm loading rates on unit 
processes such as clarifiers and tertiary filters. Mass loading peaking factors are commonly used 
to design unit processes to ensure performance can be met for permit compliance. The peaking 
factors are generated from historical data and extrapolated to future conditions using statistical 
evaluation. 

2.1.1.2 Effluent Criteria 

Facility design is based upon meeting a numerical effluent limit or treatment performance 
in order to meet a permit requirement. Design engineers may employ a lower target effluent 
concentration in the model-based process design to account for variability and uncertainty in the 
design process. 

2.1.1.3 Solids Retention Time 

Perhaps the most common method of addressing uncertainty and variability in 
wastewater practice today is the use of a safety factor when determining an operating solids 
retention time (SRT) for a nitrifying system. With the variability and uncertainty in both 
bacterial growth and plant operations, safety factors are used to ensure that washout of 
autotrophic organisms does not occur. 

For example, in the ATV-DVWK-A 131 guidelines the equation used for the calculation 
of the solids retention time (SRT) includes a safety factor which takes into account: a) potential 
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variations of the maximum growth rate caused by certain substances in the wastewater, short-
term variations and/or pH shifts, b) the variations of ammonium load. The guidelines suggest that 
the safety factor should be in the range of 1.4 to 1.8 (lower safety factors for higher population 
equivalents). 

Similar safety factors are included in most guidelines such as Metcalf and Eddy 
(Tchobanoglous et al., 2003) and WRC (Ekama et al., 1984) among others. 

2.1.1.4 Sludge Volume Index and Overflow Rates for Clarifier Sizing 

Uncertainty relating to solids settling in secondary clarifiers typically results in the 
selection of a conservative design sludge volume index which is often used as a clarifier 
performance indicator. In order to mitigate risk and uncertainty, the secondary clarifier is 
evaluated using multiple state-point analyses at varying design conditions to determine the 
performance of the clarifier using this conservative sludge volume index. Most guidelines also 
include suggested surface overflow rates (e.g., ATV-DVWK-A 131E).  

The WRC guidelines include an explicit safety factor that is used to multiply the 
estimated area of the secondary settling tank. The area of the secondary clarifier is estimated as a 
function of peak wet weather flow, MLSS concentration, the recycle ratio, and SSVI3.5 using an 
empirical equation that has been derived based on flux settling parameters measured at 30 plants 
in the UK. The calculated area is multiplied by a safety factor of 1.25. 

2.1.1.5 Denitrification Rates 

Uncertainty relating to the denitrification rate in nitrogen removal facilities is typically 
handled by the appropriate sizing of the anoxic zone. For example in the ATV-DVWK-A 131E 
design guidelines the size of the anoxic tanks has to satisfy the recommended values for the ratio 
of the anoxic to total volume of the bioreactor. Ratios of less than 0.2 or greater than 0.5 are not 
recommended.  

In the WRC guidelines the volume of the anoxic and aerated sections of the bioreactor 
can be calculated as a function of SRT and maximum specific growth rate of the nitrifying 
organisms. The recommended values for the un-aerated to the total bioreactor volume are 
presented graphically and they should not be larger than 60%. 

Historically, the equations used for the sizing of the anoxic zones have been proven to be 
conservative, alleviating risk involved with meeting effluent total nitrogen concentrations. In the 
event that the design engineers feel that the risk has not been adequately addressed, they may 
choose to add tertiary treatment. 

2.1.1.6 Process Air System Design 

Another common location of added safety in WRRF design is the addition of safety 
factors in the design of the aeration system. Engineers typically select design dissolved oxygen 
concentrations for varying conditions (average day, maximum day, etc.) to ensure that there is 
adequate oxygen available for oxidation of carbonaceous and nitrogenous matter. They often 
assume and add safety factors to several key parameters that have large impacts on the sizing of 
air systems in wastewater treatment. These include the alpha value, the standard oxygen transfer 
efficiency (SOTE) for diffused air systems and the standard aeration efficiency (SAE) for 
mechanical surface aeration systems. 
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This may lead to an overdesigned capacity of the blowers and inefficient operation. This 
becomes even more important with the introduction of ammonia-based control strategies. 

2.1.2 Limitations of Design Guidelines 

Design guidelines typically include safety factors that are used to multiply a design 
quantity (e.g., SRT) or suggest conservative values for influent flow and load, kinetic 
coefficients or target effluent limits. These approaches have the following problems: 

 Applying safety factors to the design of several unit processes could result in accounting for 
the same source of uncertainty more than once. 

 Variables that are in reality correlated are assumed to be independent, which leads to 
potentially selecting combinations that are unrealistic or highly unlikely. 

 Although there are some recommended ranges for design parameters and safety factors, 
engineers must use their subjective judgment to make the final selection. 

 They assume steady state conditions and cannot predict the dynamics of the effluent. 
 They do not provide methods to estimate the probability of non-compliance for a specific 

design. 
 Guidelines are not regularly updated to reflect newer processes and more stringent effluent 

standards like very low effluent N and P. 

2.2 Design Approaches Incorporating Uncertainty Principles – Available Methods 

The introduction of more stringent effluent requirements like low nutrient effluent limits 
and the development of new processes have led to the increased use of mathematical models in 
WRRF design. During the last years, there have also been a growing number of studies that 
incorporate methods for the explicit evaluation of variability and uncertainty. Two areas of 
research and application are emerging. 

One research area, driven by systems analysis methods, focuses on an appropriate 
characterization of biochemical and physical processes and their associated uncertainty 
(Vanrolleghem et al., 1995; Brun et al., 2001; Benedetti et al., 2006; Daebel et al., 2007; Flores-
Alsina et al., 2008; Sin et al., 2009). The main topics in this line of research are statistical 
inference (the use of a sample, or subset of data to draw inferences about the population as a 
whole), sensitivity analysis (how the predictions of a model change with a change in the value of 
a model parameter), identifiability analysis (how well model parameters can be determined by 
the amount and quality of experimental data) and uncertainty propagation (uncertainty in model 
predictions resulting from uncertainty in model parameters and other inputs). 

The second research area addresses uncertainty across larger time-scales: future 
developments of the loads (e.g., influent to WRRFs), the cycle of technological innovation, and 
the adaptation rate of legal requirements. Historical analysis of plant data has shown that the 
temporal rate of change of these three factors is often shorter than the physical lifetimes of the 
built structures (Dominguez and Gujer, 2006). First test cases have been performed by 
researchers applying foresighting techniques to assist communities in planning their 
infrastructure (Dominguez et al., 2009).  

The following sections discuss the available methods used to characterize key sources of 
uncertainty used as inputs to model-based plant design and optimization. A characterization of 
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the types of uncertainty as discussed in the literature is also included. A more detailed list of the 
existing studies addressing uncertainty in the field of wastewater treatment and a summary of the 
methods employed in the published literature can be found in Sprouse et al. (2013). 

2.2.1 Classification of Variability and Uncertainty 

There is an important difference between variability and uncertainty (and which 
quantities should be considered variable, uncertain or both) that has a significant impact on any 
model-based analysis of a WRRF. The following paragraphs include the definitions of the two 
concepts as applicable to wastewater treatment. The definitions clarify the confusion often seen 
in the literature that equates uncertainty with poor data (Kelly and Campbell, 2000). 
Variability is the spread of “true” values of a quantity that characterizes members of a well-
specified quantity. Variability arises as a result of the heterogeneity, diversity, inter-individual 
differences, temporal changes, etc. within the population. Variability is a property of the 
population, not of our state of knowledge (Kelly and Campbell, 2000). 

Uncertainty is the inability to determine or predict the exact value of a quantity or behavior of a 
system or process both now and in the future. Uncertainty results from lack of knowledge and is 
partly reducible through the acquisition of additional knowledge e.g., more data or further 
understanding of a process. 

Researchers have tried to classify uncertainty into categories depending on the methods 
and tools that can be used to quantify or characterize them (Refsgaard et al., 2007; Walker et al., 
2003). One of the most popular classifications is by Walker et al. (2003) who characterize 
uncertainty based on its nature, location, and level.  

The nature of uncertainty depends on whether it can be reduced with further research or 
measurements (e.g., experimental determination of kinetic parameters) in which case it is 
classified as reducible and called epistemic uncertainty; or whether it is due to the inherent 
variability of a system and cannot be reduced with any further research (e.g., rainfall, toxic 
spills) in which case it is classified as irreducible and called variability-uncertainty. 

The level of uncertainty varies from quantifiable to total ignorance (popularly referred to 
as unknown unknowns). The four levels (Figure 2-1) can be defined as follows: 

Quantifiable uncertainty can be quantified and described with statistical methods and can be 
attributed to uncertainties such as a random measurement error of a sensor.  

Scenario uncertainty can be described with qualitative estimations of possible outcomes that 
may develop in the future. Realistic assumptions about relationships and/or driving forces 
within the model can be established. It is not possible, however, to derive the probabilities of 
the scenarios taking place. 

Recognized ignorance is the state where fundamental uncertainty exists and the scientific 
basis is insufficient to develop functional relationships, statistics, or scenarios. 

Total ignorance is defined as the state where the actors are not aware of uncertainty. It is 
unknown what is unknown. 

Figure 2-1 depicts these four levels of uncertainty lying between determinism and 
indeterminism. 
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Figure 2-1. Level of Uncertainty. 

Walker et al., 2003. 

The location of uncertainty (or source) refers to the instance where uncertainty manifests 
itself in the modeling process. According to Walker et al. (2003), it includes: context uncertainty 
(i.e., uncertainty in the identification of the system boundaries), model uncertainty (i.e., both 
model structure uncertainty and model technical uncertainty arising from computer 
implementation of the model), input uncertainty (i.e., both inputs describing the reference 
system and external forces driving changes in the current system), parameter uncertainty (i.e., 
the uncertainties associated to the data and the different techniques used for model calibration), 
and model output uncertainty (i.e., the total uncertainty assessed by uncertainty propagation 
taking all model uncertainties into account). 

Table 2-1 includes a list of the sources of uncertainty linked to model inputs, structure, 
parameter values and the numerical application of the models. The sections that follow cover the 
methods used to quantify key sources of uncertainty. 

Table 2-1. Location of Uncertainty in WRRF Modeling. 

Location Details Sources Examples 

Inputs 

Measured data 

Influent data Current and future predicted flow, COD, ammonia 

Physical data  Tank volume and geometry 

Operational settings DO set points 

Performance data Effluent data, reactor concentrations 

Additional info Input from connected systems e.g., sewers, catchment 

Model parameters 

Hydraulic Number of tanks in series 

Biokinetic Maximum growth rates 

Settling Settling coefficients 

Model 
structure 

 

Model structure 
Influent model, hydraulic model, aeration system model, 
process models (biological, settling, ...) 

Interfaces between 
models 

Waste activated sludge pumped to an anaerobic 
digester; digester effluent pumped to sludge treatment 

Numerics 
Software (model 
technical aspects) 

Solver settings  

Numerical approximations  

Software limitations  

Bugs  

Model 
output 

Propagation of 
uncertainty 

Combination of above 
mentioned sources 

 

DETERMINISM
quantifiable
uncertainty scenario

uncertainty recognized 
ignorance total

ignorance
INDETERMINACY
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2.2.2 Uncertainty in Model Inputs 

There are a number of publications in the literature that focus on quantifying the 
uncertainty in model inputs. Model inputs in this document include both measured data and 
model parameters. 

2.2.2.1 Methods for Assessing Uncertainty in Measured Data 

Measurements contain uncertainty due to random errors, systematic errors and gross 
errors. Random errors are introduced as part of the measurement process and include sampling 
errors, instrument and analytical method errors. Random errors can be potentially minimized but 
never completely removed. Systematic errors introduce a bias due to for example offsets caused 
by sensor drifts. Gross errors are caused by calibration mistakes, malfunction of instruments, 
poor sampling or errors in data recording. Gross errors and systematic errors can be (to a large 
extent) detected and removed thereby reducing the uncertainty in the measured model inputs. 

The uncertainty in measured data is typically assessed using statistical techniques. 
Examples of the implementation of such methods for the evaluation of analytical techniques 
include the work of Joannis et al. (2008) who found that the major sources of error were due to 
uncertainties in the standard solutions used for calibration and the nonlinearity of the calibration 
curve; and Bertrand-Krajewski et al. (2007) who compared COD measurements between 
standard laboratory techniques and found that sub-sampling (analyzing smaller aliquots of a 
larger sample) is the major source of uncertainty in the laboratory methods used for COD 
determination.  

For on-line sensor data, Rieger et al. (2005) evaluated the uncertainty of on-line 
measurements at WRRFs using comparisons between independent measurements of the same 
sample (i.e., sensor and a reference laboratory method).  

Several researchers advocate the use of multivariate statistical methods to identify 
outliers in water quality data because of the correlation between plant variables (Robinson et al., 
2005). There are also a number of more advanced statistical methods available for detecting and 
removing systematic errors that range from statistical process control and fault detection methods 
to data reconciliation. 

Data reconciliation is a common technique used to adjust process measurements so that 
they are consistent with known conservation laws and other process constraints. Data 
reconciliation can be performed using either a steady-state or dynamic analysis (Nowak et al., 
1999; Barker and Dold, 1995; Meijer et al., 2002; Puig et al., 2008; Thomann, 2008). Rieger 
et al. (2010) have more recently published suggestions for data reconciliation that focus on 
planning measurement campaigns so that high quality data can be collected for the purpose of 
model simulation projects.  

The use of formal data reconciliation in the wastewater treatment field has been limited 
due to a lack of data, the complexity of the solution procedure, and the lack of availability of 
software dedicated to data reconciliation (Rieger and Vanrolleghem, 2008; Nopens, et al., 2007).  

2.2.2.2 Methods for Assessing Uncertainty in Model Parameters 

Uncertainty in model parameters arises from many sources such as uncertainty in the 
model structure, the choice of experimental conditions used for model calibration, the 
uncertainty in the collected calibration data, and the method used for parameter estimation. The 



2-8  

uncertainty in model parameters is typically assessed either through expert interviews or as part 
of parameter estimation methods (Bard, 1974; Bates and Watts, 1988; Cox, 2004). 

Several studies have identified the fact that historical plant data are rarely suitable for 
estimating model parameters and for assessing their uncertainty. This is mainly due to missing 
data, inconsistencies in the data, limitations in the ranges of the variables due to process control, 
confounding effects between variables, variations in unmeasured variables as well as low 
identifiability (Box et al., 1978; Petersen, 2000; Vanrolleghem et al., 2003). 

2.2.3 Model Structure Uncertainty 

Model structure uncertainty in activated sludge models is primarily a result of the 
selection of the state variables and the assumptions made in the process of developing activated 
sludge system models.  

Researchers and engineers have investigated the amount of uncertainty inherent in 
activated sludge models resulting from: kinetic parameters estimated at different flow schemes 
and residence times (Gujer, 2002); differences in results that occur between a lumped parameter 
(macroscopic) model structure and a microscopic model structure (Schuler, 2005 and 2006, 
Curlin et al., 2004) and differences in model results for different operational scenarios (Sin and 
Vanrolleghem, 2006). Several studies have investigated uncertainty in model structure 
introduced by influent fractionation (Haider et al., 2003) and by kinetic parameters (Lavallee et 
al., 2005). Researchers observed that kinetic parameters may depend on substrate, process 
configuration, and sludge age. Neumann and Gujer (2008) quantified how uncertainty estimation 
is affected when applying different kinetic model structures. Other studies investigating clarifier 
models, e.g., (Abusam and Keesman, 2002) have tested the use of the double-exponential 
function and concluded that the model had a structural problem related to the prediction of 
suspended solids in the underflow stream.  

2.2.4 Methods for Assessing and Propagating Uncertainty in Model Outputs 

Several researchers have published studies evaluating the sensitivity of model outputs to 
uncertainty in model inputs and methodologies for generating robust designs (Von Sperling, 
1993; Huo, 2004). In the simplest approach to sensitivity analysis, the change in model outputs 
was measured by individually varying input parameters by a percentage (e.g., 10%). More recent 
applications of sensitivity analyses have applied regression-based methods (Benedetti et al., 
2011, Sin et al., 2011).  

With respect to how uncertainty affects model calibration, most publications focus on 
determining wastewater composition and kinetic variables based on available plant data (Koch et 
al., 2001; Sin et al., 2008). The available research outlines methodologies (Martin and Ayesa 
2010) that can be used to determine the parameters that allow for best fit of the models along 
with whether the model results are statistically significant. 

From the reported studies, Monte Carlo (Figure 2-2) emerges as the most commonly used 
method of uncertainty analysis when evaluating different WRRF plant design alternatives 
(Tansel, 1999; Doby et al., 2002; Huo et al., 2006; Afonso and da Conceiao Cunha, 2007; Sin et 
al., 2009; Benedetti et al., 2010). Monte Carlo type techniques can be used for design, sensitivity 
analyses, and calibration. How the Monte Carlo techniques are applied and how the results are 
interpreted has been approached differently with no consensus on the best approach. 
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Figure 2-2. Monte Carlo Simulation Framework. 

 From Bixio et al., 2002. 
 

Even though the Monte Carlo method is the most commonly used method of uncertainty 
analysis, it should be used with caution. Additional understanding and work are required to 
determine what the meaningful outputs of an uncertainty analysis are and how they can be 
achieved. 

More research is needed to compare the different methodologies and their results to 
clearly understand the benefits of each. Indeed, a key element of uncertainty analysis is how the 
scenario for the uncertainty analysis is defined, how the objectives of the analysis are set and 
what the boundaries of the system under evaluation are (Sin et al., 2009). 

2.2.5 Summary and Conclusions 

The non-linear, stochastic and dynamic nature of wastewater treatment systems results in 
randomness, periodicity or chaotic behavior. It is largely recognized that wastewater treatment 
models have structural and input uncertainty but there are no widely accepted methods available 
for quantifying this uncertainty. Furthermore, there has been little investigation on how 
consulting engineers and utilities should deal with these uncertainties when designing, upgrading 
or optimizing a WRRF. More specifically, how should the wastewater industry deal with 
uncertainties during the planning, design and bidding stages of a wastewater treatment facility in 
an explicit way? 

Discussions on the above topic have led the Design and Operational Uncertainty Task 
Group (DOUT) to suggest research into the development of a probability-based design 
methodology which is able to provide quantitative measures for the probability of non-
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compliance. The following chapter discusses the development of the methodology and the tools 
required for its implementation.
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CHAPTER 3.0 
 

PROBABILITY-BASED DESIGN OF WRRFS 
 

3.1 Introduction and Methodology Overview 

Incorporating evaluations of the probability of non-compliance during the design of 
WRRFs requires uncertainty characterization and uncertainty analysis. Figure 3-1 shows a design 
methodology that incorporates explicit uncertainty evaluations. 

 
 

Figure 3-1. Flow Sheet of a Proposed Methodology for Probabilistic Plant Design. 
Abbreviations: DBO = design build operate, PDF = probability density function. 

Adapted from Talebizadeh, 2012a, NSERC-DOUT. 

Define project objectives
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3.1.1 Define the Project Objectives  

The type of contract, project objectives and project constraints define the boundary of the 
WRRF model. In conjunction with the design horizon and compliance requirements they identify 
the required inputs and the type of analysis required to evaluate the performance of each design 
alternative. 

3.1.2 Select Configurations and Processes to be Evaluated 

A number of alternative processes or configurations are selected and an initial estimation 
of the dimensions of the unit processes is made based on design guidelines or steady state 
models. The preliminary cost of each alternative is also calculated. The alternatives that are 
deemed acceptable are evaluated further.  

3.1.3 Select the Most Relevant Sources of Uncertainty 

A list of the most relevant sources of uncertainty is composed. Of all the potential sources 
of uncertainly, only the ones considered by the design engineer critical for the specific objective 
are evaluated.  

3.1.4 The Monte Carlo Optimization Loop 

The probability of non-compliance of each design is estimated by performing uncertainty 
analysis using Monte Carlo simulation. One of the most important factors required for the Monte 
Carlo simulation is the generation of random values of uncertain model inputs. To do so the most 
important sources of uncertainty must be characterized statistically.  

3.1.4.1 Generation of Input Time Series 

The variability of important external variables such as temperature which affects the 
kinetics of the treatment process or rainfall which affects the characteristics of flow and influent 
composition can be characterized (in the absence of measurements of adequate frequency and 
duration) by random generation of synthetic time series. The synthetic time series must observe 
the underlying stochastic characteristics of the different variables and their correlations. 

3.1.4.2 Translation of Key Uncertainty Sources into Stochastic Variables 

Uncertainty analysis using Monte Carlo simulation includes expressing uncertain variables or 
parameters in terms of probability data functions (PDFs). In the absence of historical data subjective 
judgment can be used to determine the parameters of the PDFs. When site measurements are 
available they should be used for the estimation of the parameters of the PDF. Any knowledge 
regarding the correlations among the different model parameters is also taken into account.  

3.1.4.3 Dynamic Simulation of the WRRF 

The responses of the model simulating the plant design under evaluation are evaluated 
repeatedly for each combination of external inputs time series and random realizations of 
uncertain parameters using a dynamic simulator.  

3.1.4.4 Sensitivity Analysis 

Once the parameter ranges are defined, sensitivity analysis (SA) can be used to rank the 
importance of various parameters in determining uncertainty for each design alternative. 
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3.1.4.5 Output Analysis and Compliance Calculations 

For each design under evaluation, the time series of different wastewater constituents in 
the effluent obtained from the dynamic simulation need to be transformed corresponding to the 
definition of the effluent standards, e.g., by calculating averages, percentiles, exceedance 
frequencies, return periods, etc.  

3.1.5 Selection of Best Alternative 

The final decision is made based on a comparison of total cost and the probability of non-
compliance for each design. 

3.1.6 Tasks Under Way and Future Research Needs 

The steps outlined in Figure 3-1 require several types of activities ranging from capturing 
existing knowledge to statistical method development. The tasks and research needs identified so 
far have been listed and classified in Table 3-1. Some of the tasks are being executed as part of 
the various UDOUT related projects (Investigating entity). Tasks not currently under way have 
been identified as future research (FR). 

Table 3-1. Tasks Under Way and Future Research Needs. 

Category Task Investigating Entity 

Knowledge 
acquisition and 
preparatory work 

Review how engineers are currently accounting for uncertainty and variability in 
their designs 

IWA-DOUT STR 

Review current WRRF design guidelines NSERC-DOUT 

Establish a common language for communicating on the subject of uncertainty IWA-DOUT STR 

Propose a comprehensive list of the sources of uncertainty IWA-DOUT STR 

Compile currently available methods for the quantification of variability and 
uncertainty 

IWA-DOUT STR 

Critically review existing methods NSERC-DOUT 

Identify gaps in current knowledge and define developments required to provide 
tools to implement uncertainty evaluations in projects 

IWA-DOUT STR 

Incorporate knowledge from other fields (water resources, atmospheric science, 
nuclear industry, etc.) on applications of uncertainty evaluation methodologies 

IWA-DOUT STR 

Tasks that are an 
integral part of the 
methodology 

Define desired outputs (type of deliverables and analysis) NSERC-DOUT 

Propose methods for selecting the pertinent sources of uncertainty for each 
design objective 

FR 

Modify or develop a new methods for risk-based design of WRRF NSERC-DOUT 

Translate key uncertainties into stochastic variables FR 

Generation of synthetic model input time series NSERC-DOUT 

Statistical post processing of uncertainty propagation results NSERC-DOUT 

Tasks required for 
the validation of 
the methodology 

Develop a validation process for the methodology using real plant data FR 

Tasks related to 
the communication 
of the research and 
the application of 
the methodology 

Communicate the application of the method and the results FR 

Analyze the capacity reserves in design guidelines NSERC-DOUT 
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3.2 Knowledge Acquisition and Preparatory Work 

A short description of the tasks has been included in the following sections. 

3.2.1 Uncertainty in Current Engineering Practice  

As part of IWA-DOUT, a review of the way uncertainty and risk is currently handled in 
the field of WRRF design has been compiled. Section 2.2 of this document includes a summary 
of this work (Karmasin et al., 2013).  

3.2.2 Critical Review of Existing Design Guidelines 

As part of the NSERC-DOUT project, a general methodology is being established that 
allows a comparison between three of the most used guidelines around the world: ATV, Metcalf 
& Eddy, and Grady.  

Global Sensitivity Analysis has been used to analyse the effect of the uncertainty sources 
(input uncertainties) on the design output. Within NSERC-DOUT a tool to assess activated 
sludge process design guidelines by using Monte Carlo simulations and global sensitivity 
analysis has been developed (Flores-Alsina et al., 2010 and 2012). The tool is intended to help 
engineers during a WRRF design, by determining which of their decisions in the preliminary 
steps are going to have a significant influence on the result. The approach has been applied to the 
Metcalf and Eddy design guideline (Flores-Alsina et al., 2010), the ATV guideline (Neumann 
and Vanrolleghem, 2011; Talebizadeh et al., 2012b) and the Grady guideline (Aymerich-
Blazquez, 2011). The approach has also been used to assess guideline-based designs with 
dynamic ASM models (Corominas et al., 2010). 

3.2.3 Establishing a Common Language: Terms and Definitions 

Establishing a common language is necessary because identical terms are used in 
statistics, systems theory, water resources and other fields but with different definitions. The 
IWA-DOUT group has compiled a list of terms commonly used in the field of uncertainty 
(Villez et al., 2013). The group has focused on terms relevant to wastewater and has incorporated 
the definitions included in existing standards such as ISO (1994, 2003) and NIST (1994). The 
outcome is a set of terms that cover the necessary concepts of uncertainty evaluation relevant to 
utilities, consultants, academia, regulators, and the public. Examples of such terms have been 
included below. 

Confidence: The probability or degree of belief that a given outcome corresponds to its true, 
usually unknown, value. This applies to a given measurement and how well it reflects the true 
underlying variable; to a model and the degree of belief that it is representative of the true 
system; to a simulated result and the degree of belief that it corresponds well to the true 
corresponding value. 

Model prediction accuracy: An estimate of how close a model predicted quantity is to the true 
or reference values of the described real system. 

Model calibration: The (mostly iterative) adjustment of any model parameter (physical, 
operational, kinetic, stoichiometric, settling...) to improve the fit to measured data.  
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Reliability: Reliability is the degree to which one is certain that a given system will perform a 
certain task over a period of time, i.e., the degree to which one can rely on the system's 
performance.  

3.2.4 Compilation of a Comprehensive List of the Sources of Uncertainty 

As identified by Bott and Parker (2011), there are many factors that influence plant 
reliability and variability. In their study they compiled a list determined from the data evaluated 
and from plant managers’ testimonies which included: 

 Toxic event upsets 
 Unexpected interruptions in chemical supply 
 Plant upgrading projects and the impacts of construction on effluent quality 
 Peak flow events  
 Variations in flows and loads 
 Biological treatment capacity issues during more stressed periods 
 Internal sludge supernatant recycle streams containing ammonia 
 Chemical feed control issues for phosphorus removal 
 Fermenter control issues 

 
All of the items listed above can be identified as sources of uncertainty and variability. 

Not all of the potential sources will impact every facility and similarly not all sources need to be 
evaluated when deciding on a plant design. However, before prioritising the relevant sources for 
a specific design objective, a comprehensive list of all parameters and actions affecting a 
treatment process needs to be compiled. 

The IWA-DOUT group has compiled a comprehensive list of the potential sources of 
uncertainty in a typical WRRF project (Burbano et al., 2013). Examples of engineering projects 
can be used to illustrate where/when each source of uncertainty is introduced. The typical five-
step simulation-based project execution flow sheet (Rieger et al., 2012) has been used as a basis 
for grouping uncertainty sources as shown in Table 3-2 (Belia et al., 2009). In addition, the 
critical steps in a design project have been identified (planning, conceptual design, detailed 
design) and linked to the main sources of uncertainty introduced during a project timeline 
(Weijers, 2013). In each phase of a project, design and modeling decisions are made as well as 
decisions on how to deal with uncertainty. These need to be made explicit and properly 
documented to make the decision making process of the project transparent and to follow the 
different model versions. 

Currently Table 3-2 is being expanded to include all major aspects of a project that 
generate uncertainty and introduce risk. Special focus is given to those factors that contribute to 
uncertainty in high-level nutrient removal plants. 
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Table 3-2. Nature and Level of Uncertainty Introduced during Each Step of a Typical Modeling Project 
Simulating the Liquid Train of a Water Resource Recovery Facility. 

Belia et al., 2013. 

Typical Project Steps Details of Each Step Nature and Source of Uncertainty 

Project 
definition 

Objectives Design, operation, training 

The required prediction accuracy of the model is 
decided at this stage of the project. This will define 
which of the uncertainty items listed below will be 
taken into account 

Context and 
framing 

The boundaries of the system to be 
modeled. Biological treatment only, 
whole plant or sewer and river 

Requirements 
Level of model prediction accuracy, 
what type of data 

Data collection 
and 
reconciliation 

Influent data 

Flow rate, concentrations, influent 
characterization data, data from 
other models and other systems like 
sewers 

Irreducible: due to the inherent variability of the 
real system like weather, unexpected 
demographic changes, unexpected factory 
shutdowns 

Reducible: due to data collection e.g., sampling 
method, location, frequency, accuracy of sensors, 
accuracy of analytical techniques 

Physical data 
Process flow diagram, active 
(effective) tank volumes, clarifier 
surface areas, flow splits 

Irreducible: due to the unpredictable and dynamic 
behavior of structures like splitters to flow changes 

Reducible: due to e.g,. unknown true volume 
constructed or operational depth of structures 

Operational 
settings 

Controller set-points, valve 
positions, pumped flows 

Irreducible: due to the unpredictability of operator 
decisions 

Reducible: due to actions different from planned 
or changes not logged, e.g,. a change in set-
points, incorrect controller set up e.g. scales 
different between field and control room. 

Performance 
data 

Effluent data and reactor 
concentrations such as MLSS (when 
not used as controller set-points) 

Irreducible: due to the inherent variability of the 
real system e.g., response of microbial consortium 

Reducible: due to data collection issues 

Additional 
information 

Equipment failures 
Irreducible: e.g., due to unexpected equipment 
failures 
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Table 3-2. Nature and Level of Uncertainty Introduced during Each Step of a Typical Modeling Project 
Simulating the Liquid Train of a Water Resource Recovery Facility, continued. 

Belia et al., 2013. 

Typical Project Steps Details of Each Step Nature and Source of Uncertainty 

Plant model 
set-up 

Influent model 
Influent dynamics, characteristics, 
influent fractions 

Reducible: due to simplifications of influent 
dynamics (applying a generic diurnal pattern to 
average vs. constructing a dynamic profile of the 
whole sewer system), due to simplifications of 
influent characteristics (fixed ratios for influent 
fractions) 

Biological model 

Model structure: processes 
(conversion, separation), calculation 
of composite variables, type of 
mathematical expression used to 
describe processes (Monod vs. 
enzymatic kinetics) 

Irreducible: due to the inherent variability of the 
real system 

Reducible: due to simplifications in model 
structure e.g., processes not included, processes 
included in simplified form (one step vs. two step 
nitrification), due to the choice of mathematical 
description of processes 

Model parameters: fixed, a priori 
chosen, calibrated, time varying 

Reducible: due to our lack of knowledge of the 
appropriate value 

Hydraulic model 

Model structure: transport and 
mixing processes, number of trains, 
number of tanks in series 

Reducible: due to the simplification of transport 
and mixing processes in models, inadequate 
spatial resolution (CSTRs vs. CFD, selection of 
number of trains to model, number of tanks in 
series) 

Model parameters: fixed, a priori 
chosen, calibrated, time varying 

Aeration system 
model 

Model structure: gas transfer 
processes, mechanical system details Reducible: due to the simplification of gas transfer 

processes and aeration system Model parameters: fixed, a priori 
chosen, calibrated, time varying 

Clarifier model 

Model structure: separation 
processes, calculation of composite 
variables and type of mathematical 
expression used to describe 
processes (1-D, 2-D, CFD analysis) 

Reducible: due to simplifications in model 
structure e.g., processes not included, processes 
included in simplified form as well as due to the 
choice of mathematical description of processes 

Model parameters: fixed, a priori 
chosen, calibrated, time varying 

Irreducible: due to inherently varying biomass 
settling properties 

Reducible: due to our lack of knowledge of the 
appropriate value 

Controllers in 
plant operations 

Control loops, sensors, actuators, 
time variation of set-points 

Reducible: due to the oscillation of the aeration 
system, time delays in control loops, non-linearity 
of actuators 

Interfaces 
between models 

Use of one or several sets of state 
variables, calculation of composite 
variables 

Reducible: due to the aggregation of state 
variables 

Model technical 
aspects 

Numerics: solver, settings, bugs 

Simulators: limitations of simulation 
platforms 

Reducible: due to numerical approximations and 
software bugs 
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Table 3-2. Nature and Level of Uncertainty Introduced during Each Step of a Typical Modeling Project 
Simulating the Liquid Train of a Water Resource Recovery Facility, continued. 

Belia et al., 2013. 

Typical Project Steps Details of Each Step Nature and Source of Uncertainty 

Calibration & 
Validation 

Model parameter 
selection 

Selection of model parameters for 
e.g.,  biological, separation models 
that need to be adjusted 

Model prediction error calculations. Uncertainty 
analysis of calibration & validation parameters 

Model evaluation 
Assessment of model prediction error for calibration & validation data sets through the 
implementation of quantification methods such as statistical coefficients 

Simulation and 
Results 
Interpretation 

Alternatives 
evaluation, future 
"what-if" 
scenarios 

Generation of model desired results 
(probability distributions, statistics) 

Post-calibration uncertainty analysis of simulations 
(sensitivity and Monte Carlo uncertainty analysis) 

 

3.2.5 Review of Available Methods 

As part of the STR, IWA-DOUT has compiled a list of the existing studies which address 
uncertainty in the field of wastewater treatment and has summarized the methods employed in 
the published literature (Sprouse et al., 2013). The working group compiling the chapter on the 
existing literature has identified broad categories of application of uncertainty analysis methods. 
A brief summary has been included in Chapter 2.0 in this document.  

3.2.6 Gaps in Current Knowledge and Practice Related to Uncertainty 

As discussed in Chapter 2.0, there are several methods available in the literature that can 
be used to evaluate uncertainty and how it is propagated through wastewater treatment modeling. 
They include classical parameter estimation, Monte-Carlo (MC) simulations from expert-based 
probability density functions; the generalised likelihood uncertainty estimation (GLUE) method 
(Cierkens et al., 2012), etc. A need for a systematic approach on how to apply these methods is 
needed. 

Another area where further work is required is the selection of PDFs to describe 
statistically a key source of uncertainty. This is necessary because the estimated uncertainty of 
the model outputs depends on the choice of the selected PDF (Benedetti et al. 2008; Cierkens, et 
al., 2012).  

In addition to the examples mentioned above, further developments may be required to 
provide adequate/improved procedures and tools to implement uncertainty and risk evaluations 
in wastewater treatment projects. A critical discussion of the gaps in current methods has been 
compiled by the IWA DOUT group working on this topic (Shaw et al., 2013). 

3.2.7 Knowledge from Other Fields 

Uncertainty principles have been implemented in other disciplines over the past decades 
with promising results. Incorporating knowledge from other fields on the topic of uncertainty 
evaluation will identify whether there are more efficient ways of doing what the wastewater 
industry has done so far. 
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As part of the IWA DOUT STR methods from the fields of chemical engineering, 
hydrogeology (groundwater), and hydrology (surface water/watershed) were investigated 
(Schraa et al., 2013). 

3.3 Tasks that Are an Integral Part of the Methodology 

This section focuses on integral parts of the methodology. 

3.3.1 Definition of Desired Outputs 

The inclusion of explicit uncertainty evaluations will provide additional information to all 
stakeholders. For defining desired outputs the following type of questions are being pursued: 
‘What additional information would I want to give to my client with respect to risk/uncertainty 
(figures, tables, design numbers, …) and how do I expect him/her to benefit from this 
information?’ ‘How is it expected to improve the decisions?’ Examples of potential outputs that 
will provide quantitative answers to these questions are shown in Figures 3-2 through 3-4. 

Figure 3-2 shows a probabilistic design curve. The curves capture the outputs of 
dynamic, probabilistic models and can describe the probability of non-compliance. Similar 
outputs to Figure 3-2 may include probabilistic design curves, at 50, 80, 90, 95, and 99 
percentiles. 

 

Figure 3-2. Probability of Effluent Limit Exceedance for a Specific Unit Process. 
Benedetti et al., 2006. 

The final effluent limit is linked to a frequency of exceedance for a deterministic model (blue line) 
or probability of frequency of exceedance (5 and 95 percentiles – red lines output of Monte Carlo simulations; 

the blue line may also indicate the median of Monte Carlo runs) for a probabilistic approach. 
 

The curve shown in Figure 3-3 shows a link between relevant events, such as peak loads, 
pump failures and storm events (describing input uncertainty and variability) to effluent 
violations, using a steady-state model. In the graph the probability of compliance for a given 
effluent quality and plant description is given for any of the criteria of interest i.e., ammonia, 
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phosphorus, TN, secondary clarifier capacity. One of the criteria will end up “driving” the 
selection of a design at its desired level of reliability. Figure 3-4 shows way of linking 
probabilistic model outputs to cost. 

 
Figure 3-3. Probability of Compliance for a Given Effluent Quality and Plant Description, 

for Any of the Criteria of Interest i.e., Ammonia, Phosphorus, TN, Secondary Clarifier Capacity. 

 

 
Figure 3-4. Probability of Non-Compliance and Total Cost for Several Design Alternatives. 

NSERC-DOUT. 

 

Discussions on which outputs are most relevant for each design project are under way as 
part of the NSERC- and De Dommel-DOUT projects. The presentation methods for probabilistic 
data are a key part of the effectiveness of the procedures. For example, if a graphic does not 
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clearly show the real impacts to a non-statistics user, the meaning of the information at best will 
be lost, and at worst misunderstood. Therefore the graphical methods of communication are a 
critical part of uncertainty analysis. 

3.3.2 Methods for Selecting the Most Relevant Sources of Uncertainty 

This section focuses on what to consider when selecting the most relevant sources of 
uncertainty. 

3.3.2.1 Link Model Scope and Application Area to Level of Effort Required 

The users of probabilistic modeling techniques need guidance on the level of effort 
required to accomplish various uncertainty related modeling tasks. Since it is not feasible to 
generate a rigorous list that applies to every possible modeling application, a list of typical 
modeling applications compiled each with specific objectives and associated level of effort, is 
needed. Following the steps of the IWA Task Group on Good Modeling Practice (Gillot et al., 
2009; Rieger et al., 2012), the selected applications for this list will be very specific and will 
cover the majority of projects that engineers may be called to execute especially for high-level 
nutrient removal plants. This list will be used to define the effort required to incorporate 
uncertainty analysis for the selected objectives. Based on this practitioners can: 

 Decide where along the typical engineering design (or optimization) process uncertainty 
analysis adds most value.  

 Define the required level of detail pertaining to the scope of the engineering project. 

3.3.2.2 Knowledge-Based Screening Method 

A crucial step of the methodology is identifying the relevant sources of uncertainty for 
each project objective. To compile a list of the sources of uncertainty that need to be evaluated, 
expert elicitation can be used. The knowledge and experience of industry experts can generate a 
‘reduced’ list of the sources of uncertainty that are significant for each objective. Additional 
information that needs to be generated includes the range of possible values for each parameter 
identified as a key source of uncertainty and the preferred probability distributions for some of 
the selected parameters. 

3.3.3 Develop New or Modify Existing Methods 

This task includes the development of methods for translating key uncertainties into 
stochastic variables, methods relating to the optimisation of parameter estimation, optimization 
of control strategies, multi-criteria decision analysis etc.  

New methods may need to be developed or modified to make them applicable to 
wastewater treatment. These methods need to be 1) scientifically sound 2) easy to use given the 
scarce resources of the modeler/consultant – therefore the possibility to automate the methods is 
a highly desired feature – and 3) understandable (therefore easy to be adopted) by the final 
recipient of the results, who has to decide on the acceptable level of risk of non-compliance of a 
design.  

The NSERC-DOUT project is developing a methodology which follows the same 
progression of tasks as current design practices but also includes some of the sophisticated 



3-12  

optimisation algorithms currently available in the literature used for parameter estimation, 
optimisation of control strategies, etc. 

3.3.4 Translate Key Uncertainties Into Stochastic Variables 

For each selected uncertain parameter, a PDF needs to be defined. The type of 
distribution and the values of the descriptors of the distribution are related to the amount of 
knowledge available for the parameter under investigation. If our knowledge about the 
uncertainty of a parameter is very limited a uniform or triangular distribution can be used.  

The correlations among the different model parameters can be expressed in terms of a 
correlation matrix. Using this information, a joint distribution of uncertain model parameters is 
estimated by a parametric multivariate statistical distribution. For the Monte Carlo runs the 
parameters are sampled from the estimated joint distribution. By doing so the correlations among 
the different model parameters are taken into account.  

There is no rigorous method available that can aid engineers in deciding on the 
appropriate distribution to be used as well as avoiding simulating unrealistic load or operational 
scenarios. More research is required in this area. 

3.3.4.1 Scenarios 

Scenario analysis can be used for those uncertainties which cannot be defined in terms of 
PDFs. Each scenario includes a set of plausible values for the parameters of interest. The 
selection, quantification and implementation of scenarios in combination with uncertainty 
analysis have not been fully explored. 

3.3.4.2 Equipment Reliability as a Key Source of Uncertainty 

Defining methods to incorporate equipment reliability in model-based design is a topic 
requiring further research. Equipment reliability has been repeatedly identified as an important 
source of uncertainty when assessing WRRF performance. The translation of key uncertainties 
relating to equipment failures into stochastic variables requires extensive work and an 
interdisciplinary approach. 

3.3.5 Random Generation of Model Input Time Series 

A crucial point when designing a plant with high level nutrient removal is to properly 
characterize the uncertainty and variability of the influent load and flow (Friedler and Butler, 1996; 
De Keyser et al., 2010). Within UDOUT a specified project has been conceived to study the 
patterns observed in the influent of a WRRF. The project is developing mathematical tools able 
to generate synthetic data profiles for dynamic simulation studies. The generated data reproduce 
the daily, weekly and yearly profiles on the basis of a limited amount of data about the catchment 
area such as: the inhabitant equivalents, number and type of industries, rain characteristics, etc.  

Following a critical evaluation of existing influent generators, Martin and Vanrolleghem 
(2012) conceived a new influent generator approach. The suggested generator is a grey-box 
model that includes a phenomenological (mechanistic) model of the catchment area and a 
stochastic (data-driven statistical) model to reproduce the natural variability of the receiving 
load. The phenomenological component is based on the model proposed by Gernaey et al. (2010 
and 2011) but it includes a much more descriptive approach for the rain generation, soil model 
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and temperature variation, among others. The stochastic component introduces some variability 
to the characteristics of the influent profiles. 

3.3.6 Statistical Post-Processing of Uncertainty Propagation Results 

The model outputs of the uncertainty propagation for all configurations need to be 
converted to the design criteria or effluent criteria. For example, if the effluent criterion is a two 
week average, then a two week average from each MC run needs to be computed and the 
distribution of the two week averages can be used to compare designs. In addition, a cost 
function can be used to estimate the total cost of each configuration as a function of key design 
variables (e.g., volume of bioreactors and secondary clarifiers). The development of advanced 
cost functions and multivariate optimization tools that calculate the trade-off between the total 
cost and probability of compliance is another area requiring further research. 

3.4 Validation of the Methodology with Plant Data 

The validation of the methodology with data collected at existing facilities is key 
requirement prior to its adoption by practitioners. The WERF project evaluating the performance 
of plants operating at low TN and TP (WERF, 2011) has compiled data for several plants that 
include influent loading, process design and operating conditions, unusual events, upsets and 
anecdotes related to process operation, and effluent data.  

Using the measured data inputs, configuration information and operational settings the 
proposed procedure will be applied to compute probabilistic effluent profiles. Each Monte Carlo 
simulation for each plant will produce a times series of concentration data which can be 
summarized as an empirical cumulative distribution function (ECDF). These probabilistic 
effluent profiles can be characterized by a 90% confidence band that is compared to the 
measured effluent profiles. If uncertainties have been well quantified one expects 90% of the 
selected plants to have effluent profiles that are within the 90% confidence band. This validation 
also allows discriminating between limit exceedances which are due to plant under-sizing, 
equipment failure or process upsets such as foaming or bulking sludge.  

As shown in Figure 3-5, the 90% confidence band from the computed (e.g., 1000) ECDFs 
can be compared to the ECDF of the measured data (black line in Figure 3-5). 
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Figure 3-5. Cumulative Curves for Effluent NH4 Concentration. 

Black Line: Measured Data; Blue Line: 50th Percentile of MC Simulations; Red Lines: 5th and 95th Percentiles, 
Quantiles of 1000 Simulated ECDFs Obtained with the MC Simulations. 

Benedetti et al., 2013. 
 

3.5 Communication of the Methodology 

Clear communication is a critical component of the new methodology. The wide–spread 
adoption of these approaches will require non-statistically fluent practitioners to understand the 
benefits of the approach in order for the techniques to be adopted. It is the plan of the UDOUT 
group to develop and test various approaches, some of which were described above, for clearly 
communicating the concepts and benefits of uncertainty analysis. The UDOUT group will be 
disseminating its work through WEF, WERF, and IWA communication mechanisms. 

3.6 Application of the Methodology to Analyze the Capacity Reserves in   
           Design Guidelines 

One of the main benefits of linking uncertainty analysis to model-based design is the 
ability to quantify the reserve capacity inherent in currently practiced design guidelines (e.g., 
WEF-MOP8, Metcalf & Eddy, ATV-A131). The probabilistic methodology can be applied to 
designs generated by the guidelines for specific load scenarios and effluent guidelines. 
Probabilistic estimates for the effluents concentrations can be computed using the uncertainty 
tools and dynamic models.  

Results such as the one shown in Figure 3-6 where a specific design guideline is assessed 
for three different effluent requirements indicate the level of safety incorporated in the design 
guidelines. The x-axis represents the effluent concentration requirement used to obtain the design 
with the guideline. A probabilistic model for the obtained design is set up and effluent 
concentrations are computed: The y-axis represents the predicted effluent concentrations 
(expected values and 90% confidence intervals). The feasibility of such an approach has been 
examined in a first test case comparing the Metcalf & Eddy design guidelines with a 
deterministic model-based design applying an ASM1 model (Corominas et al., 2010). The 
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proposed analysis will be able to make the level of safety incorporated in design guidelines 
apparent.  

 
 

Figure 3-6. Estimation of Reserve Capacity Inherent in Design Guidelines. 
Three designs are obtained from applying a design guideline to three different effluent concentration requirements. 

Projected effluent concentrations (bullets: expected values, line: 90% confidence intervals) are then obtained from the 
probabilistic model projecting plant behavior of three designs. 

Vanrolleghem et al., 2010; NSERC-DOUT. 
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CHAPTER 4.0 
 

SUMMARY AND CONCLUSIONS 
 

4.1 Overview 

The wastewater industry normally relies on empirical, rule-based methods for the design 
of water resource recovery facilities in which safety factors are applied to minimize the 
probability of non-compliance with effluent standards. These empirically based rules are 
becoming increasingly less relevant as ultra low nutrient levels are adopted. In recent years, 
mathematical models describing the physical, chemical and biological processes are increasingly 
being applied in the wastewater industry. Indeed, the increase in the complexity of process 
configurations and the increased nutrient removal requirements has necessitated the use of these 
process-based models. However, there is no consensus on how to manage the inherent 
uncertainties when applying these models in the context of plant design. It also remains unclear 
how to translate the traditional safety factor concept to model-based design procedures. 

The goal of the UDOUT project is to promote the development of a methodology for 
model-based design of wastewater WRRFs, which is especially applicable to plants trying to 
achieve very high nutrient removal levels. Such a methodology should account for uncertainty in 
WRRF design and make designs more comparable and transparent with respect to performance 
and reliability. The main output of this procedure will be minimizing the over- or under-design 
of high nutrient removal facilities by explicitly quantifying the degree of inherent safety 
associated with different designs. 

Recent publications have shown that probabilistic design may potentially reduce key 
processes design variables (Bixio et al., 2002; Cox, 2004; McCormick et al., 2007). This would 
translate to direct savings in the order of million to tens of millions of dollars for typical 
construction projects. 

The resultant tools would benefit the water quality industry in the following ways:  

 A utility will be able to estimate the probability of compliance associated with different 
designs proposed during bid selection. They will be able to select the design that corresponds 
to their desired level of safety and costs. 

 The engineering consultant will be able to quantitatively balance an acceptable level of 
process risk vs. costs of a proposed design. 

 A better basis for effluent guidelines may be developed and regulators may be convinced to 
apply probabilistic effluent limits. 

In all three cases an increase in transparency can be expected as well as more efficient 
expenditure of public resources. 

This report introduces the state-of-the-art of uncertainty analysis and highlights the 
opportunities that explicit uncertainty evaluation provides to high-level nutrient removal 
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systems. This report also presents the research needs for the development of a methodology that 
will allow engineers to use simulators with explicit reliability calculations. 

4.2 Relevance to High Level Nutrient Removal 

High level nutrient removal requires the reliable achievement of very low nutrient values 
in effluents. These low numbers are often very close to the theoretical limits of what is possible 
in treatment, i.e., a 3 mg/L total nitrogen limit is very close to the refractory dissolved organic 
Nitrogen (rDON) in plant effluents, and thus requires very controlled operation of the facilities. 
Exceedances of 1 or 2 mg/L in a conventional plant can easily be recovered from in a normal 
averaging period, but in low nutrient removal plants, it may not be possible to recover from what 
is normally considered even a moderate exceedance, since there is very little room to operate 
below the limit. In design, these low limits require the designer to have a high level of 
understanding of all the factors that go into achieving this goal, so that they can produce a plant 
design that is reliably able to achieve these limits. Historically, this has been done through the 
use of conservative estimates of various parameters, sometimes resulting in an "overdesigned" 
facility. As an alternative to this, sometimes very expensive approach, uncertainty analysis 
provides the design engineer, and operator, quantitative information on where the risks are, and 
can be used to develop a more cost effective design to achieve the same goals as well as a better 
understanding of how high level nutrient removal plants need to be operated. 

The current generation of wastewater models and their associated kinetics/stoichiometry 
are based on the historical experience of the industry and numerous past research activities. As 
such, most of these models are based on conventional nutrient removal goals and did not 
specifically examine the impacts of very low nutrient in plant effluents. In other words, there is a 
much higher degree of relative uncertainty in model results when these applications are 
examined. As such, the uncertainty principals described herein are especially applicable to 
situations were very low effluent nutrients are needed. 
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