

Qualitative Modelling of N₂O Production from WWTPs: A Knowledge-Based Approach for Decision Support

Jose Porro^{1,4}, Joaquim Comas¹, Ignasi Rodriguez-Roda^{1,2}, Peter Vanrollghem³, Ingmar Nopens⁴

Universitat de Girona¹, ICRA², modelEAU Université Laval³, Ghent University⁴

4th IWA/WEF Wastewater Treatment Modelling Seminar Spa, Belgium March 30 – April 2, 2014

Intro to Qualitative Modelling

Laboratory of Chemical and Environmental Engineering

Why use Qualitative Modelling?

- When phenomena of biological nature cannot be predicted adequately by general and validated deterministic models due to lack of sufficient mechanistic understanding of the underlying kinetics and population dynamics (Comas et al., 2008)
- When understanding of complex mechanism is not needed to answer questions or provide **decision support**

Qualitative Modelling Techniques

Artificial Intelligence (AI) or Knowledge-based systems

mimic human perception, learning and reasoning to solve complex problems (Chen et al., 2008)

Differences of AI with Numerical or Deterministic Methods

ARTIFICIAL INTELLIGENCE

Symbolic processes

Complex processes

Heuristic resolution

Approximate solutions

Approximate information

QUALITATIVE

NUMERICAL METHODS

Numerical processes

"Normal" processes

Mathematical resolution

"exact" solutions

Exact information

QUANTITATIVE

Rule-based System Development

Knowledge Aquisition

Knowledge Representation in a graphical way

Codification of the branches by means of production rules:

IF <conditions> THEN <conclusions>

Knowledge Base

Rule-based System: knowledge acquisition

Knowledge acquisition : Sources and methods

Environmental Decision Support Systems (EDSS)

- ✓ Complex management of environmental systems
 ✓ Single AI techniques could not succeeded →
 AI techniques could not succeeded →
 advantages but limitations
 all knowledge could not be captured in one reliable model
 - ✓ Link control algorithms and mathematical models to AI techniques
 - ✓ Environmental Decision Support Systems, which integrate
 - numerical control
 - mathematical modelling,
 - heuristic knowledge (literature, experts),
 - experiences

"a new tool INTEGRATING different reasoning models (mahemtical, AI, GIS, et.) complementing each other and thus increasign the overall potentialities. This tool helps to reduce the time in which decisions are made, and improves the consistency and quality of those decisions"

Qualitative Modelling Examples

- Poch et al., 2004 KBS EDSS for WWTP Supervision and Technology Selection
 - Garrido et al. 2012 KBS EDSS for WWTP Technology Selection
 - NOVEDAR_EDSS
- Rodriguez-Roda et al., 2002 Hybrid KBS/CBS DSS for WWTP microbial operational problems
- Comas et al., 2003 KBS for assessing risk of WWTP settling problems of microbial origins

Integrating Mathematical and Qualitative Modelling

UWS Deterministic Modelling tools have done well to address complexity and dynamics of urban water systems for:

- Effluent Quality
- Operational Cost

Idea is to build on the previous success and **extend** capabilities and **decision support** by leveraging Deterministic model output data for Qualitative Assessment

- Microbial operational problems
- GHG emissions potential

Qualitative Model for Assessing Risk of Solids Separation (AS Risk Model)

- WWTP population imbalances can lead to filamentous bulking, filamentous foaming and deflocculation; but dynamics still not well understood.
- Combining heuristic **knowledge** from the WWTP operators with specific data streams can identify these problems; however, these data tend to appear only after the onset of the problem.
- Attempts have been made to explain the development of filamentous bacteria by means of mathematical modelling, however, none have led to a general and experimentally validated model.
- As an alternative, a qualitative risk assessment model, which integrates empirical knowledge with the mechanisms of standard deterministic models, has been reported to infer solids separation problems of microbiological origin, as a function of influent composition and operational conditions (Comas et al., 2008).

Qualitative Model for Assessing Risk of WWTP N₂O Production

N₂O Risk Knowledge Parallels AS Risk Knowledge

- Complex microbial phenomena
- No widely validated and accepted **mathematical models**
- Significant amount of **knowledge** from literature
- Clear operational parameters already associated with "risk" (Kampschruer et al., 2009; Foley et al., 2010; Ahn et al., 2010; Chandran et al.; GWRC, 2011)
- Therefore, a qualitative N₂O production risk assessment modelling approach has been proposed (Porro et al., 2014).

WWTmod

N₂O Risk Model Knowledge Base Formulation

Process/	Operational	ASM Variable	Risk Classification				Mechanism	References for Operational Risk	References for	
Condition	Parameter / Condition			Low	Medium	High	Wie chamsin	Parameter	Parameter Values	
Denitrification	high NO ₂	NO ₂	range	<0.2	0.2 - 0.5	>0.5	- Heterotrophic	Kampschreur et al.		
							denitrification - AOB denitrification	2009; Foley et al., 2010; Ahn et al., 2010;	GWRC, 2011	
			units		mg/L			<u>GWRC, 2011</u> Kampschreur et al.		
Nitrification	high NO ₂	NO2	range	<0.2	0.2 - 0.5	>0.5	AOB denitrification	2009; Foley et al.,	GWRC. 2011	
			units		mg/L			2010; Ahn et al., 2010; GWRC, 2011	-, -	
	low DO	DO	range	> 1.5	0.4 - 1.5	< 0.4	- AOB depitrification	Kampschreur et al. 2010	Tallec et al., 2008	
			units		mg/L		AOB deniti incation	Kampsenreur et al. 2010		
	Non-limiting DO, NH4, AOR	DO	range	< 1.8	2.15	> 2.5	AOB nitrification	Ahn et al., 2010, Chandran at al., 2011	low at al. 2012	
			units		O2 mg/L			Law et al., 2012	Law et al., 2012	
Internal Recycle	Internal Recycle Rate	XQ	range	>10	5 -10	<5	- AOR donitrification	Folow at al 2010	Foley et al., 2010	
			units		XQ		AOB denitrincation	Foley et al., 2010		
Anoxic/Oxic transitions	Anoxic/Oxic transitions	Delta DO between reactors	range	≤0.5	1.25	≥2	_		Yu et al., 2010	
							AOB nitrification	Yu et al., 2010; Chandran et al., 2011	(transition form 0 to 4 mg/L created sharp	
			units		delta mg/L			•	spike)	
Rapid Process Changes	Spikes in NH4, flow, swings in COD:N	Delta	range	<20	30	>50	- Heterotrophic	Kampschreur et al.	arbitrary	
							denitrification	2009; Foley et al.,		
			units		%		- AOB nitrification	2010		

Laboratory of Chemical and Environmental Engineering

WWTmod

sanitas

Integrated Mathematical / Knowledge-Based Risk Assessment Modelling Framework

Online/SCADA Data -OR- Mathematical Modelling

N₂O Risk Model Implementation in BSM2 Platform

Laboratory of Chemical and Environmental Engineering

N₂O Risk Model BSM2 Results

Summary of Benchmarking Results	(Porro et al., 2014)	
	Scenario1	Scenario2
	DO 2.0	<u>DO 1.3</u>
Time Under High N ₂ O Risk (%)	64	98 1
Average Overall N ₂ O Risk Score	0.47	0.54
EQI (kg poll·d⁻¹)	5612	5694
OCI (-)	10537	10023

sanitas

Laboratory of Chemical and Environmental Engineering

В

Overall Risk

D

Overall Risk

Scen 2

Scen 1

N₂O Risk Model BSM2 Results

Individual and Overall N₂O Risk for two DO strategies

			→	≜	<mark>▼</mark> 1.5	kLa	→ kL	a	0.	5 kLa	1		
	ASU1		ASU2		ASU3		ASU4		ASU5		Overall		all
	Average	% of Time	Average	% of Time	Average	% of Time	Average	% of Time	Average	% of Time	A	9	6 of Time
	Overall	Under	Overall	Under	Overall	Under	Overall	Under	Overall	Under	Over		Under
	Risk	High Risk	Risk	High Risk	Risk	High Risk	Risk	High Risk	Risk	High Risk	Risk	H	High Risk
Scenario 1_DO2.0	0.58	21	0.31	21	0.56	33	0.41	10	0.51	19	0.47		64
Scenario 2_DO1.3	0.44	13	0.11	2.4	0.74	50	0.46	30	0.95	96	0.54		98

6.00

6.00

Time (days)

Time (days

8.00

8.00

10.00

10.00

12.00

12.00

14.00

14.00

Risk ≥ 0.80 = High Risk Overall Risk = Max of Individual Risks

Validation Case: Aarle-Rixtel WWTP The Netherlands

Validation Case: Aarle-Rixtel WWTP (Aarle-Rixtel, The Netherlands)

Laboratory of Chemical and Environmental Engineering

WWTmod

Validation Case: Catalonia

Validation Case: Catalonia, Spain)

🛹 sanitas

Concluding Remarks

- N₂O Risk Model adds value and decision support to Energy Optimization Control Strategy Benchmarking with third dimension added to Water Quality and Costs
- Proved it can be an effective for assessing N₂O production risk from a plant-wide and reactor level
- Diagnosing specific risks allows for identification of mitigation opportunities
- It can be used for hypothesizing mechanisms and selecting appropriate N₂O mechanistic models
- N₂O Risk model validation proves risk model answers N₂O risk questions correctly
- Helps provide more **holistic** accounting of N in modelling

Sustainable and Integrated Urban Water System Management

Acknowledgements: Waterboard Aa en Maas

🤝 sanitas

<u>www.sanitas-itn.eu</u>

The research leading to these results has received funding from the People Program (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013 under REA agreement 289193.

This presentation reflects only the author's views and the European Union is not liable for any use that may be made of the information contained therein.

