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Abstract:  Compared to traditional grab sampling modern measurement systems enable continuous 
water quality monitoring of water systems at high frequency. However, in real world applications on-
line sensors are still subject to functional, technical and operational constraints. Challenges thus 
remain associated with the automation of data collection and especially data validation to ensure 
proper use and interpretation of the data and avoid the danger of building data graveyards. Poor 
quality data could drastically affect the results of their application, e.g. water quality models for river 
basin management, model-based control, WWTP control rules, decision making, etc. For practical 
fault detection purposes, in this paper, a data-driven tool that attempts to extract useful information 
from the time series of multiple measurement signals, in the absence of exact process knowledge, is 
presented. The proposed tools are successfully tested on on-line water quality time series from 
different applications including sewers, wastewater treatment plants and receiving waters. 
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1.      INTRODUCTION 

 
One of the obstacles for the joint use of monitoring and modelling has been the lack of sufficient and 
good data which affects the applicability of models that rely on them. Recent developments regarding 
advanced on-line water quality instrumentation and data acquisition systems have contributed to the 
gradual implementation of automatic in-situ monitoring systems for generation of high frequency data. 
Nevertheless, the intrinsically challenging measurement conditions of the water environments 
monitored makes that on-line sensors are still affected by many faults resulting in large amounts of 
data with doubtful quality being collected (Branisavljevic et al., 2010). Data will only be useful for their 
meant application if it is reliable and correctly validated.  
 
Additional and important efforts are then required to assess the quality of the data to ensure that a 
fully utilizable database of meaningful values is constructed. In this data validation process the 
detection and isolation of potential sensor faults becomes crucial. In practice, typical faults that can 
affect water quality sensors (bias, drift, precision degradation, complete failure...) are not easy to 
detect (Yoo et al., 2008). Inefficient manual inspection and visualization are still the most applied 
procedures. Such approach becomes unachievable when large data sets need to be scrutinized 
(Thomann, 2008). 
 
In this paper a novel multivariable model-based method with a practical orientation is presented in 
order to automatically detect possible deviations of water quality sensors from their normal operation. 
A principal component analysis (PCA) scheme is used for diagnosis purposes to first detect and then 
isolate and identify the cause of the fault by using different statistical metrics and the contribution by 
the different variables. The proposed tools have been successfully tested on water quality time series 
collected in different water systems. Assessed data is then available for different purposes, among 
others, for modelling of different biological processes, resource management and pollution 
description. 
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2.      METHODS  

 

2.1 On-line water quality sensors 

 

An automated monitoring system encompasses sensors and recording systems to measure physical 
and chemical water quality variables at discrete time intervals at point locations. In this way, a water 
quality monitoring station provides a nearly continuous record of water quality variables, at high time 
resolution, that can be used among others to describe changes and dynamics in pollution, constituent 
loads, identify cause-and-effect relationships and trends, understanding the effect of loads on 
receiving waters, model adaptation, calibration and validation for wastewater systems and receiving 
waters and finally for on-line control purposes (Sonnenberg et al., 2010; Caradot et al., 2011). Data 
from on-line sensors can also be used to estimate other constituents if a significant correlation can be 
established, often by regression analyses. 

The challenge of automated monitoring programs is to collect data that consistently represent the 
water quality. This is exactly the operational goal of a water quality monitoring program: to obtain the 
most accurate and complete record possible. This requires clear protocols for data collection, quality 
assurance and quality control. On-line water quality sensors for field deployment require careful 
maintenance routines, as well as systematic procedures for the storage and handling of data records 
(Wagner et al., 2006). Even if exhaustive practical procedures can be applied to measuring systems 
to avoid degradation of the measuring quality, many conditions can influence the quality of 
measurements and lead to wrong values or faults. In addition to fouling problems, sensors can be 
affected by sedimentation, debris, ice, clogging and equipment malfunctioning. A validation step of the 
measurements being collected is then required to detect abnormal values and separate them from 
valid values. Given the large amount of data, automated tools for data validation need to be applied. 
 

      
 

Figure 1. Examples of faulty sensors. 
 
According the monEAU vision (Rieger and Vanrolleghem, 2008) proposing a framework for a new 
generation of monitoring stations (Figure 2) the “data quality validation module” is a key component to 
ensure that the quality of the data being collected is sufficient for the intended application. Recent 
steps forward have been made concerning the development of practical software tools for fault 
detection purposes as described in the next section. 
 

 

Figure 2. Software framework monitoring station (Rieger and Vanrolleghem, 2008).  
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2.2   Faults monitoring for on-line water quality sensors  

 

Although different methods have been developed for fault isolation (Venkatasubramanian et al. 2003; 
Alcala and Qin, 2010), statistical process monitoring (SPM) has become a widely used technique, 
mainly in the chemical process industry. Among those methods, the principal components analysis 
(PCA) has won popularity thanks its data-driven characteristics, without the need of exact process 
knowledge. Basically, this technique looks for extracting a few independent components from highly 
correlated data, preserving the most relevant information of the original data set. Those key 
components can posteriorly be used to monitor the process operation (Lee and Vanrolleghem, 2003).  
 
In comparison to the conventional univariate statistical process usually based on control charts to 
monitor individual variables, the application of the PCA technique to typically highly correlated water 
quality data represents a significant step forward when analyzing the data quality of multiple variables. 
Moreover, since PCA uses historical data to build an approximate model to summarize the measured 
process data, it becomes especially applicable for monitoring stations that generate large water 
quality data sets. For monitoring purposes, a PCA model is first obtained by using the collected 
process data under “normal” operating conditions. On the basis of these data control limits can be set 
for certain monitoring statistics and when new process data come in, they can be evaluated by 
monitoring the violation of these statistics to their control limits.  
 
The applied method is shown in Figure 3. Two phases can be discerned. While the first, off-line stage 
is aimed at obtaining the PCA model based on a training data set, the second on-line stage intends to 
detect abnormalities for a new observation data vector. In the first phase, once outliers have been 
removed from the raw data (details can be found in Alferes et al., 2013a), the resulting data matrix X 

[ x ]n m  of n regular-sampled observations and m process variables X is first normalized to a matrix 

X  with zero mean and unit variance. The normalized matrix is decomposed as T
X TP X= + % , where 

T [ x ]n a  and P [ x ]m a represent the scores and loadings respectively, and X%  the residual matrix. 

Original data is transformed in this way into a new reduced dimension space characterised by a  

principal components. The key of the method lies therefore in the proper estimation of the 
transformation matrix P. In fact, the columns of P are actually the eigenvectors with the a  largest 

eigenvalues 
1

[ ... ]
a

λ λ  of the correlation matrix R of the variables, which can be approximated as:

( )
1

1
T

R n X X
−

≈ − . Each chosen eigenvector or principal component (PC) captures the maximum 

amount of variability in the data in an ordered manner. The residual matrix that contains the remaining 
components then represents the variability due to process noise. Once the PCA model has been set 
and data have been transformed, multivariate statistics can be calculated and multivariate control 
charts can be built for fault detection purposes.  
 
More specifically, two statistics, the Hotelling t

2
 and the squared prediction error Q are computed 

based on the projections of the data in the model and residual subspace respectively. While the Q 
index indicates the extent to which each sample conforms to the PCA model (measure of the amount 
of variation not captured by the model), the t

2
 index measures the amount of variation in the model 

subspace. Details on their calculations can be found in Alferes et al. (2013b). The approximated 
control limits with a certain confidence interval α are determined from the “normal” operating data by 
applying probability distribution assumptions. Limits are then calculated as: 

( ) ( )2 2( 1) ( ) ,t a n n n a F a n aα α= − − −  and ( )( )2
1 0 2 1 2 0 0 12 1 1Q c h h hα αθ θ θ θ θ= + + − ; with a  and n a−  degrees of 

freedom, ( ),F a n aα −  the upper limit of the Fisher distribution and cα the normal distribution with α level 

of significance. iθ  is given by 
1

m
i

i j

j a

θ λ
= +

= ∑   with 1,2,3i =  and 2

0 1 3 2
1 2 3h θ θ θ= − . 

It is expected that an abnormal or faulty situation will cause at least one of the two indices to exceed 
the control limits. Since the confidence limits are obtained in a statistical sense, the number of 
“normal” observations must be sufficiently large to result in consistent thresholds. For monitoring 
purposes, called on-line analysis, a new normalized data observation vector kx  collected at time 

instant k  is projected onto the obtained PCA model and faults are detected by evaluating whether the 

two statistics (based on these projections) fall in the in-control region defined by the thresholds 
previously established. In case a fault is detected, a consecutive analysis is carried out to identify and 
isolate the root cause of the faulty situation in both statistics. In this case the individual contribution of 
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each variable to the fault detection indices is calculated. For the Q statistic, which measures the lack 
of fit of the sample to the model, the individual contributions for each data observation vector kx  are 

calculated as the k  row vector of the residual matrix X% . For t
2
 statistic, the vector of individual 

contributions 
2

,cont kt  is calculated as the weighted contribution of each score by 2 1/ 2

,

T

cont k k k
t T P−= Λ . 

 

 

Figure 3. Scheme of setting up and running a PCA-based monitoring system. 
 
Due to changes in operational conditions, mean, variance and correlation structure among variables 
could change in time. In that case possible false alarms could be generated. Currently, an adaptive 
approach is investigated to recursively determine the PCA model and the control limits that best fit the 
data under study by using a data monitoring window (Lee and Vanrolleghem, 2003). However, 
keeping the computational burden limited is the key point to consider for an on-line implementation. 
 
 
3.    RESULTS 
 
To illustrate the potential of the proposed approach, the PCA method has been applied to different 
case studies with groups of on-line water quality variables. Figure 4 shows the results obtained for a 
set of eight on-line time series (three temperature signals coming from three different sensors, 
conductivity, turbidity, pH, ammonia and chloride) collected at the inlet of the Lynette wastewater 
treatment plant (Copenhagen, Denmark). Data has been recorded at 5 second intervals. 

 

Figure 4. On-line water quality measurements at the Lynette WWTP (DK). 
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A 4-day data set collected under what could be considered normal operating conditions (period 
between April 18

th
 and April 22

nd
 in Figure 4), has been used for off-line training purposes, resulting in 

a PCA model where three principal components (PC1, PC2, PC3) capture around 90% of the 
variability in the data. Calculation of Q, and its respective control limit Qα , has revealed that around 

3% of the data was considered abnormal, proving the goodness of the model to describe the main 
sources of variability in the data.  
 
Once the PCA model was obtained, it was applied to the whole time series for identification of faulty 
data. Figure 5 shows the scores (data transformed in the PCA model) for the two first principal 
components, for a 2-days data set (period between April 24

nd
 and April 26

th
). While each point in the 

plot represents a data observation vector kx , the vectors represent each variable and its contribution 

to PC1 and PC2. A first visual analysis reveals that the three temperature signals collected by a 
conductivity (ConTemp), pH (pHTemp) and NH4 (AniseTemp) sensors behave similarly. A strong 
correlation is also noticed between the chloride (Chl) and conductivity measurements (Cond). This 
finding is confirmed by observing the time series (Figure 4) where rain events around April 18

th
 and 

April 26
th
 caused similar dynamics in both variables.  

 

 
 

Figure 5. Scores of the PCA representation of the Lynette data. 
 
Inspecting the scores representation in Figure 5 it can be noticed that most of the data cluster close to 
the origin but some deviations in the direction of the different variables’ vectors are also present. For 
example, data clusters I, II and III suggest an abnormal behavior for these corresponding sensors. 
Monitoring of the t

2
 and Q statistics allow for the detection and isolation of some fault situations in the 

process. Some examples will be discussed below.  
 
For observations in cluster I in the direction of the turbidity measurements (Turb – Figure 5) the Q 
statistic detected unusual behavior that changes the normal correlation between the variables and the 
t
2 

statistic detected abnormal variations within the model subspace (see Figure 6a). Calculation of the 
individual score contributions to t

2
 for one sample in period I suggests that the turbidity measurements 

is the probable cause of the fault (variable 1, last subplot in Figure 6a). Moreover, the time series for 
turbidity measurements indeed revealed abnormal behavior for that variable.  
 
Figure 6b shows an example of coinciding multiple sensors faults. Time series for period II revealed 
some abnormal behaviour for the conductivity measurements and the temperature data recorded with 
that sensor. Although t

2
 remained inside the in-control region, the Q statistic revealed a new source of 

variance and a bad correspondence of these data to the PCA model. In this case, the individual 
contributions to the Q statistic for one sample in that period (variable 4 and variable 5, last subplot in 
Figure 6b) showed that the conductivity and conductivity temperature measurements were the 
variables responsible for these large Q values. For period III, both t

2
 and Q statistics were outside the 

control limits suggesting (1) phenomena not taken into account in the model and (2) a higher than 
normal variability in the data. Time series for that period indeed exhibited abnormal behaviour for pH 
and pH temperature measurements (Figure 6b).  

I 

III 

II 
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Figure 6. Faulty measurements on April 22

nd
. (a) Period I: From top to bottom, t

2
 and Q statistic, 

Turbidity time series and t
2
 contribution plot by the 8 sensors, (b) Period II and III: From top to bottom, 

t
2
 and Q statistic, Conductivity, temperature and pH time series and Q contribution plot by the 8 

sensors. 
 
Summarizing, for each observation data quality was monitored by calculating the corresponding Q 
and t

2 
statistics and their violation to the established control limits. Figure 7 shows the monitored 

statistics for the complete validation data set and their respective control limits (horizontal red lines). 
For the period under study Q and t

2
 revealed respectively around 7% and 2% of the data to be 

abnormal or faulty. This is quite good compared to typical data rejection percentages between 5 and 
50% (van Bijnen and Korving (2008): 40%; Thomann (2008): 5-15%; Métadier (2011): 40-60%; 
Schilperoort (2011): 25-50%). 
 

 
Figure 7. Q and t

2
 statistics for the validation data set collected at Lynette (DK) 

 

 
4. CONCLUSIONS 

 

Dealing with on-line sensors to make water quality monitoring networks useful in practice still 
represents an important challenge. Data collected with in situ monitoring systems are not without 
errors due to the challenging measurement conditions that prevail in wastewater and other water 
system environments. In that sense, efficient monitoring will depend on careful data quality 
assessment. With this in mind, an automatic data quality evaluation tool for analysis of multivariate 
on-line time series, based on statistical process monitoring, has been presented and successfully 
validated on complex data sets collected at the inlet of a treatment plant. The method, based on PCA 
techniques and using the monitoring of some statistical metrics, was shown to be effective for 
detection and posterior isolation of different sensor faults in view of an on-line practical 
implementation. 
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