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a b s t r a c t

This paper makes a critical review of the available techniques for analysing, completing and generating
influent data for WWTP modelling. The solutions found in literature are classified according to three
different situations from engineering practice: 1) completing an incomplete dataset about the quantity
and quality of the influent wastewater; 2) translating the common quality measurements (COD, TSS, TKN,
etc.) into the ASM family components (fractionation problem); 3) characterising the uncertainty in the
quality and quantity of the influent wastewater. In the first case (Situation 1), generators based on Fourier
models are very useful to describe the daily and weekly wastewater patterns. Another specially prom-
ising solution is related to the construction of phenomenological models that provide wastewater
influent profiles in accordance with data about the catchment properties (number of inhabitant equiv-
alents, sewer network, type of industries, rainfall and temperature profiles, etc.). This option has the
advantage that using hypothetical catchment characteristics (other climate, sewer network, etc.) the
modeller is able to extrapolate and generate influent data for WWTPs in other scenarios. With a much
lower modelling effort, the generators based on the use of databases can provide realistic influent
profiles based on the patterns observed. With regard to the influent characterisation (Situation 2), the
WWTP modelling protocols summarise well established methodologies to translate the common mea-
surements (COD, TSS, TKN, etc.) into ASM family components. Finally, some statistical models based on
autoregressive functions are suitable to represent the uncertainty involved in influent data profiles
(Situation 3). However, more fundamental research should be carried out to model the uncertainty
involved in the underlying mechanisms related to the wastewater generation (rainfall profiles, household
and industries pollutant discharges, assumed daily and weekly patterns, etc.).

© 2014 Published by Elsevier Ltd.
1. Introduction

Wastewater Treatment Plants (WWTPs) are urban in-
frastructures that reproduce the biodegradation processes that
naturally occur in rivers in an intensified manner. The high capital
and operational costs associated to these facilities (Vanrolleghem
et al., 1996; Liu et al., 2011; Rodriguez-Garcia et al., 2011) have
fostered the use of simulation models to optimise their perfor-
mance, and in this sense, the ASM family models (Henze et al.,
2000) have become a standard. In the last years, many publica-
tions have illustrated the usefulness of simulation models for
WWTP design (Bixio et al., 2002; Benedetti et al., 2010; Rivas et al.,
Universidad de Deusto, Fac-
ao, Spain.

artin).
2008); operation (Ostace et al., 2011) and control (Ayesa et al.,
2006; Nopens et al., 2010; Flores-Alsina et al., 2008; Yong et al.,
2006).

One of the main limitations for a more widespread utilization of
WWTPmodels is generally related to the scarce data sets measured
at the inlet of the WWTP (Rieger et al., 2010a). The high cost (both
in terms of workload and financial resources) related to experi-
mental collection of an extended dynamic influent dataset is one of
the main reasons. The use of on-line sensors still remains compli-
cated, since the sticky materials of raw wastewater and the heavy
deposit of pollutants make their maintenance cost considerable.
Moreover, in view of risk analysis, models are generally used to
predict the behaviour of the system under some hypothetical
conditions (population growth; strong rain events; uncontrolled
spills, etc.) for which real data might not exist.

Influent data for municipal WWTP modelling consist of time
series data of the flow and concentrations of the water quality
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parameters (COD, TKN, TSS, BOD, NH4, NO3, TP, PO4, etc.). These
profiles depend on many factors: size of the catchment, type of the
sewer system, number of person equivalents, industrial discharges,
soil type, rainfall patterns, temperature, etc (Butler et al., 1995; Bott
and Parker, 2010; Schilperoort, 2011). The complexity of the
wastewater generation is so big that there is still no clear rela-
tionship between the generating mechanisms and the expected
water quality profiles. The problem becomes even more difficult if
the objective is a modelling exercise because the characterisation of
the aforementioned lab measurements in terms of the components
of the ASM familymodels is not straightforward. This paper gathers
the solutions found in literature to analyse, complete, and generate
influent data for WWTP modelling.
2. Engineering practice necessities and classification followed

This paper makes a critical review of the available techniques for
WWTP influent data analysis and generation. It is intended to guide
engineers in their particular situation to get the most of their
experimental data (if any) in view of performing simulation studies
of real or hypotheticalWWTPs. The solutions found in the literature
are classified according to three situations from engineering prac-
tice as shown in Box 1.

The solutions in Situation 1 help to understand the information
in the available data and to complete it on the basis of the patterns
expected or of characteristics of the catchment area (temperature,
population activity, etc.). Themethods in Situation 2 include several
protocols and mathematical techniques able to translate the
generally available experimental measurements (COD, TSS, TKN,
etc.) into ASM family components (SS, SI, XS, NH4, etc.). In Situation
3, we cover the scientific effort made to characterise the uncer-
tainty of influent data profiles (Friedler and Butler, 1996) and the
available techniques to generate other similar data series in a sto-
chastic manner (Benchmann et al., 1999; Rousseau et al., 2001).
Situation 1 and Situation 2 appear in any simulation study of a
WWTP. Situation 3 follows the other two for simulation-based
uncertainty analysis (usually performed by Monte Carlo
techniques).

Although most of these methods are intended for simulation
analysis, some of the protocols for wastewater fractionation (Situ-
ation 2) are encouraged to be followed even if no simulation
analysis is scheduled. For example, the STOWA protocol (Hulsbeek
Box 1

Classification of solutions found in the literature to analyse,

complete, and generate influent data forWWTPmodelling: Three

situations from engineering practice.

Situation 1

An engineer has an incomplete dataset (or no data) about the quantity

and quality of the influent wastewater. She has some ideas about

how the influent of the plant should be. She might also have some

data about the catchment area.

Situation 2

An engineer has information enough about the quantity and quality of

the influent wastewater. She would like to translate that into some

ASM family model state variables. This is the so-called

characterisation problem.

Situation 3

The engineer has information enough about the quantity and quality of

the influent wastewater. However, that is only a single realisation of

the problem. She would like to feature the uncertainty around these

data and to generate other similar influent profiles.
et al., 2002) presents a wastewater characterisation method that is
very helpful for the daily WWTP operation (Roeleveld and van
Loosdrecht, 2002) i.e., the authors explain that the soluble COD
available will be related to the capacity of the plant for high ni-
trogen and biological phosphorus removal.

Sections 3e5 of the manuscript describe the solutions found in
the literature related to Situation 1, Situation 2 and Situation 3
respectively. At the end of each section, Box 2e4 provide a list of the
most frequently asked questions about the solutions. These boxes,
although helpful and illustrative should not draw attention from
the text since the manuscript includes more solutions and much
more detailed explanations about the available methodologies and
their advantages. Finally, Section 6 presents the methods presented
in literature for calibration, validation and model performance
evaluation of influent generation models; Section 7 discusses the
models and methods presented, and Section 8 summarizes the
main conclusions.

3. Solutions found for situation 1: engineer has an
incomplete dataset about the quantity and quality of the
influent wastewater

Under Situation 1, we gather the techniques found in literature
to analyse, complete, and generate influent data for WWTP
modelling. Three groups of solutions have been identified. A first
group of solutions consists of methods that are based on the con-
struction of databases (Section 3.1). From these datasets general
patterns are identified and used to complete or generate influent
profiles of similar characteristics. A second group of solutions is
based on the use of harmonic functions (Section 3.2). Under dry
weather conditions, the influent wastewater concentrations follow
stable trajectories related to daily and weekly patterns. In a third
group, we describe those methods that provide a sufficient basis to
advance towards the modelling of the wastewater generation
mechanisms (phenomenological models) (Section 3.3). This clas-
sification follows an increasing modelling/conceptualisation effort
from the data driven methods (solutions in Section 3.1) passing by
very simple models based on harmonic functions (solutions in
Section 3.2) to end up with the phenomenological models (Section
3.3).

3.1. Solutions based on the construction and interpretation of
databases

The most intuitive manner of generating influent data for
WWTP modelling consists of gathering experimental data, under-
standing its main patterns and completing or generating new data
on that basis. With regard to wastewater quality and quantity
characterization many authors have gathered and analysed data at
the very source (Butler et al., 1995; Almeida et al., 1999; Friedler,
2004); in the sewer system (Benchmann et al., 1999; Ort et al.,
2005); and at the entrance of WWTPs (Günther, 2000; Siegrist
et al., 1999; Petersen et al., 2002; Bott and Parker, 2010;
Schilperoort, 2011). In this section we only cover the datasets
compiled in view of creating influent generators.

From a very practical perspective, Devisscher et al. (2006) pro-
posed an influent generator as part of a methodology to assess the
benefits of using advanced control in wastewater treatment plants.
The generator is able to provide synthetic data by interpolating
values within the same time window of the available data. With
that in mind, they define a procedure in which correction factors
are applied to represent the weekend and first flush events;
available quality data are aggregated in the form of seasonal aver-
ages and redistributed on a day-to-day basis using a normal dis-
tribution; a daily pattern is applied to the flow rate; and (if



Box 2

Frequently Asked Questions in Situation 1, i.e., an engineer

wants to complete a dataset about the quantity and quality of the

influent wastewater.

a) Is there any method to interpolate values so as to

increase the frequency of some given WWTP influent

data profiles?
Yes, the method of Devisscher et al. (2006) based on the use of

databases, or the ones of Langergraber et al. (2008) or Manina et al.

(2011) based on the use of harmonic functions can help to complete

some scarce datasets. Also, the phenomenological model of

Gernaey et al. (2011) has been used with this propose (Flores-Alsina

et al., 2013a; b).

b) Is there any tool to derive influent WWTP data given

some properties about the catchment area or the

distribution of emission sources (households, in-

dustries, restaurants, dentists …)?
Yes, the generator of Gernaey er al. (2011) provides influent data for

urban WWTPs given the population and catchment area

characteristics (PE, industrial load, sewer length, rain and

temperature profiles, etc.). The generator of De Keyser et al. (2010)

provides emission profiles expected from a given urban population

(PE for households, road transport, restaurants, etc.). The former

describes the effect of soil, first flush, sewer system, etc.; while the

later is only concerned about the very source emission patterns

providing profiles that can be used as inputs for sewer, WWTP, or

surface water models.

c) Are there some benchmark influent data profiles or

simple models to generate influent data for urban

WWTPs?
Influent profiles for a WWTP of 100,000 PE are available at http://www.

benchmarkwwtp.org/including dry, rain and storm weather

conditions.

The models of Langergraber et al. (2008) or Mannina et al. (2011)

(based on harmonic functions) provide influent profiles for dry

weather conditions. The former (Langergraber et al., 2008) is

accompanied by a set of parameters among which the modeller can

select those corresponding to the desired size of tin WWTP under

study.

d) Which would be the main references or tools to

improve the understanding of the generating mech-

anisms in a given catchment area and their relation-

ship with the WWTP influent data?
Interesting results can be found in the research work conducted by

Butler et al. (1995), Friedler et al. (1996a,b) or Almeida et al. (1999)

about domestic wastewater generation. This research has been

followed by the EU project ScorePP (www.scorepp.eu) (De Keyser

et al., 2010) and the work of Ort et al. (2005) analysing the most

general patterns of daily, weekly, and yearly emissions. Another

good manner of proceed is to use the phenomenological model of

Gernaey et al. (2011) and calibrate it for some given experimental

data (as shown by Flores-Alsina et al. (2013)); or to study the very

recent modelling proposal of Talebizadeh et al. (2014).
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necessary) daily flow rate values are generated from Poisson dis-
tributions. This pragmatic method results in profiles comparable
with the available data and able to provide reliable simulation re-
sponses. As an example, Fig. 1 shows simulated and real data of
ammonium during a 365-day period. The same approach was
adopted by Benedetti et al. (2008) in a set of tools to assess WWTP
performance in a probabilistic way. The method was also employed
as an influent generator (Gevaert et al., 2009) in a dynamic
pollutant fate model.

Another influent generator was proposed by De Keyser et al.
(2010) within a framework of a pollutants release study in urban
areas. In this case, the experimental data are gathered from an
exhaustive literature review (Gevaert et al., 2008) and typical
release patterns are defined based on expert knowledge. The
generator is based on the development of a database with a
structure and quantitative description of emission sources and
their patterns on a typical daily, weekly, and yearly basis. The
generator is able to provide profiles of Priority Pollutants (PP),
generic pollutants (nutrients, suspended solids and COD), and
wastewater flow rates by using: a phenomenological description of
the PP release based on individual events which are modelled as
random peaks that become bell-shaped by being transported in the
sewer network (Ort et al., 2005); typical patterns identified in
literature (Gevaert et al., 2008); a dry weather flow generator
(based on Gernaey et al., 2006); and adding two different types of
stochasticity (Section 5). Fig. 2 shows an example of synthetically
generated daily profiles for generic pollutant fluxes.

The generator of Devisscher et al. (2006) interpolates influent
data by increasing the data frequency for given dataset (and given
properties of the catchment area). It does not, therefore, have any
capacity to adapt the output to different catchment properties (for
example, different person equivalents, soil properties, etc.). On the
contrary, the generator of De Keyser et al. (2010) generates dynamic
influent data profiles by aggregating punctual emissions. The
characteristics of these emissions are coherent with the person
equivalents in the catchment area, weekly profiles, daily maximum
peaks, etc. as specified by the user. The model is based on emission
patterns and does not consider (it was never its objective) prop-
erties related to the climate, soil or sewer system.

Although both approaches propose the use of datasets to
generate influentwastewater data, the contexts and scopes are very
different. The approach of Devisscher et al. (2006) was motivated
by the effort of the Aquafin wastewater utility for managing,
monitoring and controlling more than 100 WWTPs in Flanders
(Belgium). In this case, the generating approach acts as an ad hoc
interpolator for wastewater quality parameters. The generator of
De Keyser et al. (2010) is motivated by a European research project
that looks for international consensus for controlling the release of
priority and commonpollutants. In this case, the dataset is based on
expert knowledge and bibliographic data. The generating proce-
dure is much more descriptive and can be used even for simulation
studies where no experimental data is available.

3.2. Solutions based on the use of harmonic functions

A pioneering approach of using harmonic functions in the
context of WWTP modelling was proposed by Carstensen et al.
(1998). They used a second order Fourier approximation to
feature the daily profiles of the influent flow and to forecast the
hydraulic load one hour ahead. Based on a similar idea, other au-
thors (Langergraber et al., 2008; Mannina et al., 2011) have pro-
posed the use of Fourier equations to feature the wastewater
quantity and quality at the inlet of a WWTP.

The Fourier-based models are generally used to describe the
patterns of the wastewater under dry weather conditions. These
models are very useful to interpolate hourly values given average
daily data (Mannina et al., 2011) or simply to complete the available
data (Langergraber et al., 2008). The influent model proposed by
Mannina et al. (2011) (already outlined by Mannina and Viviani,
2009) introduces the moving average concept to account for
inter-daily variation. The generator provides hourly values for 43
days (based on 43-day average daily data in their case study) by
introducing a moving average value that draws a straight line be-
tween two given daily averages on top of which the third order
Fourier-based dynamics are added. In a simpler Fourier modelling
framework, Langergraber et al. (2008) assumed that the overall
wastewater results are the sum of different streams (infiltration

http://www.benchmarkwwtp.org/
http://www.benchmarkwwtp.org/
http://www.scorepp.eu


Fig. 1. (from Devisscher et al., 2006): Real and simulated ammonium data for a 365-
day period.
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water, urine with flush water and domestic wastewater without
urine) which can be modelled as second order Fourier models. The
authors investigated the dependence of the Fourier model pa-
rameters on the WWTP size by analysing data from 19 urban
WWTPs of different sizes, and they provided approximate values of
these parameters for any other plant under study. The model pa-
rameters were estimated by using the minimum and maximum
values of flow and concentration and their timings as boundary
conditions. Fig. 3 shows a comparison between the modelled and
measured (a) daily flow profiles and (b) daily concentrations of COD
and TKN.

Spering et al. (2008) used the same approach as Langergraber
et al. (2008) to perform dynamic simulation studies during the
design of newWWTPs where no dynamic influent data is available.
Alex et al. (2007) demonstrate the validity of these designs since
they are in agreement with the design solutions proposed by sta-
tionary design rules (ATV-DVWK-A (ATV, 2000)). The same tool
(Langergraber et al., 2008) is also recommended to perform
simulation studies for control and operation of WWTPs (Alex et al.,
2009). The authors claim that the method is especially useful when
limited budget is available because meaningful results can be ob-
tained with very little measurement effort.

3.3. Solutions based on the analysis of the wastewater generation
mechanisms

The characterisation of the quantity and quality of the waste-
water entering a WWTP involves phenomena of very different
nature: rain, soil type (permeable or impermeable), invert level,
temperature, population activity, industrial discharges, type and
length of the sewer system, retention tanks, etc (Butler et al., 1995;
Bott and Parker, 2010; Schilperoort, 2011). Trying to define a
mechanistic model able to describe all these elements is nearly
utopian. A more feasible (although still ambitious) objective con-
sists of developing a phenomenological model able to represent the
patterns observed without aiming for a detailed characterisation of
the underlying generating mechanisms. Such effort should
continuously move forward step wisely, incorporating basic
knowledge about the causes and dynamics of the driving forces and
behaviours.

The household activity constitutes an important contribution to
the wastewater received by WWTPs. In this respect, an important
analysis of the domestic wastewater was carried out in England in
the nineties (Butler, 1991, 1993; Butler et al., 1995; Friedler et al.,
1996a,b; Almeida, 1999). The effort culminated in the presenta-
tion of a general methodology (Almeida et al., 1999) (previously
outlined by Butler et al., 1995) to derive patterns associated with
the quantity and quality of domestic wastewater and to assess their
uncertainty. The analysis is based on the results of three surveys
carried out in the south of England (Butler, 1991, 1993; Butler et al.,
1995; Friedler et al., 1996a,b) and a fourth one in Malta (Butler and
Gatt, 1996). The main conclusions are:

- Daily flow patterns become apparent with a high morning peak
and two lower evening peaks corresponding to dinner and bed
times. Slight changes might be expected depending on the
dwelling occupancy (Butler, 1993) and the geographical region
(in Malta later than in England according to Butler and Gatt
(1996)). Note that another study carried out in a large Brazil-
ian city demonstrated that social strata too may influence the
patterns (Campos and von Sperling, 1996). For instance, the rich
areas of cities in developing countries seem to produce the
wastewater load later during the weekends (two hours in the
Brazilian case study) while the poorer ones maintain the same
peak hours as the week-days.
- The daily patterns of the flow and loads (COD, TSS, NO3 and PO4)
follow similar patterns while those of the concentrations pre-
sent much lower variability (Almeida et al., 1999). The flow and
concentration data seem to be quite independent (Friedler and
Butler, 1996)

- The WC generates nearly 40% of the domestic wastewater. It is
the major contributor to all pollutant concentrations and espe-
cially to ammonia (see Friedler et al., 1996a,b)

- The resulting values of the pollutant concentrations at the do-
mestic source are higher than those reported at the entrance of
WWTPs (Henze et al., 1995). This result outlines the importance
of the dilution and biodegradation processes in the sewer sys-
tems (Butler et al., 1995)

- The uncertainties of the pollutant concentrations are featured
by skewed distributions that represent not only the uncertainty
of their magnitude but also the uncertainty about the timing of
their peaks. Given the non-gaussian nature of these un-
certainties, the evaluation of their combined effect should be
assessed by numerical techniques, i.e. Monte Carlo simulation
(Friedler and Butler, 1996)

Fig. 4 shows the relatively standard pattern observed in do-
mestic daily load (COD, PO4, TSS, NH3 and NO3) and the proportions
produced per household appliance.

The effort of such an exhaustive analysis (where different ap-
pliances and modes of use are distinguished) was intended to gain
knowledge about the wastewater generation; and therefore to
improve the operation and control of WWTPs. However, the
connection of this methodology with the existing WWTP models
was not investigated. Note that, the daily patterns (of flow and load)
observed at the very source of the domestic generation may no
longer be observable at the entrance of the WWTP due to inter-
mediate sewer retention tank storage, different pumping regimes,
etc (Ort et al., 2010).

The use of simulation models to find improved operation and
control of WWTPs has been largely discussed (Flores-Alsina et al.,
2008; Benedetti et al., 2010; Guerrero et al., 2011). Good exam-
ples of that work are the successful Benchmark Simulation Model
No.1 (BSM1) (Copp, 2002) and Benchmark Simulation Model No.2
(BSM2) (Jeppsson et al., 2007) and their numerous applications
(over 300 scientific publications) (Jeppsson et al., 2013). While the



Fig. 2. (from De Keyser et al., 2010): Twenty-four hours of aggregated time series with temporal resolution of 15 min (jagged lines) and 2 h moving averages (smooth lines) for the
generic pollutant fluxes of CODt (dotted lines, right axis), NH4eN (solid lines, left axis) and PO4eP (dashed lines, left axis) produced in a catchment with 100 PE household effluents.
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BSM1 represents the water line (biochemical reactors and sec-
ondary clarifier), the BSM2 also includes the sludge line (thickener,
anaerobic digester, dewatering unit and storage tank). The pro-
tocols define influent characteristics featuring a load of around
100,000 person equivalents or PE (80,000 from households and
20,000 from industrial origin) and fix performance evaluation
protocols. The BSM1 simulation platform includes three influent
files (Fig. 5), each of them representing 14 days of dynamic influent
flow and load featuring: dry weather conditions, one rain event,
and two storm events respectively. The BSM2 proposes to evaluate
the model performance over one year of dynamic simulation, so
that the effect of the temperature and the slow dynamics of the
anaerobic digester can be investigated.

The phenomenological model of Gernaey et al. (2011) was born
out of the BSM1_LT (Rosen et al., 2004) and BSM2 initiatives
(Jeppsson et al., 2007). It is a flexible tool that describes the
wastewater generation under typical urban conditions. The main
objective of the phenomenological generator (Gernaey et al., 2011)
is to create model-based influent data for the BSM2 platform in
view of process control studies. Nevertheless, any modeller is
invited to modify the original structure and include the specific
characteristics of the particular case (catchment area, industrial
discharges, etc.). The tool is implemented as ‘open source’ freely
distributed on request. The first release of the phenomenological
model (Gernaey et al., 2005, 2006) already provided influent data
with the main characteristics of the most recent version (Gernaey
et al., 2011). The main differences between the two of them are:
a) the nitrogen load to the plant was reduced (Nopens et al., 2010)
since it was discovered during BSM2 simulations that the BSM2
Fig. 3. (from Langergraber et al., 2008): Comparison of modelled and measured daily flow (le
measured (bottom) should be TKN measured.
plant was chronically overloaded; b) model verification was con-
ducted by a second, totally independent implementation (Gernaey
et al., 2011) leading to full confidence in the results of the generator.

The phenomenological model (Gernaey et al., 2005, 2006, 2011)
features the influent of a WWTP located in the Northern hemi-
sphere and provides annual dynamic influent flow rate, pollutant
concentrations and temperature profiles starting from the 1st of
July. The pollutant concentrations can be expressed in terms of the
state variables of ASM1, ASM2d or ASM3 models (Henze et al.,
2000), as desired by the user. In accordance with the BSM2 pro-
tocol the dynamic profiles feature 609 days from which only the
last 365 would be used for the evaluation of the simulation results.
The generator is implemented in Matlab-Simulink by defining
different interconnected modules. As an example, Fig. 6 shows the
architecture of the flow generator (figure from Flores-Alsina et al.,
2012) and the model block describing the wastewater flow com-
ing from households (figure from Gernaey et al., 2005):

The main characteristics of the modules implemented in the
phenomenological model (Gernaey et al., 2011) are:

- Rain generationmodule: It is an ingenious tool that transforms
a random number (stochastic variable) into a rain event, the
peak value of which is smoothed down by an exponential
function until the next rain event appears. The module allows
generating different rainfall patterns in relation with different
climate conditions. The number of rain events and their
maximum intensity can bemanipulated by the user by adjusting
different parameters (Flores-Alsina et al., 2013a, b): Qpermm
defines the flow rate due to rain, Llrain determines the number
ft) and concentrations of COD and TKN (right). In the legend of the right figure, the COD



C. Martin, P.A. Vanrolleghem / Environmental Modelling & Software 60 (2014) 188e201 193
of rain events, etc. Alternatively, some studies (Benedetti, 2006;
Benedetti et al., 2006) have replaced the output of this module
by actual rainfall time series data.

- Household wastewater generation module: It generates the
pollutant load profiles (units of g/m3) by multiplying the
average load rates per PE (COD, NH4, TKN, etc.) with the number
of PE, and assuming a daily pattern (1 h time step) with two
peaks at 8 and 17 h (inspired by Almeida et al. (1999)). The flow
generated by the household is also proportional to the PE and
follows three patterns: daily (two peaks at 9 and 19 h), weekly
(around 10% lower during the weekends) and yearly (25% lower
during summer holidays). By modifying the default pollutant
profiles, this module can represent the possible variability of the
pollutant profiles with the geographical region (Butler and Gatt,
1996) or among neighbourhoods of different social strata
(Campos and von Sperling, 1996).

- Industrial discharges generation module: The pollutant dis-
charges from industries are represented by a single loading rate
(COD, TKN, NH4, etc.) that follows a weekly pattern: a peak on
Fridays represents the industrial cleaning and lower pollutant
discharges represent the weekend. The wastewater flow
generated by the industries presents weekly and yearly profiles:
the first one is similar to the one of the pollutants and the yearly
one represents two holiday periods (summer and Christmas)
where the flow is lower (20% and 30% respectively). With the
idea of proposing a simple model description that could be
extensively used, the module assumes that the wastewater
generated by industries and households can be fractionated
according to the same principles. This default fractionation can
easily be modified given the availability of the code.

- Soil model module: The soil is represented by a variable vol-
ume tankmodel to represent the storage of water in the soil. The
flow entering the tank is composed of a fraction of the rainfall
that falls in permeable areas, and the outflow represents the
flow to the sewer system and the aquifers. The infiltration to the
sewer system depends of the invert level (the maximum water
level that will not cause infiltration in the sewer pipes) which at
the same time depends of the temperature variation, as a sur-
rogate for seasonal variation of the groundwater level.

- Temperature module: Daily and yearly temperature variations
are defined by two sinusoidal functions. The yearly sinus has an
average of 15 �C, amplitude of 10 �C and frequency of 2P/
364 rad/d. The daily sinus moves around the seasonal one with
amplitude of 1 �C and frequency of 2P/1 rad/d. In Flores-Alsina
et al. (2013a, b), the temperature and rain generation are linked
by a model that relates temperature with snow melting epi-
sodes. The snow melting water is generated by a new module
similar to the rainfall module of Gernaey et al. (2011).
Fig. 4. (from Almeida et al., 1999): a) Diurnal pattern of COD, PO4, TSS, NH3 and NO3 in was
shower, bath and wash basin.
- Sewer model module: The sewer system is defined by con-
necting a different number of subcatchments (one to eight) to
represent more or less complex sewer systems. Each subcatch-
ment is modelled by a tank-in-series approach using variable
volume reactors where the outflow of each tank follows an
exponential function on the water height. The first flush effect is
included by a simple equation with two adjustable parameters
to tune its strength. It also assumes an even complexity of all
subcatchments by always using three tanks-in-series. Never-
theless, after calibration, the complexity of the sewer model has
demonstrated to be sufficient to correctly describe influent
profiles with one hour frequency (Flores-Alsina et al., 2013a, b).

As result, the influent generator of Gernaey et al. (2011) achieves
a simple phenomenological representation of the typical dynamics
that are observed in a full scale WWTP influent, being able to
feature diurnal phenomena; weekend effects (e.g. lower pollutant
load); seasonal phenomena (e.g. decreased infiltration with tem-
perature); holiday periods (e.g. with a lower average wastewater
flow rate); rain events; etc. Currently, this generator seems to move
forward to a more detailed description of the generating processes
beyond the wastewater generation (see for example, the de-
velopments carried out in the EU-funded SANITAS project http://
www.sanitas-itn.eu/). In this sense, and as a wish list for further
developments, the following could be considered: a rain generator
in accordance with state of the art models (Thauvin et al., 1998;
Willems, 2001; Palynchuk and Guo, 2011); a more descriptive
relationship between temperature and rain profiles for different
climates (Birt et al., 2010); the building up and wash off of urban
pollutants (Egodawatta et al., 2007; Wang et al., 2011); the
description of the vertical infiltration in terms of the soil properties,
such as specific moisture capacity, capillarity head, effective hy-
draulic conductivity, etc. (Richards, 1931; Corradini et al., 2011);
and so on. In this context, the description of the wet weather flow
and composition along the sewer system is still an important
challenge but current progress is benefitting from (recently pub-
lished) high frequency data sets (Schilperoort, 2011; Langeveld
et al., 2013). New modelling proposals for influent generation are
also better handling wet weather conditions or the sewershed and
include a weather generator that can be calibrated on local climate
data being able to describe inter-daily variations of flow and TSS
(Talebizadeh et al., 2014).

Early applications of the phenomenological model (Gernaey
et al., 2005, 2006) have shown the usefulness of the tool for the
modelling of integrated urban water systems. In some cases, the
model is presented as a part of general methodologies: to check the
WWTP performance (R�aduly et al., 2007) or to design correction
measures in a probabilistic framework (Benedetti et al., 2008). The
tewater; b) COD load contributions per appliance: WC, washing machine, kitchen sink,

http://www.sanitas-itn.eu/
http://www.sanitas-itn.eu/


Fig. 5. BSM1 flow profiles featuring dry, rain and storm weather conditions (Copp, 2002).
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phenomenological model has also been able to fulfil specific ob-
jectives as generating realistic influent data profiles for WWTP of
different characteristics (Benedetti et al., 2008); adding new com-
ponents to the ones in ASM family models (Lindblom et al., 2006);
or generating training data with a wide range of influent condi-
tions, such as: rain events, holiday effects, industrial discharges,
etc (R�aduly et al., 2007).

A Global Sensitivity Analysis of the phenomenological model
(Gernaey et al., 2011) has recently been published (Flores-Alsina
et al., 2012). The analysis focuses on the influent flow rate and
shows that while the main parameters affecting dry weather flow
rate profiles are the catchment size and the wastewater flow per
person, the ones determining the wet weather profile are the
probability of occurrence of a rain event, the catchment size, and
the quantity of rain falling on permeable areas. This analysis has
been completed with a calibration of the BSM2 influent generator
on full-scale plant data (Flores-Alsina et al., 2013a, b) (see Section 6
for further information).

One of the clearest advantages of the model is that the user can
simply create influent wastewater characteristics according the
features of the catchment area: number of PE, percentage of
permeable surfaces, flow rate generated per unit of rain, complexity
of the sewer network, etc.; or extrapolate to other scenarios by
using hypothetical data. In this respect, Flores-Alsina et al. (2013a,
b) evaluates three representative cases: the variation of influent
flow rate for different rainfall patterns, the effect of parameter
uncertainty on the predicted influent biodegradability, and the
increase of frequency in a given dataset.
Fig. 6. Architecture of the wastewater flow generator in the influent disturbance model of
(2005).
4. Solutions found for situation 2: the fractionation problem

In this section we cover the solutions found in literature with
respect to the so-called fractionation problem. The translation of
the experimental measurements (BOD, COD, TSS, TKN, TN, etc.) into
the model components of ASM family models (readily biodegrad-
able substrate, soluble inert organic matter, slowly biodegradable
substrate, heterotrophic biomass, etc.) is not a straightforward
problem. Indeed, it is a non-identifiable problem since the exper-
imental data is never informative enough to uniquely determine
the model components. Different protocols and scientific research
have tried to overcome this situation.

Henze (1992) presented a summary of methods to determine
the fractions of COD, the origin of different nitrogen compounds,
and biomass populations. After analysing the wastewater compo-
sition of severalWWTPs over theworld, it seemed that for a specific
WWTP the fractions of COD remain quite constant. However, when
comparing the fractionation among the different WWTPs it was
concluded that the sewer system and temperature variations might
influence the composition significantly. Roeleveld and van
Loosdrecht (2002) came to a similar conclusion. Motivated by the
experience of modelling more than 100 WWTPs in The
Netherlands, the Dutch Foundation of Applied Water Research
stimulated the development of the STOWA protocol (Hulsbeek
et al., 2002; STOWA, 1996; STOWA, 1999). On that effort, special
attention was paid to the characterisation of the influent waste-
water (Roeleveld and van Loosdrecht, 2002) in order to determine
the ASM1 model components. After carefully comparing the COD
Gernaey et al. (2011). Figure created from Flores-Alsina et al. (2012) and Gernaey et al.



Box 3

Frequently Asked Questions in Situation 2, i.e., the so called

fractionation problem.

a) Is there any standard protocol for performing WWTP

simulation studies?
STOWA (Hulsbeek et al., 2002), BIOMATH (Vanrolleghem et al., 2003),

WERF (Melcer et al., 2003) and HSG (Langergraber et al., 2004) are

well established protocols defining standard modelling steps such

as: definition of objectives, general layout data collection andmodel

selection, data quality control, simulation study, calibration/

validation of models, assessment of the modelling application, etc.

Improvements are described in Mannina et al. (2011) and Rieger

et al. (2012).

b) Is there any analytical procedure to characterise the

wastewater in terms of ASM model variables?
The STOWA, BIOMATH, WERF and HSG protocols include different

methods to characterise COD and Nitrogen fractions. The main

difference lies in the methods for the estimation of the COD

fractions.

c) Is there any standard, experience-based, manner to

calculate ASM model components from typical

experimental measurements (COD, TKN, NH4 etc.)?
Yes, the Benchmark Simulation Model No. 1 (Copp, 2002) includes a

fractionation model in which the soluble and particulate

components of the ASM1 model are estimated assuming fixed

ratios. As an extension of that, Gernaey et al. (2011) proposes three

different fractionation models to derive the state variables of ASM1,

ASM2d and ASM3 models.

d) Is there any kind of generalisation of the above esti-

mations so as to use all the experimental measure-

ments available (Turbidity, COD, pH, etc.) to derive

the state variables of any ASM family model?
Yes, Grau et al. (2007) proposed an optimisation algorithm that using

as starting point a typical wastewater characterisation, leads to a

consistent solution that minimises the difference with the provided

experimental measurements. This solution is expressed in terms of

an extended list of model components and can easily be translated

into any set of ASM family state variables.
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fractionation results of 21 WWTPs, they found that, except for the
fraction of the soluble inert material that remains quite stable, a
high variation is noticed in the other COD fractions (readily
biodegradable substrate, slowly biodegradable substrate and par-
ticulate inert organic matter). This variation was attributed to the
type of wastewater (contribution of industrial waters), the sewer
system type and length (separate/combined) and the trans-
formation processes in the sewer (pressure main/gravitational).
However, the data showed insufficient evidence to draw firm
conclusions with this regard. Another important conclusion of this
modelling effort was that the wastewater characterisation is very
helpful for the daily WWTP operation even if no modelling study is
scheduled (Roeleveld and van Loosdrecht, 2002). For example, the
authors explain that the determination of the soluble COD available
is related to the capacity of the plant for high nitrogen and bio-
logical phosphorus removal.

Generally, the characterisation problem is related to the cali-
bration/validation of mathematical models and therefore, it is
generally presented as part of general protocols for activated sludge
modelling, such as the STOWA protocol (Hulsbeek et al., 2002); the
BIOMATH protocol (Vanrolleghem et al., 2003); the HSG guidelines
(Langergraber et al., 2004); and the WERF protocol (Melcer et al.,
2003). An SWOT analysis of the four protocols (Sin et al., 2005)
identifies the detailed influent characterization of the BIOMATH
and WERF protocols as strength, while it is identified as weakness
in the HSG guidelines. One of the main differences with regard to
the influent characterization lies in the COD fractionation. The
STOWA protocol (Roeleveld and van Loosdrecht, 2002) proposes
the BOD test to determine the readily biodegradable soluble COD
(SS in ASM models) while the BIOMATH protocol proposes respi-
rometry tests (Sollfrank and Gujer, 1991; Spanjers and
Vanrolleghem, 1995; Sperandio and Paul, 2000). Both protocols
stress the importance of the wastewater characterization for a
successful model calibration. With regard to the data collection, the
STOWA protocol insists on the use of mass balances to check the
data consistency and the BIOMATH protocol recommends the use
of Optimal Experimental Design (Dochain and Vanrolleghem, 2001)
to optimize the quality of the calibration results. The HSG guide-
lines are more flexible (than the STOWA or the BIOMATH protocols)
and they recommend to use a COD fractionation based on respi-
rometric tests (as in the BIOMATH protocol) or to combine physical-
chemical methods with BOD measurements (as in the STOWA
protocol). In the WERF protocol (Melcer et al., 2003) a detailed
fractionation method is included in the last (and more sophisti-
cated) type of the calibration procedure together with the estima-
tion of the stoichiometric and kinetic model parameters.

Improvements to these protocols are described inMannina et al.
(2011) and Rieger et al. (2012). Mannina et al. (2011) proposed a
novel calibration protocol for nutrient removal wastewater treat-
ment models based on combining the use a global sensitivity
analysis with the Generalized Likelihood Uncertainty Estimation
(GLUE) approach. The most innovative feature consists of using a
step-wise approach to define sub-groups of parameters to be cali-
brated on different model outputs. Rieger et al. (2012) summarizes
the keys for good modelling practice in wastewater treatment. The
IWA Task group has led important initiatives for standardizing: the
qualitative criteria to evaluate simulation results (Hauduc et al.,
2011), the notation of activated sludge models (Corominas et al.,
2010), the uncertainty assessment (Belia et al., 2009), or the
problem of data reconciliation (Rieger et al., 2010a). The effort is
culminated with a critical review of wastewater treatment
modelling and the presentation of future possibilities (Rieger et al.,
2010b; Hauduc et al., 2013).

The Benchmark Simulation Model No. 1 (Copp, 2002) includes a
fractionation model (inspired by Vanhooren and Nguyen (1996)) in
which the soluble and particulate components of the ASM1 model
are estimated incorporating influent wastewater characteristics of
several studies (Butler et al., 1995; Campos and von Sperling, 1996;
Londong, 1994; Verbanck, 1995) and assuming fixed ratios between
the most common measurements: for example, 1.33 as the ratio
between the particulate COD and the TSS. Following a similar
approach, the influent generator of Gernaey et al. (2011), see Sec-
tion 3.3, proposes three different fractionation models that trans-
form the pollutant load of households and industries into the state
variables of ASM1, ASM2d or ASM3 models. The pollutant load is
characterized by the soluble COD, particulate COD, TKN and NH4
concentrations for the ASM1 and ASM3 models; and also in terms
of PO4 in case of the ASM2d model. The module uses fixed re-
lationships to derive the model state variables.

In a very pragmatic and engineering approach, based on the
principle of elemental continuity, and without making any
recommendation about the most suitable laboratory tests to use,
Grau et al. (2007) proposed a mathematical tool for the charac-
terization of the influent wastewater. The algorithm is based on the
definition of an extended list of model components (ammonium,
ammonia, dissolved carbon dioxide, bicarbonate, monosaccharide,
aminoacids, LCFAs, etc.) and their relationship with commonly
available analytical measurements (COD, BOD, TSS, TN, TKN, etc.).
The algorithm is initialized by defining a typical urban wastewater
in terms of an extended list of model components (default
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solution); and it looks (by minimizing an error function) for
another numerically close solution that reasonably fits the available
experimental data. The optimal solution (expressed in terms of the
extended list of model components) can be straightforwardly
translated in terms of any other biochemical model (any ASM
family model). By requiring a solution close to an initial estimation,
the identifiability problem (caused by the fact that the experi-
mental measurements are never informative enough to uniquely
identify themodel components) is overcome. De Gracia et al. (2011)
presented an application of this methodology in which three types
of WWTP sludge (sludge produced in primary clarifiers, sludge
produced in secondary clarifiers; a mixture of the first two) are
characterised in terms of the components of a generic digester
model (de Gracia et al., 2009).

5. Solutions found for situation 3: engineer would like to
characterize the uncertainty of the quantity and quality of the
influent wastewater

The necessity of characterizing the uncertainty around the ex-
pected influent data profiles has been repeatedly outlined (Friedler
Box 4

Frequently Asked Questions in Situation 3, i.e., an engineer

wants to characterize the uncertainty of the quantity and quality

of tie influent wastewater.

a) How can the understanding of the uncertainty in the

influent profiles be improved by analysing its

sources?
Themain references for they are those of Friedler and Butler (1996) that

analyses the uncertainty in the generation of domestic wastewater,

and of Ort et al. (2005) that studies the stochastic load variations in

sewer systems.While the first one analyses the different wastewater

compounds and their relationships, the second one is more

focussed on the timing of the emissions.

b) In terms of model building, is there any manner to

model the uncertainty in wastewater generation

from its very source?
Yes, the phenomenological mode of Gernaey et al. (2011) includes

some uncertainty in definition of the households' pollutant profiles,
in the industrial pollutant loads, in the rain generation, the

temperature profiles, etc. The generator of De Keyser et al. (2010)

also includes uncertainty from the sources by including random

variables in the daily, weekly and yearly profile definitions. The

approach proposed by Talebizadeh et al. (2014) includes two

statistical models for the synthetic generation of rainfall series and

the water quality influent profiles during dry weather conditions.

c) Once a set of influent wastewater data is provided, is

there any method to include some uncertainty over

the time series that is coherent with its uncertainty?
Yes, Carstensen et al. (1998) propose an Autoregressive First Order

model to represent the uncertainty over the response of a second

order Fourier model. Similarly, Martin et al. (2007) proposed the use

of ARMA models to introduce uncertainty (white and coloured

noise) over a set of given time series data. If the influent data profiles

are the result of a model, other realisations of the time series data

can be obtained by using Bayesian calibration of the parameters of

this mode (see Bechmann et al. (1999) or Talebizadeh et al. (2014)).

d) How can both approaches (in b and c) be combined?
The understanding of the wastewater generating mechanisms and the

uncertainty of their sources lead to solutions as the ones presented

in b). However, the complexity of the problem will unavoidably lead

to synthetic data profiles that do not represent the whole reality of

the catchment area. The solutions pointed out in c) allow describing

the uncertainty due to the remaining lack of knowledge.
and Butler, 1996; Bixio et al., 2002; Benedetti et al., 2008; Gevaert
et al., 2009). However, the difficulty of analysing the uncertainty
in real data sets (Friedler and Butler, 1996), the short history of
uncertainty analysis in water quality modelling (Belia et al., 2009),
and the lack of stochastic formulations of biochemical models
(Reichert and Mieleitner, 2009) have not yet given rise to standard
methodologies with this in mind. Note that rigorous procedures for
generating realistic time series profiles with similar statistical
properties would be very useful for uncertainty based (i.e. Monte
Carlo based) design and dimensioning of new WWTPs (Bixio et al.,
2002; Martin et al., 2012), and also for validating robust control
algorithms such as the QFT control strategy (García-Sanz et al.,
2006).

Friedler and Butler (1996) tried to assess the uncertainty in the
quantity and quality of domestic wastewater by analysing the data
from two surveys carried out in the south of England (Butler, 1991,
1993). They concluded that the total volumes, pollutant loads and
frequency of use are highly uncertain and that their distributions
depend not only on the appliance and mode of use but also on the
specific user. They explain that the uncertainty of these parameters
is in general related to the magnitude of the pollutant profiles but
also to their timing. In this sense, the uncertainty in the timing of
the pollutant releases is highly skewed due the predominance of
zero usage of the appliances. The authors conclude that Monte
Carlo simulations would be needed to analyse the combined effect
of the uncertainties in downstream elements of the wastewater
infrastructure.

Rousseau et al. (2001) did also try to characterise the uncer-
tainty found in real experimental data sets. In this case they
measured the influent flow and influent load profiles at the inlet of
167 WWTPs in Flanders (Belgium) and certain relationships be-
tween the flow and wastewater pollutant concentrations (COD,
TKN and NO3) could be identified. These relationships (Fig. 7)
together with the available flow data and a fixed fractionation
model (of the COD into the ASM1 variables) were used to generate
“shots of” dry weather influent profiles. The authors claim that the
generated influent data is coherent with the variability observed
among the 167 WWTPs but also with the inherent uncertainty of
their patterns.

The phenomenological model of Gernaey et al. (2011) also fol-
lows a simple but effective approach to introduce randomness in
the generated data. It uses random number generators (with zero
mean and tuneable standard deviation) along the different blocks
(households, rain generation, seasonal correction factor, fraction-
ationmodel, etc.) so that different profiles featuring the uncertainty
Fig. 7. (from Rousseau et al., 2001): Relation between influent COD concentrations and
flow for medium strength wastewater and the indication of minimum and maximum
concentration.



C. Martin, P.A. Vanrolleghem / Environmental Modelling & Software 60 (2014) 188e201 197
of the underlying mechanisms can be provided. More descriptive
approaches can be implemented by representing some inference
from uncertainty analysis of real data. For example, the inclusion of
the uncertain correlation among different variables (as observed in
Rousseau et al. (2001)) or the uncertainty in the patterns of do-
mestic wastewater generation (Friedler et al., 1996) would be
interesting.

The influent generator defined by De Keyser et al. (2010) is based
on the use of 24 daily patterns, 11 weekly patterns and 14 yearly
patterns resulting from an extensive literature review. The sto-
chasticity of the resulting profiles is introduced in two different
ways: (i) adding white noise to the obtained time series; and (ii)
allowing some pattern parameters to be randomly sampled (so that
the daily, weekly and yearly patterns become stochastic structures).
The second strategy implies defining some pattern parameters to
be random variables. For example, a uniform distribution can
determine the time for an emission peak to occur (daily pattern), or
the day in the week (weekly pattern), or the weekends in which it
repeats itself (yearly pattern).

Another interesting manner of introducing uncertainty in the
daily or weekly periodic profiles is to introduce the time warping
approach (Villez et al., 2009; Gins et al., 2006) in which the profiles
are disrupted by introducing the uncertainty of their timings. Fig. 8
shows an example in which the daily patterns of the ammonium
and soluble organic nitrogen influent profiles of BSM1 model
(Copp, 2002) have been manipulated by adding white noise not to
their values but to the times at which they occur.

For cases in which the influent data of a WWTP is already the
result of a mathematical model, different realisations of these data
can be generated by using a stochastic formulation of the model.
This can be achieved by defining the parameters of a deterministic
model by random variables defined by a probability distribution
function (Bayesian approach) (see Omlin and Reichert, 1999;
Martin and Ayesa, 2010). This method has been used to estimate
the COD and TSS mass load at the entrance of a WWTP by using
measurements of UV absorption and turbidity along a sewer sys-
tem (Bechmann et al., 1999). Talebizadeh et al. (2014) uses the same
approach to incorporate an urban drainage model (CITYDRAIN,
Achletner et al. (2007)) for the stochastic generation of water
quantity and quality profiles under wet weather conditions.
Another set of solutions to feature the uncertainty on a set of data
profiles is based on the use of autoregressivemodels. This statistical
approach does not try to understand the uncertainty in the
generating mechanisms (domestic load, permeability of the soil,
rainfall profiles, etc). On the contrary, it just tries to reproduce some
uncertainty in coherence with the available experimental data or
the assumed lack of knowledge. In this line, Carstensen et al. (1998)
propose a grey box model to represent the uncertainty around the
Fig. 8. Time warping approach used to introduce some uncertainty in the ammoniu
hydraulic load expected at the inlet of a WWTP. They used an
Autoregressive First Order model to generate some randomness
over the response of a second order Fourier model (Section 3.2).
They found that the inclusion of a first order autoregressive model
considerably improves the description of the hydraulic data profile.
In a similar way, Martin et al. (2007) proposed the use of Autore-
gressive Moving Average Models (ARMA) models to feature the
uncertainty around given time series data (Bras and Rodríguez-
Iturbe, 1985). The main advantage of the methodology is that it
allows characterising the white and coloured noise and tuning the
magnitude of the uncertainty to be generated by adjusting some of
the ARMA model parameters.

6. Calibration, validation and model performance evaluation

In general, influent generators, as any other model, need to be
calibrated and validated on the evidence of experimental data
(Dochain and Vanrolleghem, 2001). However, the wide range of
studies and methods presented in this paper do not necessarily
follow these general model building steps. The influent generators
based on databases (Section 3.1) for example, do not require any
calibration. They can directly be used in coherence with the re-
quirements of the user or the characteristics of the catchment area.
On the contrary, the influent generators based on the use of har-
monic functions (Section 3.2) or the phenomenological model
(Section 3.3), do need some calibration of their parameters. The
phenomenological model of Gernaey et al. (2011), for example, has
been calibrated using experimental data from two Scandinavian
WWTPs (Flores-Alsina et al., 2013a, b). The authors follow a step-
wise procedure based on adjusting the most influential parame-
ters after a global sensitivity analysis (Flores-Alsina et al., 2012) at
different time scales (from yearly profiles to hourly values). They
demonstrate the validity of the model results by using a set of data
not used during the calibration stage. The performance of the
generator and the guidance provided by this calibration experience
will facilitate the usage of the influent generator in other case
studies or modelling scenarios.

In general, the model calibration follows either the Frequentist
or Bayesian approach (Omlin and Reichert, 1999). Under the fre-
quentist philosophy the modeller looks for an optimum parameter
set that minimises the differences between the experimental and
simulated results according to some statistics-based objective
function. On the contrary, the Bayesian framework assumes that
there is not a single optimum parameter set but an optimal region
of parameter values in which the simulation result is reasonably
good. An example of Frequentist estimation is the one presented by
Flores-Alsina et al. (2013a,b). Examples of Bayesian estimation are
the ones presented by Lindblom et al. (2011), Rieckermann et al.
m and soluble organic nitrogen influent profiles of BSM1 model (Copp, 2002).
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(2011) or Talebizadeh et al. (2014). Lindblom et al. (2011) use the
Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and
Binley, 1992) to calibrate a stormwater surface accumulation-
wash-off model based on an extensive measurement campaign of
Zn, Cu, Pb and Cd field data. GLUE adopts the Bayesian framework
but substitutes the likelihood function by a subjectively chosen
objective function or ‘less formal likelihood’ (Beven and Freer,
2001). The reason to use the GLUE approach instead of traditional
Bayesian inference is that the latter requires of statistically derived
likelihood functions which involve strong assumptions on the
model residuals' distribution (generally to be independent and
normally distributed). In this case, Lindblom et al. (2011) adapted
the classical likelihood function with an extra scaling parameter
that makes the likelihood expression more or less sensitive to the
residual errors. This scaling parameter is manually adjusted for the
different datasets so that the forward propagation of parameter
uncertainty covers 95% of the experimental data. The second
example of using Bayesian inference is the one presented by
Rieckermann et al. (2011) that calibrates a stochastic model
describing wastewater micropollutant loads by using three
Approximate Bayesian Computation (ABC) methods (Beaumont
et al., 2002; Marjoram et al., 2003). ABC methods derive the pos-
terior distribution of parameters without using the likelihood
function of model residuals. The article compares three different
numerical algorithms to approximate the posterior distribution of a
single parameter: the number of wastewater pulses contained in
three high-resolution data series of benzotriazole and total nitro-
gen loads in sewers. The main contribution of the article consists of
divulgating the use of ABC methods (not usual in biochemical
modelling) since they are simple and with sound statistical prop-
erties when compared to traditional Bayesian inference or with the
GLUE approach (Mantovan and Todini, 2006). Finally, Talebizadeh
et al. (2014) used Bayesian calibration to adjust the output of the
open-source CITYDRAINmodel (Achleitner et al., 2007), withwhich
it is possible to generate influent wastewater under wet weather
conditions incorporating the effect of climate and sewershed
characteristics.

The validation of any modelling approach should be accompa-
nied by an analysis of the model performance by comparison of the
simulated and experimental results. Different authors have sug-
gested standard methodologies and presented appropriate use of
metrics in this respect (Beck, 2006; Moriasi et al., 2007; Mattot
et al., 2009). This effort has recently moved forward with the pre-
sentation of a position paper onwater quality models (Bennet et al.,
2013) that analyses quantitative and qualitative methods in liter-
ature for characterising model performance, and a critical review
paper on the use of different objective functions for wastewater
models (Hauduc et al., 2011). The former (Bennet et al., 2013)
stresses that the adoption or rejection of a model is not only related
to the goodness-of-fit measurements but also to other factors such
as cost, simplicity, applicability, intelligibility, etc (Giordano et al.,
2012; Krueger et al., 2012; Rowan et al., 2012). Based on the use
of the objective criteria, Bennet et al. (2013) propose a stepwise
performance evaluation method that includes the definition of the
modelling objective, the data check, a visual performance analysis,
etc. The latter paper (Hauduc et al., 2011) reviews 31 goodness-of-
fit criteria generally used in wastewater treatment modelling. The
study concludes that most of them are intrinsically correlated, and
proposes a two-step cluster analysis using Kendall correlation and
dendrograms to select criteria that provide non-redundant
information.

Other approaches covered in this paper (for Situation 2 and
Situation 3) do not need model calibration/validation nor perfor-
mance evaluation, but they use these methods in different man-
ners. For example, the standard protocols for using activated sludge
models (Situation 2, Section 4) define systematic calibration pro-
tocols. They recommend step-wise procedures where steady-state
and dynamic simulations are compared with experimental data at
different stages. Usually, subsequent validation and retrofit model
improvement steps are included. On the other hand, some of the
methods described to include uncertainty in influent generators
(Situation 3, Section 5) are based on the use of Bayesian statistics to
calibrate their parameters and assess their uncertainty (Bechmann
et al., 1999; Talebizadeh et al., 2014). This approach enables the
realisation of different influent profiles coherent with the mecha-
nisms defined in the model structure and the uncertainty of their
parameters.

7. Discussion

This paper makes a critical review of the techniques available in
the state of the art to analyse, complete and generate influent data
for WWTP modelling. This section summarizes the main points of
the analysed studies and provides some tips for further
development:

- The knowledge about the typical flow, concentration and load
patterns helps to understand what the domestic wastewater
generation at the household level resembles. In dry weather
conditions, the daily patterns of flow and loads present very
clear profiles with one morning and two evening peaks (dinner
and bedtime preparation). In terms of concentrations the vari-
ability within the day is lower than the variability of the loads,
and seems not to be correlated with the flow. The uncertainty of
concentrations and loads is featured by skewed distributions
that represent not only the uncertainty of the magnitude of the
pollutant profiles but also of their timings. Note that these
household level patterns may no longer be observable at the
entrance of theWWTP due to different pumping regimes, sewer
retention tanks, etc.

- Understanding the influent flow and concentration patterns in
dry weather conditions has given rise to very simple and
effective influent generators for WWTP modelling based on the
use of harmonic functions (second or third order Fourier
models). The parameters of these models seem to be related to
the size of the WWTP under study.

- The construction of databases from real wastewater data pro-
files has provided influent generators able to provide synthetic
data for long term WWTP modelling (dry and wet weather
conditions). On the one hand, the methodology behind these
approaches can be applied to complete or increase the fre-
quency of real influent data. On the other hand, if no real data
are available, the generators themselves are good tools to
generate synthetic profiles which at least are coherent with the
patterns identified in bibliography or accepted by the scientific
community. The main limitation of these tools is that they do
not allow extrapolating to new situations such as population
growth, climate change, transformation of combined to separate
sewer systems, rehabilitations of sewers to reduce infiltrations,
etc.

- The phenomenological modelling of the wastewater generation
mechanisms is a very young and promising research area. An
influent generator for long term WWTP modelling has been
proposed together with the Benchmark Simulation Model No. 2
initiative. The generator provides influent data in coherence
with the catchment characteristics, such as: person equivalents,
industrial discharges, rainfall profiles, percentage of permeable
surface, etc. Using hypothetical data about the catchment area
the modeller is able to a certain extent to extrapolate to other
scenarios or other similar cities. Some of the remaining
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challenges for the research community are related to: improve
the rain and temperature generators (and their relationship);
include some representation of the build-up and wash off of
urban pollutants; or upgrade the soil model in terms of soil
properties as the specific moisture capacity, the capillarity head,
the effective hydraulic conductivity, etc. The interest already
shown in the research community (for example in the afore-
mentioned SANITAS project), the flexibility of the tool, and the
fact that it is available as open-source code, will accelerate the
development of new, more comprehensive versions of the
generator.

- The STOWA (Hulsbeek et al., 2002) and BIOMATH protocols
(Vanrolleghem et al., 2003) include detailed wastewater char-
acterisation methods to translate the generally available mea-
surements (COD, BOD, TKN, etc.) into the components of the
ASM family models. These protocols include specific recom-
mendations about the most adequate laboratory experiments
and batch conditions, as well as data collection techniques. In
simulation studies where there is no information about the
origin of the available measurements the fractionation problem
can be solved by numerical optimisation techniques.

- The stochastic nature of the wastewater influent profiles has
been represented in the influent generators following a simple
but effective approach. Both in databases built generators and in
the phenomenological model, the stochasticity is achieved by
including random values at some points of the generating pro-
cess. More fundamental research would make possible to model
the uncertainty involved in the underlying mechanisms (rainfall
profiles, household and industry pollutant discharges, assumed
daily and weekly patterns, etc.).

- Statistical models based on autoregressive functions are suitable
to represent the uncertainty involved in influent data profiles.
These statistical models are able to generate white and coloured
noise over a given data series in representation of the uncer-
tainty observed in the experimental data or assumed as mod-
eller lack of knowledge. This statistical approach should move
forward into the formulation of stochastic models able to cap-
ture the correlation among the typical wastewater measurable
parameters (COD, TSS, NH4, etc.).
8. Conclusions

The state of the art already provides awide range of solutions for
characterising, generating and completing WWTP influent data
series. The main challenge for engineering practice consists of be-
ing able to select the most appropriate solution for each situation.
Some questions that should facilitate that choice are: Do we have
enough data to characterize the influent quantity and quality? Do
we need to generate influent data by only knowing some general
characteristics about the catchment area? Would we prefer some
simple approach to generate dry weather influent profiles or do we
need to characterise as well wet weather influents? Do we need to
translate typical experimental measurements (COD, TSS, TKN, etc.)
into the ASM family model state variables? Do we need to perform
an uncertainty analysis of the WWTP performance?

The influent generators forWWTPmodelling and simulation are
going to be important in the following years. For instance, quanti-
tative risk analysis of WWTPs or probabilistic design will only be
possible if we can generate influent profiles under hypothetical
conditions (population growth, strong rain events, uncontrolled
spills, etc.) and characterise their uncertainty. That process will
increase the awareness about modelling robustness (good behav-
iour under uncertain conditions) during future projects for WWTP
design or improved operation. In that respect, phenomenological
modelling for influent wastewater generation should deserve
special attention because it can integrate important knowledge
about the generating mechanisms. The state of the art should move
forward step by step by introducing more detailed descriptions of
the different components in the catchment area (build-up and
wash off of urban pollutants, soil infiltration, sewer system,
retention tanks, etc.) and the stochastic nature of the inputs
(rainfall and temperature profiles, run-off generation, industrial
and household loads, etc.). The result will be a stochastic model
where themean values are coherent with the catchment properties
(hypothetical or real) and the uncertainty of the generated time
series coherent with the stochastic nature of the problem. While
pursuing that effort, the lack of details in the description of the
catchment elements or stochastic inputs (modeller uncertainty)
can be represented by using a statistical model (e.g. based on
autoregressive functions) on top of the phenomenological core
model.
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