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• Removals of PPCPs and an artificial sweetener in a sewage lagoon are presented.
• Predicted values obtained from lagoon modeling generally agreed well with measured concentrations.
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• Seasonal variations were observed, and optimal removals occurred during summer.
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A sewage lagoon serving the smallmunicipality of Lakefield inOntario, Canadawasmonitored in the summer, fall
and winter to determine removals of carbamazepine, trimethoprim, sulfamethoxazole, ibuprofen, gemfibrozil,
triclosan, sucralose, HHCB and AHTN. Concentrations of these compounds in untreated and treated wastewater
were estimated by deploying POCIS and SPMD passive samplers in the sewage lagoon. Passive samplers were
also deployed at several points upstream and downstream of the point of discharge from the lagoon into the
Otonabee River. LC–MS/MS and GC–MS were utilized to determine the concentrations of pharmaceuticals and
personal care products (PPCPs) and sucralose, an artificial sweetener. Among PPCPs sampled by POCIS, the
highest estimated concentration in untreatedwastewaterwas ibuprofen sampled during the fall, at an estimated
concentration of 60.3 ng/L. The estimated average concentration of sucralose was 13.6 ng/L in the untreated
wastewaters. Triclosan, HHCB and AHTN in SPMDs were highest during fall season, at 30, 1677 and 109 ng/L,
respectively. For all compounds except gemfibrozil, carbamazepine and sucralose, removals were highest in
the summer (83.0 to 98.8%) relative to removals in the fall (48.4 to 91.4%) and winter (14.0 to 78.3%). Finally,
the estimated concentrations of carbamazepine, sulfamethoxazole, triclosan and HHCB were compared with
predicted values obtained through application of the WEST® modeling tool, with a new model based on the
River Water Quality Model No. 1 and extended with dynamic mass balances describing the fate of chemicals of
emerging concern subject to a variety of removal pathways. The model was able to adequately predict the fate
of these four compounds in the lagoon in summer and winter, but the model overestimated removals of three
of the four test compounds in the fall sampling period. This lagoon was as effective at removing PPCPs as many
conventional WWTPs, but removals were better during the summer.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Municipal wastewater treatment plants (WWTPs) are point sources
for the discharge of contaminants of emerging concern into surfacewa-
ters. The literature indicates that conventional wastewater treatment
processes remove some pharmaceuticals, personal care products and
endocrine disrupting chemicals, but other compounds from these
classes of “down the drain” chemicals are not effectively removed
fax: +1 705 748 1569.
que@gmail.com (M.E. Hoque).

ghts reserved.
(Carballa et al., 2004; Jones et al., 2005; Miège et al., 2009; Monteiro
and Boxall, 2010; Verlicchi et al., 2012). Advanced oxidation processes,
especially ozonation and UV photolysis are effective at degrading a
number of the contaminants of emerging concern that are in wastewa-
ter (Zwiener and Frimmel, 2000; Andreozzi et al., 2003; Ternes et al.,
2003; Huber et al., 2005; McDowell et al., 2005; Nakada et al., 2007;
Rodayan et al., 2010; Nasuhoglu et al., 2011). However, small munici-
palities in North America usually do not have the resources to install
and operate advanced oxidation technologies, or even conventional
wastewater treatments systems. Many of these small municipalities
use sewage lagoons as treatment systems for municipal wastewater.
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According to a report published in 2004, therewere 868 sewage lagoons
located in Canadianmunicipalities (Federation of CanadianMunicipalities,
2004), but these numbers may have changed substantially in the past
10 years.

Lagoon-based sewage treatment systems are pond-likewater bodies
or basins that receive, hold and treat thewastewater. These systems are
widely used in small communities because of their simplicity and
because they are inexpensive to install, operate and maintain. Treat-
ment processes in the basin are complex, involving a combination of
physical, chemical and biological processes that include sedimentation,
bioflocculation, precipitation, biochemical oxidation, photolysis, volatil-
ization, fermentation and disinfection. The design parameters for a
lagoon are dependent on the lagoon type. For example, in aerated
lagoons, sewage retention times are typically 7–20 days (Federation of
Canadian Municipalities, 2004).

There is some evidence that sewage lagoons are effective at removing
contaminants of emerging concern fromwastewater (Camacho-Muńoz
et al., 2012; Carlson et al., 2013; Conkle et al., 2008; Li et al., 2013;
MacLeod and Wong, 2010; Metcalfe et al., 2003; Ying et al., 2009).
However, there have been no studies conducted to date to fully evaluate
the removals ofmicrocontaminants by lagoons; especially in thewinter
months when microbial activity may be low and the duration and
intensity of sunlight is reduced. Also, there have been few attempts to
predict the fate of microcontaminants in lagoons using predictive
models.

The objective of this studywas to determine the removals of selected
pharmaceuticals and personal care products (PPCPs) and an artificial
sweetener, sucralose in a sewage lagoon serving the municipality of
Lakefield, Ontario, Canada during 3 different seasons, summer, fall and
winter, and observe their presence and persistence in the receiving
waters of the Otonabee River upstream and downstream of the lagoon
discharge. Also, modeling studies were performed, and model predic-
tions were compared with the measured concentrations of PPCPs and
sucralose.

Most of the previous studies on removal of PPCPs in sewage lagoons
were conducted using either grab or composite samples (Camacho-
Muńoz et al., 2012; Carlson et al., 2013; Conkle et al., 2008; Li et al.,
2013; Ying et al., 2009). Because of the rapid temporal changes in the
concentrations of PPCPs in wastewater, it is difficult to estimate
removals of chemicals using data from “grab” samples or even compos-
ite samples (Ort et al., 2010). These samplingmethods provide informa-
tion on the instantaneous concentrations of the target analytes, which
may be misleading if there are spikes in concentrations throughout
the day, week or month. Therefore, passive samplers, the Polar Organic
Chemical Integrated Sampler (POCIS) for polar contaminants and the
Semipermeable Membrane Device (SPMD) for non-polar contaminants
were used to estimate time weighted average concentrations of the
target compounds over a 2 week deployment period. The disadvantages
of passive sampling include the requirement for data on chemical
sampling rates (RS) to estimate the concentration of analytes in water.
In addition, sampling rates are influenced by temperature, flow and
biofouling. To date, there are sampling rates in the literature for only a
limited number of compounds. RS values for the analytes were deter-
mined in laboratory experiments and were calculated according to the
relationship shown in Eq. (1),

RS ¼ C0–Ctð Þ=C0½ � � V=dð Þ ð1Þ

where, C0, Ct, V and d are initial (spiked with analyte) concentration in
water, measured (remaining) concentration after POCIS or SPMD
exposure, volume of water (L) and exposure time in day (d).

Passive samplers are usually deployed to accumulate contaminants
of emerging concern to high ng or low μg amounts over the deployment
period. Then, data on the RS (L/day) for the target compounds in POCIS
(Li et al., 2010) and in SPMDs (Helm et al., 2012) are used to estimate
concentrations inwastewater (i.e., ng/L) integrated over thedeployment
period. In this study, the estimates of time weighted average concentra-
tions were used to determine how effective the sewage lagoon was at
removing PPCPs and sucralose at different seasons, and to evaluate
whether these compounds persist in the river downstream of the
discharge. Later, measured values were compared with modeling data.

A large number of PPCPs have been detected in both untreated and
treatedwastewater and could be considered for this research. However,
in order tominimize analytical effort and cost, whilemonitoring a series
of compounds that will provide valuable information on the various
mechanisms of removal, we analyzed nine “indicator compounds”
that are typically detected in wastewater and for which the processes
governing their fate in the aquatic environment are reasonably well
understood, including five pharmaceuticals, carbamazepine, sulfameth-
oxazole, trimethoprim, gemfibrozil and ibuprofen, an artificial sweetener,
sucralose and the personal care product, triclosan and two synthetic
musk compounds, HHCB (Galaxolide, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-
hexamethylcyclopenta-γ-2-benzopyran) and AHTN (Tonalide, 6-Acetyl-
1,1,2,4,4,7-hexamethyltetraline). Several of these indicator compounds
were selected according to the criteria identified by (Dickenson et al.,
2011) in a study that illustrated the value of monitoring a small number
of PPCPs in wastewater treatment facilities in the U.S. Sucralose is widely
used artificial sweetener in North America and has been detected in
drinking water systems in the USA and wastewaters in Europe and
because of its persistence and ubiquitous presence, has been proposed
as a tracer of wastewater contaminants in drinking water samples and
surface waters (Lange et al., 2012; Mawhinney et al., 2011; Oppenheimer
et al., 2011). The advantage of using these indicator compounds is that
they are almost always detected in untreated and treated wastewater,
and they showvariations in removals bymicrobial, oxidative andphotolytic
processes, as well as by partitioning to sediments or air that provide an
indication of the most important removal processes within the lagoon.

2. Materials and methods

2.1. Chemicals and materials

The pharmaceuticals, sucralose and their labeled surrogates were
purchased from Sigma-Aldrich (St. Louis, MO, USA) and C/D/N Isotopes
(Pointe-Claire, QC, Canada). HHCB and AHTNwere purchased from LGC
Promochem GmbH (Wesel, Germany) and triclosan was purchased
from Sigma-Aldrich. Triclosan-13C12 was obtained from Cambridge
Isotopes (Andover, MA, USA) and AHTN-d7 was purchased from C/D/
N Isotopes. All stock solutions were made in methanol and stored in
the refrigerator (4 °C) until required. Working standard solutions
were prepared from stock solutions through serial dilution.

High purity acetic acid, methanol and acetone were obtained from
Fisher Scientific (Ottawa, Ontario, Canada). The POCIS samplers were
purchased from Environmental Sampling Technologies (St. Joseph,
MO, USA). The SPMDs were prepared from layflat polyethylene tubing
containing triolein, as described previously (Helm et al., 2012). The
triolein in the SPMDs was spiked with performance reference
compounds (PRCs) that were used to refine the RS that varies according
to the temperature and flow rates in the water and biofouling (Huckins
et al., 2002). The PRCs included fluorene-d10, PCB congener 14 (3,5-
dichlorobiphenyl) and PCB congener 32 (2,4′,6-trichlorobiphenyl).

2.2. Sampling sites

The passive samplers were placed in stainless steel sampling cages
with capacity to accommodate three POCIS and three SPMD passive
samplers; so each cage gave triplicate measurements. The sampling
cages were deployed in the sewage lagoon and in the river in July
(summer) and October (fall) of 2010 and in March (winter) of 2011.
Samplingwas done at the sewage lagoon serving the village of Lakefield
(population approximately 2600) in Ontario, Canada by deploying the
passive samplers for 2 weeks at three locations. The Lakefield sewage
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lagoon, located at latitude 44.0° received about 15.2–14.5 h of sunlight
in July and 10.2–9.7 h of sunlight in late October. Raw sewage is collect-
ed at the sewage pumphousewhere alum is added to theflowand then,
sewage is pumped (around 1 km) to the aerated lagoon.

The sewage lagoon is split into south andnorthponds that operate in
series. The south pond has an approximate area of 52,000 m2, an
approximate depth of 3 m and retention time of about 8 weeks, and it
is aerated for treatment of the sewage. The north pond, which is a
settling pond that operates only under ice-free condition has an approx-
imate area of 55,000 m2, an approximate depth of 2 m and retention
time of about 6 weeks. When the north pond is frozen over, the
wastewater is taken directly from the distal end of the south pond and
is disinfected by UV-irradiation before discharge into the river.
Fig. 1.Map showing the sampling sites at the Lakefield sewage lagoon and theOtonabee River in
aerated sewage and treated sewage outflowpipe (final effluent), respectively. R1 atOtonabeeRi
increasing distances downstream of outflow gate.
PPCPsweremonitored at various locations in the sewage lagoon and
in the river. As shown in Figs. 1 and 2, for the summer and fall samples,
one sampling cagewas placed in the south pondnext to the raw sewage
influent pipe (i.e., L1) tomeasure the initial concentrations of chemicals
entering the sewage lagoon. Another cagewasplaced at the other endof
the south pond, at the cross over point to the north pond (L2). The last
sampling cage was placed at the outflow box in the north pond (L3),
which leads to the discharge point in the river. In the winter, samplers
were placed at L1, and at points before UV-disinfection (i.e., pre-UV)
and after UV-disinfection (post-UV).

Treated sewage enters the Otonabee River through a diffusion grate
located on the riverbed in the middle of the river. A reference site (R1)
was located upstream of the sewage outflow grate, above the Lakefield
Ontario, Canada (source: GoogleMap). L1, L2 and L3 sites at raw sewage inflow (influent),
ver reference site upstreamof the sewage outflowgrate. R2, R3, R4 and R5 sampling sites at



Fig. 2. Schematic of Lakefield sewage lagoon (source: LakefieldWater andWastewater, Lakefield, Ontario, Canada). L1, L2 and L3 sites at raw sewage inflow (influent), aerated sewage and
treated sewage outflow pipe (final effluent), respectively.
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dam. Four downstream sampling points (R2, R3, R4 and R5) at increas-
ing distances from the discharge (approximately 30, 173, 308 and
1760 m, respectively) were monitored in the summer (Fig. 1), and
three downstream sampling points (R2, R3 and R4) were monitored
in the fall. The sampling points were located in the middle of the river
at depths roughly 0.5 m below the surface. The passive samplers were
set up for 4 weeks in the Otonabee River, as compared to 2 weeks in
the Lakefield sewage lagoon. During retrieval of samplers, the POCIS
were removed from the cages and wrapped in aluminum foil, and the
SPMDswere removed and stored in amber glass jars. Samplers collected
in the fieldwere placed in a coolerwith ice packs. Upon returning to the
lab, all samples were frozen for storage. POCIS and SPMD field blanks
were exposed to the air during deployment and collection.
2.3. Sample preparation

Extraction from POCIS samplers was performed in the lab according
to the procedures described elsewhere (Li et al., 2010). Briefly, frozen
samplers were removed from storage and allowed to thaw, then rinsed
with water to remove debris and biofouling materials. Using a spatula,
the sorbent in the POCIS was transferred to a glass chromatography
column (1 cm ID × 30 cm length) packed to 1/3 full with solvent-
washed granular Na2SO4. A 0.1 mL mixture of an internal standard
(500 ng/mL) containing the stable isotope labeled surrogates of the
analytes was then added to the column. Elution from the column was
performed with 100 mL methanol. The eluate was collected and then
evaporated in a rotary evaporator to a volume of ~1 mL. Final evapora-
tion to 0.1 mL was conducted using a vacuum centrifuge evaporator,
and then the samples were made up to their final volume (0.4 mL)
with methanol.

SPMD samples were prepared according to the procedure published
elsewhere by (O'Toole and Metcalfe, 2006; Helm et al., 2012). Briefly,
the SPMD was cleaned and then dialyzed into hexane for total of 24 h
(i.e., first dialysis for 18 h and second dialysis for 6 h). Labeled surro-
gates were added to the extract at this point. Co-extractives in the
hexane extract were then removed by gel permeation chromatography
(GPC) using BioBeads S-X3 (BioRad Laboratories, Mississauga, Ontario,
Canada) with a mobile phase of hexane and ethyl acetate (1:1, v/v).
The eluate was split into two aliquots. One aliquot was solvent
exchanged into hexane for analysis of the synthetic musks and PRCs
(i.e., Aliquot A) and the other aliquot was exchanged into methanol
for analysis of triclosan (i.e., Aliquot B). Aliquot Awas further fractionated
by silica gel column chromatography as described by O'Toole and
Metcalfe (2006) to yield Fraction 1 containing the PCB congeners 14
and 32 (i.e., PRCs) and Fraction 2 containing fluorene-d10 (i.e., PRC)
and the synthetic musks, HHCB and AHTN. These fractionswere solvent
exchanged into iso-octane (0.150 mL final volume) prior to analysis by
GC–MS.
2.4. LC–MS and GC–MS analysis

The pharmaceuticals and triclosanwere analyzed by liquid chromatog-
raphy and tandemmass spectrometry (LC–MS/MS) with an electrospray
ionization (ESI) source using an API 3000 instrument purchased from
Applied Biosystems Sciex (Concord, Ontario, Canada). This system was
equipped with a Series 200 autosampler from Perkin Elmer (Waltham,
MA, USA), and pumps (LC-10AD), degasser (DGU-14A) and system
controller (SCL-10A) from Shimadzu (Columbia, MD, USA). For the
analysis of the pharmaceuticals accumulated in the POCIS (carbamaze-
pine, sulfamethoxazole, trimethoprim, gemfibrozil and ibuprofen), the
LC–MS/MS was run in double polarity mode by positive and negative
voltage switching, similar to the method described elsewhere (Miao
and Metcalfe, 2003). For analysis of triclosan accumulated in the
SPMDs, LC–MS/MS analysis was conducted separately in negative ion
mode. Sucralose was analyzed in negative ion mode using an AB Sciex
Q-Trap 5500 instrument with a turbospray ionization source. This sys-
tem was equipped with an Agilent 1100 series (Mississauga, ON,
Canada) LC systems. Analytes were separated chromatographically
using a Genesis C18 column of 150 mm long, 2.1 mm ID and 4 μm
particle size (Chromatography Specialities Inc., Brockville, Ontario,
Canada) with a guard column (Genesis C18, 10 × 2.1 mm and 4 μm).
The LC mobile phases in gradient elution were (A) water (100%) with
0.1% acetic acid and (B) acetonitrile (100%)with 0.1% acetic acid.MSde-
tection was performed using multiple reaction monitoring. The mass
transitions for analytes and corresponding labeled analytes are listed
in Table 1. For quantification, an internal standard method with a five-
point calibration graph covering the range of anticipated analyte
concentration in the samples, using aweighted (1/concentration) linear
regression. The purpose of using internal standards (labeled com-
pounds) for calculation was to correct analyte recovery and matrix

image of Fig.�2


Table 1
Ionsmonitored for analysis of target compounds and their stable isotope surrogates by LC–
MS/MS (Multiple Reaction Monitoring) and GC–MS (Selected Ion Monitoring).

Compounds Mass transition (m/z)
LC–MS/MS

Carbamazepine 237.1/194.0
Carbamazepine-d10 247.0/204.1
Sulfamethoxazole 254.1/156.0
Sulfamethoxazole-13C6 260.0/162.0
Trimethoprim 291.1/123.2
Trimethoprim-13C3 294.1/126.2
Gemfibrozil 249.1/121.0
Gemfibrozil-d6 255.0/121.0
Ibuprofen 205.0/161.0
Ibuprofen-13C3 208.0/163.0
Sucralose 395.0/35.0
Sucralose-d6 403.0/35.0
Triclosan 287.0/35.0
Triclosan-13C12 299.0/35.0

GC–MS
HHCB 243
AHTN 243
AHTN-d3 246
PCB-32 256
PCB-14 222
Fluorene-d10 176

LODs and LOQs for PPCPs and sucralose were between 0.1 to 2 and 0.3 to 5 ng/L,
respectively, and for AHTN and HHCB, were 1.5 and 4, and 1 and 3 ng/L, respectively.
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effects. The limits of detection (LOD) and limits of quantitation (LOQ)
were calculated as the analyte concentrations that produced peaks
with signal-to-noise ratio of 3 and 10, respectively (Table 1).

The synthetic musks (HHCB, AHTN and AHTN-d3) and the PRC
compoundswere analyzedwith a GC–MS purchased fromAgilent Tech-
nologies (Mississauga, Ontario. Canada) consisting of a Model 3800 GC
and a Model 4000 Ion Trap MS. The GC–MS method using electron
impact (EI) ionization was similar to the method described by Yang
and Metcalfe (2006). MS detection was performed using selected ion
monitoring (SIM) for the ions listed in Table 1. Chromatographic separa-
tion was performed using a 30 m VF5 capillary column (0.25 mm ID).
The injector, transfer line and ion trap temperatures were 275 °C,
250 °C and 200 °C, respectively. The temperature program for the
column oven consisted of an initial hold for 1.5 min. at 50 °C, then an
increase to 150 °C at 10 °C/min, then to 190 °C at 2 °C/min, and finally
to 290 °C at 100 °C/min, where the temperature was held for 4 min.

2.5. Estimation of concentrations in water and wastewater

The estimated concentrations of the pharmaceuticals accumulated
in POCIS were calculated using the RS previously determined in labora-
tory experiments at 5, 15 and 25 °C (Li et al., 2010). The RS for POCIS
appears to vary relatively little with temperature, as less than a 2 fold
change in RS was previously observed over a temperature range from
5 °C to 25 °C (Li et al., 2010). The RS of sucralose (i.e., 0.156 L/day at
25 °C) was determined following static exposure technique previously
described by Li et al. (2010). The concentrations of the personal care
products accumulated in SPMDs were calculated using the RS deter-
mined in laboratory experiments at 5, 15 and 25 °C (Helm et al.,
2012) and adjusted according to the loss of PRCs from the SPMDs over
the time of deployment. PRCs were used to adjust the SPMD data
because this passive sampling device is particularly susceptible to
variations in RS as a result of variations in temperature, flow rates and
biofouling (Huckins et al., 2002).

Rates of elimination of the PRCs (i.e., h−1) from the SPMDswere de-
termined in laboratory experiments at 25 °C (i.e., kePRC-cal) as−0.0053,
−0.0019 and−0.0003 for fluorine-d10, PCB14 and PCB32, respectively.
As described by Huckins et al. (2002) the exposure adjustment factor
(EAF) was calculated for each PRC by comparing the rate of elimination
determined in the field (kePRC-field) with the rate of elimination deter-
mined in the laboratory, according to Eq. (2).

EAF ¼ kePRC‐field=kePRC–cal: ð2Þ

Then, the concentrations of the analytes in water (ng/L) were
estimated for each target compound using Eq. (3),

Amountof analyte inSPMD ngð Þ � EAF
RS � d

ð3Þ

where, ng, RS, d and EAF are extracted amount of analyte from SPMD,
sampling rate in L/day, total deployment days of SPMD and exposure
adjustment factor, respectively. The EAF was calculated for the PRC
that showed elimination over the time of deployment of between 40
and 70%, and in all cases, this was PCB32.

The non-parametric Mann–Whitney U test (two-tailed) was used to
test for the significance of differences in the concentrations of each of
the analytes between raw influent and final effluent of Lakefield sewage
lagoon. Statistical analyses were conducted at a level of significance
of 0.001 using SYSTAT (2004) version 11 software for Windows
(Richmond, CA, USA).

2.6. Lagoon modeling

Modeling and fate simulations were done using the modeling and
simulation software, WEST® (www.mikebydhi.com) which allows the
user to represent the dynamics and fate of pollution in different
wastewater unit processes (Vanhooren et al., 2003). Using this tool, a
lagoon model was developed to assess the efficacy of removals of
emerging contaminants within existing treatment trains, with a partic-
ular emphasis on the effects of Canadian cold climate and seasonal
conditions. Dynamic mass balances for the different pollutants and
organisms were derived from the River Water Quality Model No. 1
(RWQM1) and its extension for pesticides, called RWQM1GC (De
Schepper et al., 2012). Also included are dynamic mass balances for
algae, as described in the original RWQM1 (Reichert et al., 2000).

The lagoonwasmodeled as a series of four continuously stirred tank
reactors (CSTRs), with two representing the aerated south pond and the
other two representing the stabilization north pond. In each reactor two
homogenous compartments were included: the bulk water and the
sediment. Diffusion, sedimentation and resuspension occur between
the two compartments, depending on the conditions of the lagoons.
For instance, it was predicted for the aeration lagoon that no sedimenta-
tion occurs while it is being mechanically aerated, and resuspension is
driven by the mechanical aeration and the sheer stress at the bottom
of the lagoon. For simplicity the lagoonswere assumed to be rectangular
and the volume constant. A UV disinfection unit was added to replace
the north pond during the winter months. It was assumed that the UV
unit was operational from December 1 to April 30, which corresponds
to the last day of the simulation.

In both compartments the fate of traditional wastewater pollutants
and of four of the emerging contaminants was modeled. Volatilization
and photolysis were only modeled in the bulk water, while sorption
and biodegradation were modeled in both water and sediment com-
partments. Four compounds (i.e., carbamazepine, sulfamethoxazole,
triclosan and HHCB) were studied with the lagoon model, based on
the availability of the physicochemical parameters required to run the
model. Traditional pollutantswere first calibrated as sorption, biodegra-
dation andphotolysis are all affected by their behavior. Then, physicochem-
ical properties of the compounds (i.e., aerobic, anoxic and photolytic
half-lives, partition coefficient, Henry's constant) were collected from
the literature and used as initial estimates for model calibration.
Table 2 shows the calibrated property values used for each contaminant
(Carballa et al., 2008; Ternes et al., 2004; US-EPA, 2008).

http://www.mikebydhi.com)


Table 2
Calibrated physicochemical properties of the selected emerging contaminants.

Log
(KOC)

Aerobic
half-life

Anoxic
half-life

Molecular
weight

Henry's
constant

Photolysis
half-life

Days Days g/mol Pa·m3/mol Days

Carbamazepine 3.48 N100 N100 236.27 1.094 E-5 82
Sulfamethoxazole 3.47 N100 N100 253.28 6.515 E-8 0.392
Triclosan 3.96 18 N100 289.54 1.520 E-2 0.0285
HHCB 4.20 8.7 N100 258.40 36.9 8.6

KOC = Octanol–carbon partition co-efficient.
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To create the dynamic input to themodel of the lagoon itwas impor-
tant to come up with a realistic dynamic evolution of its pollutants over
a whole year. Since no actual data were available, the input file was
based on days 215 to 609 of the Benchmark SimulationModel 2 influent
file, where components are based on the Activated Sludge Model No. 1
(Nopens et al., 2010). Those data were converted to a RWQM1GC
format and rescaled so that the monthly average biological oxygen
demand (BOD), total suspended solids (TSS), total Kjeldahl nitrogen
(TKN), phosphorus, flow rate and temperature were similar to the
values measured at the Lakefield sewage lagoon. The irradiance from
the sun was modeled as a sinusoidal function, with a mean value of
200 W/m2 and amplitude of 150 W/m2. The aeration was controlled
so that the dissolved oxygen concentration remained close to 2 mg/L
in the two units representing the south (i.e. aeration) pond. The initial
concentrations of the state variables were determined by running
a steady-state simulation under summer conditions, such that the
dynamic simulation started on June 1st.

3. Results and discussion

3.1. LC–MS and GC–MS method

The purpose of using double polarity mode in LC–MS/MS was to
simultaneously analyze the pharmaceuticals extracted from POCIS in a
single run. Carbamazepine, sulfamethoxazole and trimethoprim eluted
during the first monitoring interval in positive mode, and gemfibrozil
and ibuprofen eluted during the secondmonitoring interval in negative
mode. The total LC run time was 16 min, with the first 9 min run in
positive mode and the latter 7 min run in negative mode. Sucralose
was analyzed separately in negative polarity LC–MS/MS with an LC
run time of 19 min. Triclosan accumulated in the SPMDs was analyzed
by LC–MS/MS with a chromatographic retention time of 9 min and
MS/MS monitoring in negative mode. For the GC–MS analysis of
musks (i.e., HHCB and AHTN), the total run time was 37 min.

3.2. Sampling rates

Li et al. (2010) studied the effect ofwater temperature on RS of POCIS
between 5 and 25 °C and found an increase of RS (L/day) with
Table 3
Estimated mean concentrations of indicator compounds (POCIS) in Lakefield sewage lagoon d
significant (Mann Whitney U test; p = 0.001) differences in mean concentrations from the ra

Compounds Summer Fall

L1
(raw influent)
(ng/L)

L2
(aerated sewage)
(ng/L)

L3
(final effluent)
(ng/L)

L1
(raw influent)
(ng/L)

Carbamazepine 4.15 ± 0.90 4.85 ± 1.23 4.54 ± 0.51 22.6 ± 19.1
Sulfamethoxazole 3.53 ± 0.03 0.58 ± 0.23 0.04 ± 0.01* 3.35 ± 0.14
Trimethoprim 3.66 ± 0.70 1.11 ± 1.05 1.07 ± 0.25* 5.21 ± 1.19
Gemfibrozil 0.06 ± 0.01 0.16 ± 0.00 0.08 ± 0.02 0.10 ± 0.01
Ibuprofen 7.54 ± 0.48 1.62 ± 0.40 0.64 ± 0.05* 60.3 ± 8.05
Sucralose 18.2 ± 0.85 30.8 ± 5.02 35.2 ± 4.47* 11.5 ± 1.05

L1, L2 and L3 sites at raw sewage inflow (influent), aerated sewage and treated sewage outflow
mean concentrations, n = 3; ±SD.
temperature (Li et al., 2010). However, the increase in RS with temper-
aturewas found to be less than 2 fold over this wide temperature range.
Similarly, it was reported that RS in POCIS varied only slightly over a
wide range of hydrological flow rates (Li et al., 2010).

Wastewater entering the Lakefield sewage lagoon generally has
temperature of 15 to 25 °C. The treated wastewater exiting the north
pond of the lagoon has a temperature of 0 to 5 °C in the winter months,
15 to 27 °C in the summer months and 4 to 20 °C in the fall (Lakefield
Sewage Lagoon Report, 2011). The average temperature in the
Otonabee River in the fall is generally around 10 to 15 °C, and in the
summer, it is generally 20 to 25 °C (Peterborough Utility Commission
Report, 2008). Using higher RS (i.e., at 25 °C) or lower RS (i.e., at 5 °C)
to calculate the estimated concentration had only a modest effect on
the estimated concentrations of the target compounds.

In this study, the RS values for PPCPs used to estimate the concentra-
tions were all based on laboratory experiments at three different
temperatures (5, 15 and 15 °C). For the summer and fall, RS at 25 °C
and 15 °C was used for the influent and effluent, respectively, and for
the winter, rates at 15 °C and 5 °C were used for the influent and
effluent, respectively. For sucralose, a RS value at 25 °C was utilized for
calculation. In contrast, RS in SPMDs can vary by several orders of
magnitude under varying conditions of temperature, flow and biofouling
(Huckins et al., 2002). Therefore, PRCswere used to adjust the RS (i.e., RS

at 15 °C) to compensate for variations in conditions.

3.3. Indicator compounds in the sewage lagoon and river

In the Lakefield sewage lagoon, all target compounds were detected
at L1, L2 and L3 during the sampling periods. The mean estimated
concentrations of pharmaceuticals and sucralose accumulated in
POCIS of the sewage lagoon are listed in Table 3 and themean estimated
concentrations of personal care products accumulated in SPMDs of the
lagoon are listed in Table 4. Among the pharmaceuticals accumulated
in the POCIS, carbamazepine and ibuprofenwere detected at the highest
estimated concentrations of 22.6 ng/L and 60.3 ng/L, respectively in the
influent (L1) during the fall sampling period (Table 3). Ibuprofen levels
may have spiked in the fall as a result of increased use for treatment of
the common cold. Sucralose was consistently present at all sites within
the Lakefield sewage lagoon over all three seasons. The estimated
uring the summer, fall and winter sampling periods. Final effluents that show statistically
w influent are indicated by an asterisk (*).

Winter

L2
(aerated sewage)
(ng/L)

L3
(final effluent)
(ng/L)

L1
(raw influent)
(ng/L)

Pre-UV
(ng/L)

Post-UV
(ng/L)

13.2 ± 0.21 12.3 ± 0.46* 7.37 ± 0.30 10.5 ± 0.17 11.4 ± 0.19*
1.81 ± 0.11 0.74 ± 0.11* 3.91 ± 0.87 0.73 ± 0.25 1.19 ± 0.28*
10.5 ± 2.07 2.69 ± 0.34 9.72 ± 0.40 9.81 ± 1.27 8.36 ± 0.46
0.14 ± 0.00 0.14 ± 0.00 0.02 ± 0.00 0.05 ± 0.00 0.04 ± 0.00
51.3 ± 5.07 11.4 ± 0.40* 4.38 ± 0.61 0.44 ± 0.02 0.95 ± 0.03*
29.5 ± 1.78 47.8 ± 5.36* 11.1 ± 5.76 18.3 ± 0.07 18.2 ± 2.90

pipe (final effluent). Pre-UV = Before UV treatment. Post-UV = After UV treatment. For
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effluent concentrations for sucralose varied from 18.2 to 47.8 ng/L
(Table 3). Estimated concentrations in the final effluents for carbamaz-
epine in summer, trimethoprim in fall and winter, gemfibrozil in
summer, fall and winter, and sucralose in winter were not significantly
different from the mean concentrations of these compounds in raw
influents (Table 3). This indicates that these compounds were not
removed efficiently by lagoon treatment, as discussed in Section 3.4.

Among the personal care products accumulated in the SPMDs, triclo-
san, HHCB and AHTN were detected in all samples collected during the
summer, fall and winter (Table 4). The lowest and highest estimated
concentrations of triclosan at L1 were 0.83 ng/L in the winter and
30.1 ng/L in the fall, respectively. HHCB and AHTN concentrations at
L1 ranged from a low in winter of 492 and 32.9 ng/L, respectively and
a high in the fall of 1677 ng/L and 109 ng/L, respectively. Except for
AHTN in the fall and triclosan in winter, there were statistically signifi-
cantly lower mean estimated concentrations of the target analytes in
the treated effluent relative to mean estimated concentrations in the
raw influents (Table 4). The ratios of the concentrations of HHCB and
AHTN ranged from 5 to 32, and the highest ratio (i.e., 32) was found
in the effluent (L3) during the winter sampling period. In a previous
study of these compounds in wastewater in a conventional WWTP in
Peterborough, Ontario, Canada, the ratios of HHCB to AHTN varied
from 2.7 to 5.6 in samples collected at various stages of treatment
(Yang and Metcalfe, 2006). The reported ratios of HHCB to AHTN in
untreated and treated wastewater from several WWTPs in Ontario,
Canada were always b3 (Lee et al., 2003).

In the Otonabee River, only carbamazepine was detected in the
POCIS at all sites during both summer and fall sampling periods
(Table 5). The estimated mean concentration of carbamazepine was
lowest at the R1 site, upstream of the sewage discharge. These data
indicate that there is a source of this persistent pharmaceutical
compound that is upstream of the lagoon discharge. The Otonabee
River at Lakefield is located downstream of a number of recreational
lakes. The areas around these lakes are heavily populated with seasonal
and year round homes with septic tanks. It is possible that these septic
systems are the source of the compounds detected in the river at the
site upstream of the lagoon discharge (i.e., R1). Sucralose was not
monitored in the Otonabee River. However, a recent study conducted
in US drinking water treatment plants showed that sucralose was pres-
ent in sourcewaters known to be impacted bywastewater discharges at
concentrations ranging from 47 to 2900 ng/L (Mawhinney et al., 2011).

No triclosan was detected in the SPMDs deployed in the river over
both summer and fall sampling periods. However, HHCB and AHTN
Table 4
Adjusted estimatedmean concentrationsa of indicator compounds accumulated in SPMDs depl
Final effluents that show statistically significant (MannWhitney U test; p = 0.001) difference

Compounds L1
(raw influent)

Summer
EAF (PCB-32) 2.39
Triclosan (ng/L)Corrected 10.3 ± 0.98
HHCB (ng/L)Corrected 1068 ± 64.06
AHTN (ng/L)Corrected 46.7 ± 2.99

Fall
EAF (PCB-32) 7.53
Triclosan (ng/L)Corrected 30.1 ± 5.49
HHCB (ng/L)Corrected 1677 ± 216.2
AHTN (ng/L)Corrected 109 ± 46.6

Winter
EAF (PCB-32) 2.62
Triclosan (ng/L)Corrected 0.83 ± 0.39
HHCB (ng/L)Corrected 492.2 ± 56.84
AHTN (ng/L)Corrected 32.9 ± 0.63

EAFwas used to adjust for variations in RS as a result of temperature, flows and biofouling. L1, L2
pipe (final effluent).

a Corrected by EAF (based on PCB-32); n = 3; ±SD. Corrected concentration = concentrat
were detected in SPMDs placed in the river, yielding estimated mean
concentrations ranging from 0.09 to 0.99 ng/L and 0.01 to 0.18 ng/L,
respectively (Table 6). The presence of carbamazepine, HHCB and
AHTN in passive samplers at distances as much as ~2 km downstream
of the discharge point was probably due to the relative persistence of
these compounds. During the sampling periods, the Otonabee River
received approximately 1,314,000 L/day (July 2010), 867,000 L/day
(October 2010) and 1,720,000 L/day (March 2011) of effluent (i.e.,
effluent flow rate) from the Lakefield sewage lagoon (Lakefield
Sewage Lagoon Report, 2011). The daily average water flow rate in
Otonabee River (i.e., river flow rate) at Lakefield over these periods
were 6.0 × 109 L/day (July 2010), 7.0 × 109 L/day (October 2010) and
1.0 × 1010 L/day (March 2011) (Trent Severn Waterway Report,
2011). Using these flow rates, it was calculated that the dilution factors
(i.e., river flow rate/effluent flow rate) for effluent in the river were
between 4400 and 7800. Therefore, the lagoon effluent makes up a
minor part of the Otonabee River flow. This could be a reason why the
concentrations of the target compounds were either low or these
compounds not detected (Al Aukidy et al., 2012). Dispersion of effluent
in the river is likely, but it should be noted that temperature differences
may cause a density gradient that could keep the plume intact for a
considerable distance from the discharge point. In some rivers, WWTP
effluents contribute a high percentage to the total river flow. For
example, the flow of the Hoje River located in Sweden decreases signif-
icantly in the summer months, and during this time, WWTP effluents
frequently composed of N75% of the river flow (Bendz et al., 2005).

3.4. Removals in the Lakefield sewage lagoon

In Ontario, Canada, there are large seasonal differences in air and
water temperature and the duration and intensity of sunlight that
could affect the rates of removal of contaminants from wastewater.
Table 7 shows the percent removal of the PPCPs monitored in this
study, and the statistical significance of the differences in mean esti-
mated concentrations between raw influent and final effluents. For
carbamazepine in the summer sampling period, the estimated concen-
tration of that anti-epileptic drug did not change consistently between
the sewage influent and the final effluent sampling site (Table 7).
Also, there was a negative removal of carbamazepine observed du-
ring the winter season, as the estimated influent concentration was
7.37 ng/L and the estimated effluent concentration was higher, at
11.4 ng/L. In a previous study of three conventional activated sludge
wastewater treatment plants (WWTPs), the average removal of
oyed in the Lakefield sewage lagoon during the summer, fall and winter sampling periods.
s in adjusted mean concentrations from the raw influent are indicated by an asterisk (*).

L2
(aerated sewage)

L3
(final effluent)

3.23 3.37
6.17 ± 0.32 0.29 ± 0.15*
133.4 ± 17.11 43.1 ± 5.71*
21.1 ± 1.62 7.96 ± 0.38*

8.42 9.50
11.1 ± 3.36 2.58 ± 0.65*
365.6 ± 27.55 209.0 ± 226.8*
40.4 ± 24.5 29.1 ± 39.9

3.20 2.70
2.45 ± 1.70 0.48 ± 0.44
157.3 ± 24.12 291.4 ± 26.39*
16.7 ± 6.47 9.19 ± 1.75*

and L3 sites at raw sewage inflow (influent), aerated sewage and treated sewage outflow

ion × EAF.



Table 5
Estimated mean concentrations of indicator compounds accumulated in POCIS deployed in the Otonabee River during the summer and fall sampling periods.

Compounds Summer Fall

R1
(ng/L)

R2
(ng/L)

R3
(ng/L)

R4
(ng/L)

R5
(ng/L)

R1
(ng/L)

R2
(ng/L)

R3
(ng/L)

R4
(ng/L)

Carbamazepine 0.11 ± 0.01 0.15 ± 0.02 0.17 ± 0.01 0.12 ± 0.00 0.12 ± 0.01 0.18 ± 0.06 0.23 ± 0.13 0.31 ± 0.01 0.31 ± 0.07
Sulfamethoxazole ND ND ND ND ND ND ND ND ND
Trimethoprim ND ND ND ND ND ND ND ND ND
Gemfibrozil ND ND ND ND ND ND ND ND ND
Ibuprofen ND ND ND ND ND ND ND ND ND
Sucralose NM NM NM NM NM NM NM NM NM

R1 = Otonabee River reference site upstreamof the sewage outflowgrate. R2, R3, R4 andR5 sampling sites at increasing distances downstreamof outflowgate. R5was not sampled in the
fall. ND = not detected. NM = not monitored. For mean concentrations, n = 3; ±SD.
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carbamazepine was found to be less than 25% (Jelic et al., 2011), while
Bendz et al. (2005) measured a 30% reduction in a WWTP that also
used activated sludge (Bendz et al., 2005). Essentially no removal of
carbamazepine was observed in aWWTP, although there were changes
in the relative amounts of themetabolites of carbamazepine throughout
the treatment stream (Miao et al., 2005). Kasprzyk-Hordern et al.
(2009) reported that the concentration of carbamazepine was higher
in the effluent than that of the influent of an activated sludge WWTP
due to poor biodegradability and hydrolysis of carbamazepine from a
glucuronide conjugate. The studied sewage lagoon reduced the estimat-
ed concentration of carbamazepine by 43.6% in the fall sampling period
(Table 7), but it is difficult to speculate on the reason for themore effec-
tive removal at this time. Adsorption onto sludge (i.e., biosolid) is not an
important removal process for carbamazepine, which is consistent with
its low sorption coefficient, Kd of 1.2 L/kgss (Ternes et al., 2004; Miao
et al., 2005; Zhang et al., 2008). Photocatalytic degradation could be a
pathway for removal of carbamazepine (Dai et al., 2012).

The removal efficiencies for ibuprofen in the summer, fall andwinter
sampling periods were 91.5%, 81.1% and 78.3%, respectively (Table 7). A
review of 6 articles documented an average removal rate of 90% for
ibuprofen (Bendz et al., 2005). Another review found that out of 44
studies at WWTPs, the average removal for ibuprofen was 69%
(Oulton et al., 2010). Thus, the removals of ibuprofen in the Lakefield
lagoon are similar to removals of this compound reported for conven-
tional WWTPs. The seasonal trend for ibuprofen in the Lakefield lagoon
is consistent with the trend for all PPCPs in the lagoon, showing
removals declining in the order of summer N fall N winter (Table 7).
No seasonal trends for removals of a number of pharmaceuticals, includ-
ing ibuprofen at aWWTP inWindsor, Ontario, Canadawere found (Hua
et al., 2006). However, for the study by Hua et al. (2006) the fall
sampling period was performed in September, while the fall sampling
in the present study was done in late October when the weather
would be expected to be colder and the days shorter. It was reported
that removals of ibuprofen at a WWTP reduce during the winter, and
Table 6
Adjusted estimated mean concentrationsa of indicator compounds accumulated in SPMDs dep

Summ
Compounds R1 R2

EAF (PCB-32) 2.50 3.54
HHCB (ng/L)Corrected 0.20 ± 0.02 0.53 ± 0.15
AHTN (ng/L)Corrected 0.04 ± 0.02 0.09 ± 0.06

Fall
EAF (PCB-32) b 3.15
HHCB (ng/L)Corrected NA 0.87 ± 0.49
AHTN (ng/L)Corrected NA 0.09 ± 0.04

EAF was used to adjust for variations in RS as a result of temperature, flows and biofouling. Ho
a Corrected by EAF (based on PCB-32); n = 3;±SD. Corrected concentration = concentration

R4 and R5 sampling sites at increasing distances of downstream outflow gate.
b EAF value not determined.
c R5 not sampled in the fall. NA = not applicable.
it was speculated that this was due to lower temperatures reducing
the microbial degradation rates (Vieno et al., 2005).

Removals of sulfamethoxazole were 98.8%, 78.1% and 69.6% in the
summer, fall and winter season, respectively (Table 7). Trimethoprim
underwent a significant 70.8% reduction in the summer. While
removals of trimethoprim were calculated as 48.4% and 14.0% in the
fall and winter, respectively (Table 7), the estimated mean concentra-
tions were not significantly different. Sulfamethoxazole estimated
concentrations in raw influents were significantly higher than estimat-
ed concentrations in the effluents. The antibiotics, sulfamethoxazole
and trimethoprim are both considered to be moderately persistent in
wastewater treatment plants (Bendz et al., 2005). However, 91% reduc-
tions in the concentration of sulfamethoxazole was observed in a non-
conventional lagoon and wetland treatment system in Louisiana, USA
(Conkle et al., 2008). Sulfamethoxazole is known to be susceptible to
photodegradation, which could explain the reduced removals of
sulfamethoxazole in winter because of shorter and less intense
exposure to sunlight (Andreozzi et al., 2003; Ryan et al., 2011). The
rates may also have been affected by the closure of the north settling
pond in winter. The other antibiotic, trimethoprimmight also be affect-
ed by photodegradation. It was reported that direct and indirect
photolysis contributed to the degradation of trimethoprim in waste-
water treatment ponds and allowingwastewater to undergo photolysis
in settling lagoons helped to reduce the concentrations of some
pharmaceuticals (Ryan et al., 2011). In contrast, it was observed that
trimethoprim was relatively persistent in a conventional WWTP, with
less than a 30% reduction in concentration (Jelic et al., 2011).

During the three sampling periods, the mean concentrations of
gemfibrozil in treated wastewater were not significantly different
from the untreated wastewater entering the Lakefield sewage lagoon.
It was suggested that glucuronide conjugates formed during human
metabolism of drugsmight be cleaved as these conjugates pass through
wastewater treatments, thereby increasing the concentration of the
parent compound in the treated wastewater (Ternes, 1998). It has
loyed in the Otonabee River during the summer and fall sampling periods.

er
R3 R4 R5

2.33 4.43 3.99
0.33 ± 0.15 0.67 ± 0.41 0.47 ± 0.04
0.03 ± 0.01 0.05 ± 0.03 0.05 ± 0.01

3.99 1.10 c

0.99 ± 0.48 0.09 ± 0.05 c

0.18 ± 0.07 0.01 ± 0.00 c

wever, EAF values were not available for the fall sampling.
× EAF. R1 = Otonabee River control (site at upstreamof the sewage outflowgrate). R2, R3,



Table 7
Removal of the indicator compounds and conventional wastewater quality parameters.
Removals that show statistically significant differences between raw influent and final
effluent are indicated with an asterisk (*).

Compounds/parameters Summer Fall Winter

% Removal % Removal % Removal

BODa 98.8 99.2 96.4
SSa 98.7 97.3 87.5
Pa 98.3 98.9 92.8
Na 96.5 98.9 58.9
Carbamazepine −9.28 45.8* −54.1*
Sulfamethoxazole 98.9* 78.1* 69.5*
Trimethoprim 70.8* 48.5 14.0
Gemfibrozil −23.9 −45.7 −99.8
Ibuprofen 91.5* 81.1* 78.3*
Sucralose −103* −330* −83
Triclosan 97.2* 91.4* 42.5
HHCB 96.0* 87.5* 40.8*
AHTN 83.0* 73.4* 72.1*

% Removal = (influent − effluent) / influent × 100.
a Data provided by Village of Lakefield, Lakefield, ON, Canada.
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been reported that 50% of gemfibrozil is excreted as the glucuronide
conjugate, so it is possible that de-conjugation released significant
amounts into the treated sewage (Ternes, 1998). However, 55% removal
of gemfibrozil was observed in a conventional WWTP (Paxéus, 2004).
More work is required to determine the mechanisms for the negative
removals of gemfibrozil in the sewage lagoon.

For sucralose, estimated mean concentrations were found to be
highest in the final effluents for samples collected in all seasons
(Table 3). This indicates that this compound was not removed during
lagoon-based treatment processes (Table 7). Literature data support
this finding. Sucralose was detected in the range of 800 to 1800 ng/L
in WWTP influents and effluents in Sweden, Switzerland, Germany,
Austria, Israel and Canada (Lange et al., 2012). Sucralose is a very hydro-
philic compound, with a log Kow = −0.50 and it is not biodegradable
(Pasquini et al., 2013). A fate study conducted by Soh et al. (2011)
indicated that sucralose is a persistent compound that is resistant to
microbial degradation, hydrolysis, soil sorption, chlorination, ozonation
and UV-photolysis. Further study needs to be conducted to determine
the cause of the increase in the estimated concentration (2 to 3 fold)
in the lagoon effluent relative to the raw influent.

For triclosan, there was also a significant seasonal trend in removals,
with percent removals in the range of 42.6–97.1% (Table 7). In aWWTP
in Dortmund, Germany serving 350,000 inhabitants with influent
triclosan concentrations of 1200 ng/L, removals were 95% (Bester,
2003). Triclosan is relatively hydrophobic, and most of the triclosan is
likely to be removed through partitioning onto sewage sludge and
biodegradation by microorganism (Hua et al., 2005; Lee et al., 2012).
Table 8
Loading of indicator compounds into Otonabee River during summer, fall and winter sampling

Compounds Summera Fallb

Mass loading
(mg/day)

Mass loading
(mg/1000 inhabitants/day)

Mass loading
(mg/day)

Carbamazepine 5963 2293 11,072
Sulfamethoxazole 53 20 637
Trimethoprim 1406 541 2332
Gemfibrozil 101 39 125
Ibuprofen 838 322 9879
Sucralose 4.6E + 07 1.8E + 07 4.1E + 07
Triclosan 381 147 2237
HHCB 5.7E + 04 2.2E + 04 1.8E + 05
AHTN 10,459 4023 25,264

Daily average effluent discharge volume: a1,314,000 L for July 2010, b867,000 L for Oct
Lakefield, ON, Canada). Mass loading = (concentration in final effluent) × (daily averag
effluent discharge volume) / served population] × 1000.
For the synthetic musks, HHCB and AHTN removals in the summer
were also higher than in the fall and winter, but were still in the range
of 40.8–96.0% (Table 7). A previous study at a conventional WWTP in
Ontario, Canada showed 73% and 67% (annual average) removals for
HHCB and AHTN, respectively (Yang and Metcalfe, 2006). Another
study performed in WWTPs in Ontario, Canada showed removals of
HHCB and AHTN in the range of 80% (Lee et al., 2003). Once again, it
appears that the Lakefield lagoon is equally as effective at removing
PPCPs as conventional WWTPs. Both synthetic musk compounds
would be expected to have a similar tendency to partition between
aqueous and non-polar matrices (e.g., sludge) because of their similar
log Kow values of 5.9 and 5.7, respectively. The measured Kd values
(i.e., sorption potential on sludge) for sorption of AHTN and HHCB on
sludge reported by Smyth et al. (2007) were 4920 and 5300 L/kg
(primary treatment) and 20,800 and 25,300 L/kg (secondary treat-
ment), respectively (Smyth et al., 2007). These values confirm that
a major mechanism for removal of HHCB and AHTN is through
partitioning onto sludge. Buerge et al. (2003) suggested that photo-
chemical degradation is another significant elimination process for
AHTN. This may explain why AHTN was not removed very efficiently
in winter (Table 7) when photodegradation would be expected to be
minimized because of reduced sunlight and closure of the settling
pond. Volatilization from water to the atmosphere is also an important
fate process for both musk compounds (Buerge et al., 2003), due to the
relatively high Henry's law constants (KH) for these compounds (Yang
and Metcalfe, 2006).

Asmentioned before, in thewinter season, thewastewater bypassed
the stabilization pond and so samplers were placed at points before and
after UV-disinfection at the outlet of the lagoon. Pre-UV and post-UV
concentrations (Tables 3 and 4) of all monitored compounds (carba-
mazepine, sulfamethoxazole, trimethoprim, gemfibrozil, ibuprofen,
sucralose, triclosan, HHCB and AHTN) in the winter samples from the
lagoon were found to be similar. Hence, removals were minimal from
UV-treatment at the fluences used for wastewater disinfection.

Table 7 also lists the removal data for various conventional waste-
water quality parameters in the Lakefield sewage lagoon, including
the biological oxygen demand (BOD), suspended solids (SS), total
phosphorus (P) and total nitrogen (N). The removals of these conven-
tional parameters ranged from 58.9 to 99.2% and showed a trend to
lower removals in the winter. The removal data for BOD, SS, P and N
are comparable to the removals of several indicator compounds in this
study; especially during the summer months.

The concentrations of PPCPs measured in this study were generally
lower in comparison to the data in the literature for conventionalwaste-
water treatment plants. This may be due to the small size of the popula-
tion served by the lagoon. Consumption amounts of PPCPs are dependent
on the population size. The population of the village of Lakefield is about
2600, whereas other studies on conventional WWTPs focus on larger
period.

Winterc

Mass loading
(mg/1000 inhabitants/day)

Mass loading
(mg/day)

Mass loading
(mg/1000 inhabitants/day)

4258 19,521 7508
245 2047 787
897 14,379 5530
48 65 25

3800 1637 630
1.6E + 07 3.1E + 07 1.2E + 07
860 824 317

7.0E + 04 5.0E + 05 1.9E + 05
9717 15,807 6080

ober 2010 and c1,720,000 L for March 2011 (data provided by Village of Lakefield,
e effluent discharge volume) and = [(concentration in final effluent × daily average



Fig. 3.Modeled and measured concentrations of (A) carbamazepine, (B) sulfamethoxazole, (C) triclosan and (D) HHCB after the aerated lagoon (top) and at the effluent (bottom).
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urban centers with larger population. However, there is also some treat-
ment of thewastewater before it is pumped froma collection sump in the
village of Lakefield to the lagoon. Alum is added as a flocculant prior to
discharge of sewage into the lagoon and this may precipitate some of
the PPCPs out with suspended solids. Also, precipitation may have re-
sulted in dilution of the wastewater in the lagoon.

3.5. Loading of indicator compounds

The estimated daily loadings (mg/day) of PPCPs and sucralose into
the Otonabee River from the Lakefield sewage lagoon are presented in
Table 8. The loadings for PPCPS ranged from 53 to 5.0E + 05 mg/day,
with the highest loadings generally occurring in the winter season and
for sucralose 3.1E + 07 to 4.6E + 07 mg/day. A study reported that
the sum loadings for several commonly used pharmaceuticals from
two urban wastewater treatment plants (population of 250,000 and
750,000) in Alberta, Canada were three orders of magnitude greater
than the loadings from a rural lagoon (N4000 population) at 4000 mg/
day (MacLeod and Wong, 2010), but the per capita loadings for all
plants were found to be similar. The loading amount should be
dependent on population size, consumption patterns of the sites and
effluent discharge rate (L/day). In Table 8, mass loading data is also
presented as mg/1000 inhabitant/day. The mass loading data of urban
WWTPs presented in a review article by Verlicchi et al. (2012) was in
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the range of 90 to 364 mg/1000 inhabitant/day for carbamazepine,
ibuprofen, gemfibrozil, triclosan and sulfamethoxazole. Mass loading
values are dependent on daily effluent discharge flow (L/day) and
population size. For the community of 2600 people in Lakefield Village,
the effluent flow ratewas high (867,000 to 1,720,000 L/day). This could
be the reason for the higher mass loading in compare to the literature
values.

3.6. Lagoon modeling results

Fig. 3 shows the results of the simulations for carbamazepine,
sulfamethoxazole, triclosan and HHCB, in comparison to the estimated
average concentrations. For all compounds, we observe an important
bump on day 183 (December 1st) that is caused by the redirection of
the effluent of the south pond in the photolysis unit. Results for
carbamazepine show that the model overestimates removal of this
compound in the fall (Fig. 3A). For sulfamethoxazole, the model was
able to describe the dynamics of the contaminant consistent with the
observations for all seasons (Fig. 3B). The removals of triclosan as
shown by the model were higher than what was determined from the
estimated concentrations in the summer and fall (Fig. 3C). Modeling
results for HHCB were predictive of the estimated concentrations in
summer and winter (Fig. 3D). However, the predictions for HHCB in
the fall did not match the estimated concentrations, although there
was high variability in the estimated values from that sampling period.

Overall, it appears that the model was able to adequately describe
the fate of these four emerging contaminants in the summer andwinter.
These compounds are affected differentially by environmental fate
processes (Table 2), so it is encouraging that the model was able to
make reasonable predictions of removals during the summer and
winter sampling periods. However, the fall measurements were not
well represented by the model. A temperature effect that is not well
described by the model, inhibition of biological or physicochemical
processes during this season, or application of inappropriate RS to
estimate concentrations from the amounts accumulated in the passive
samplers are all possible reasons for the lack of correlation between
predicted and estimated concentrations. Further analysis on the lagoon
would be required to resolve this issue.

3.7. Potential biological impacts

In the Otonabee River, the detected indicator compounds were
carbamazepine, HHCB and AHTN, and their concentrations were low
(b1 ng/L) during summer and fall sampling periods. At this concentra-
tion, carbamazepine would not be expected to be a toxic hazard to or-
ganisms in the Otonabee River, since EC50 values for this compound
have been reported as N100 mg/L (48 h) for immobilization of Daphnia
magna and 25.5 mg/L (7 day) for reduced growth rates of Lemna minor
(Cleuvers, 2003). HHCB and AHTN are toxic to aquatic invertebrates at
ppb (μg/L) to lowppm(mg/L) levels (Brausch andRand, 2011). Toxicology
tests using multiple chemicals were found to have a greater toxic
effect than from exposures to a single chemical. Specific combina-
tions that were found to have increased toxicity were clofibric acid
and carbamazepine and diclofenac and ibuprofen (Cleuvers, 2003).
It is important to consider the cumulative effects of all the drugs
present when assessing risk to aquatic organisms. However, it is
possible that the synthetic musks and triclosan could bioaccumulate
in aquatic organisms to higher concentrations (Gatermann et al.,
2002; Orvos et al., 2002; O'Toole and Metcalfe, 2006).

4. Conclusions

Removal rates of the PPCPs in the lagoonwere generally consistentwith
removals of these indicator compounds reported in the literature for con-
ventional WWTPs. Compounds that are susceptible to photodegradation
(i.e., sulfamethoxazole and trimethoprim) showed greater removals in
the lagoon in the summer, and also ibuprofen, which is susceptible
to microbial degradation showed greater removals in the summer.
Carbamazepine, which is considered recalcitrant in wastewater treat-
ment systems showed inconsistent results for removals in the summer,
fall and winter. Also, sucralose was found to be resistant to treatment
processes in all seasons. For triclosan, HHCB and AHTN, higher removals
were also observed during the summer season. Estimated concentra-
tions of carbamazepine, HHCB and AHTN were very low (b1 ng/L) in
the Otonabee River at downstream of the sewage lagoon discharge,
and they are unlikely to pose a threat to the ecosystem. Also, a new
lagoonmodelwas able to adequately predict the fate of carbamazepine,
sulfamethoxazole, triclosan and HHCB in the lagoon in the summer and
winter season. The predicted values obtained from lagoon modeling
generally agreed well with measured concentrations. POCIS and SPMD
passive samplers were shown to be an effective monitoring tool for
PPCPs in wastewater and receiving waters.
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