

ScorePP											
Unit model Processes	Sewer	Stormwater unit (water)	Stormwater unit (sediments)	Primary settling	Activated sludge tank	Secondary settling	Sludge thickener	Sludge anaerobic digester	Sludge dewatering	River (water)	River (sediments)
Physical processes											
Sedimentation	+	+		+		+	+			+	
Resuspension	+		+								+
Volatilization	+	+		+	+	+	+	+	+	+	
Sediment-water exchange										+	+
physicochemical											
Adsorption-desorption	+	+	+	+	+	+	+	+		+	+
Hydrolysis	+	+	+	+	+	+	+			+	
Photolysis		+								+	
Biological											
Aerobic biodegradation	+	+	+	+	+	+	+			+	+
Anoxic biodegradation	+	+	+	+	+	+	+	+		+	_+
											4
									16	moi	Iel BAIK

ocess	MP properties	Other relevant parameters			
Physical processes					
Sedimentation and resuspension	-	Water depth, bottom shear stress, critical shear stress, erodibility constant			
Volatilization	Henry's law constant, molecular weight	Water depth, wind speed, water currents and temperature			
Sediment-water exchange	Molecular weight	Sediment porosity			
Physicochemical					
Adsorption-desorption	Partition coefficient (k_d or k_{OC})	TSS concentration, organic fraction			
Hydrolysis	First-order degradation rate (or half life)	pH, temperature			
Photolysis	Half-life	Light intensity, water depth, water pollution			
Biological					
Aerobic biodegradation	Half-life	Oxygen concentration, temperature			
Anoxic biodegradation	Half-life	Oxygen/nitrate concentration, temperature			

Senchinarking con	lioi sua	legies
 <u>C</u>omparison of <i>no contro</i> (DO control in aerobic re 	y and yes (actors, DO	<i>control</i> = 2mg·L⁻
Breakdown of GHG emissions (kg CO ₂ e·m-3)	No control	Yes contr
Bio-treatment GHG emissions	0.451	0.376
Biomass respiration	0.179	0.178
BOD oxidation	0.212	0.212
Credit nitrification	-0.168	-0.167
N ₂ O emissions	0.228	0.152
Sludge processing GHG emissions	0.231	0.231
Net power GHG emissions	0.000	-0.038
Power	0.311	0.272
Credit power GHG emissions	-0.311	-0.310
Embedded GHG emissions from chemical use	0.099	0.099
Sludge disposal and reuse GHG emissions	0.193	0.193
		32

1	Modelling physicochemical processes
	We have to do it differently:
	Image: Precipitation: 0 MA Publishing 2012 Water Science & Technology 66.6 2012
	Towards a generalized physicochemical framework Damien J. Batstone, Youri Amerlinck, George Ekama, Rajeev Goel, Paloma Grau, Bruce Johnson, Ishin Kaya, Jean-Philippe Steyer, Stephan Tait, Imre Takács, Peter A. Vanrolleghem, Christopher J. Brouckaert and Eveline Volcke
	ABSTRACT
	UNIVERSITÉ 59 NO CLARA

