

# **Towards Calibration of Phosphorus (P) Removal Plant-Wide Models**

D. S. Ikumi<sup>1</sup>, P.A. Vanrolleghem<sup>2</sup>, C.J. Brouckaert<sup>3</sup>, M.B. Neumann<sup>2,4,5</sup> and G.A. Ekama<sup>1</sup>

 <sup>1</sup> Water Research Group, Dept of Civil Engineering, University of Cape Town, Rondebosch 7701, Cape Town, South Africa. (E-mail <u>david.ikumi@uct.ac.za</u>, <u>george.ekama@uct.ac.za</u>)
 <sup>2</sup> modelEAU, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec (QC), G1V 0A6, Canada. (E-mail: <u>peter.vanrolleghem@gci.ulaval.ca</u>)
 <sup>3</sup> Pollution Research Group, School of Chemical Engineering, University of KwaZulu-Natal, Durban 4041, South Africa. (E-mail: <u>brouckae@ukzn.ac.za</u>)
 <sup>4</sup> Basque Centre for Climate Change, Alameda Urquijo 4 - 4°, 48008, Bilbao, Spain (E-mail: <u>marc.neumann@bc3research.org</u>)
 <sup>5</sup> IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain

#### Keywords

Plant-wide modelling; biological phosphorus removal; calibration protocol; wastewater treatment

### **INTRODUCTION**

Over the past years, wastewater treatment plant (WWTP) mathematical models have been advancing towards their widespread application for sizing and operation of treatment plants to minimize energy consumption and cost while maximizing nutrient recovery and effluent quality. Effective utilisation of these models requires that they are well calibrated. However, difficulties (with important parameters not identified and uncertainties in intepretation of model output results) can be experienced in model calibration, especially due to (i) the intricate relationships of model output variables with model input factors (where parameters are inter-related to various model outputs), resulting in non-linearity, and (ii) the limitations (due to expensive and/or time consuming experimental methods) experienced in procuring and reconciling data required for determination of the model input factors (especially when the model has significantly large numbers of unknown parameters and model components).

The BIOMATH protocol, developed by Vanrolleghem *et al.* (2003), provides a systematic approach for calibration. The main objective of this paper is to apply the BIOMATH protocol in providing a guidance towards calibration of a plant-wide model that includes phosphorus. The three phase (aqueous-gas-solid) University of Cape Town plant wide (UCT–PW) model (Ikumi *et al.*, 2013) that was calibrated against the experimental layout described below is used as a case study for this calibration procedure.

# EXPERIMENTAL SYSTEM LAYOUT

The experimental layout of Ikumi (2011) is used in this study. It replicates at laboratory scale three WWTP schemes, comprising (1) a Modified Ludzack – Ettinger (MLE) nitrification–denitrification (ND) activated sludge (AS) system treating raw sewage (MLE 1) with anaerobic digestion (AD) of its waste activated sludge (WAS) in AD system number 1 (i.e., AD1), (2) an identical MLE system (MLE 2) treating settled sewage with AD of its WAS in AD2 and (3) a membrane (MBR) University of Cape Town (UCT) ND enhanced biological P removal (NDEBPR) system treating settled sewage with (i) AD of its WAS in AD3 and (ii) anoxic/aerobic digestion (AAD) of its WAS in two intermittently aerated (3hour air on, 3hour air off) aerobic digesters, AAD1 fed with concentrated WAS (2x, 20gTSS/l) and AAD2 fed with dilute WAS (1/3, 3.3gTSS/l).

Ikumi *et al*.



## MODEL DESCRIPTION

The UCT three phase plant wide model was developed for simulating the biological processes to track and predict the output of materials (COD, carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), magnesium (Mg), potassium (K) and calcium (Ca)) along the unit processes of a WWTP. It comprises three sub-models, integrated for simulation of the entire WWTP under various configurations (e.g. NDBEPR AS system linked to an AD or an anoxic-aerobic digestion (AAD) for WAS stabilisation). These sub-models include:

- 1. The ionic speciation model (Brouckaert *et al.*, 2010). This model includes pairing of ionic components (the set of model ionic species is given in Table 3) and inter-phase transfers of component species. Table 4 gives an example of a set of equilibrium and mass balance equations used in the ionic speciation subroutine.
- 2. The ASM2-3P model: This is the Activated Sludge Model No. 2 (ASM2, Henze *et al.*, 1995), modified to include the ionic speciation model (Brouckaert *et al.*, 2010), the Inorganic Settleable Solids (ISS) model of Ekama and Wentzel (2004) and including multiple mineral precipitation according to Musvoto *et al.* (2000a,b).
- 3. The ADM3P Model: This is the University of Cape Town Anaerobic Digestion Model (UCTADM; Sötemann *et al.*, 2005), modified to include the hydrolysis of multiple organic sludge types (PS, ND WAS, NDBEPR WAS and PS-WAS blends), the Ekama and Wentzel (2004) ISS model, multiple mineral precipitation processes according to Musvoto *et al.* (2000a, b) and the Brouckaert *et al.* (2010) aqueous speciation model which facilitates ionic speciation (Ikumi *et al.*, 2011).

For their compatibility, the ASM2-3P and ADM3P models have the same comprehensive set of model components (supermodel approach, Volcke *et al.*, 2006; model components given in Table 1 and applied stoichiometric processes in Table 4), including parameterized stoichiometry for the bioprocesses and sharing the same ionic speciation subroutine model (1).

# MODEL EVALUATION PROCESS

- 1. *Model Verification*: To initiate the evaluation of the UCT-PW model (Ikumi *et al.*, 2013), the systematic method proposed by Hauduc *et al.* (2010) was applied to verify that material (COD, C, H, O N, P, Mg K and Ca) balances were achieved in the determination of all stoichiometric processes.
- 2. *Parameter Values*: The initial values for suitable kinetic and stoichiometric parameters as obtained experimentally or from literature were entered, and given the typical value range, determined according to the methods proposed by Brun *et al.* (2002).
- 3. *Senitivity Analysis*: The parameters were subsequently evaluated using two different methods of global sensitivity analysis: (1) Standardised Regression Coefficients (SRC) and (2) Morris Screening. The results obtained using these methods are used to identify important parameters (prioritisation of those with greatest effects), non-influential parameters (those that can be 'fixed' at any value within their range without effecting outputs) and interacting parameters (Neumann, 2012).
- 4. *Model Calibration and Validation*: Non-influential parameters were set at their default values and random samples were drawn from the remaining subset of parameters. For the

WWTmod ≋2014

> sampled parameter sets simulations were conducted and predicted model outputs were compared with observed outputs. During this calibration phase, a consistent set of parameter values was used to simulate all experimental systems/periods, and detailed explanations of observed discrepancies (if any) were reported by Ikumi (2011). The sensitivity analysis together with intuitive observation on a steady state stoichiometric model was a significant role in selecting the 'best' set of parameters. It was noted that influent sewage and sludge characterisation, and determination of hydrolysis kinetic rates were important requirements prior to any simulation. In AD, the hydrolysis process is the slowest one and requires the best possible calibration. The hydrolysis kinetic constants were fit to match experimental data by Ikumi et al. (2013), using the non-linear regression. The biological reactions following hydrolysis are limited by the hydrolysis rate, hence their kinetic parameters are not identifiable from these experimental data, and so were adopted without adjustment from literature. Most of the parameterised influent and sludge characteristics could be obtained or calculated from directly measured results (Ikumi, 2011). This is because the unbiodegradable fractions of influent organics and the characteristics of the biodegradable feed components have a significant effect on the quality of model predictions, but are usually specific to the feed source.

- 5. *Model Performance Results*: Below are observations in experimental behaviour of P removal systems, replicated by the UCT-PW model as required to promote confidence in its application:
  - i. Applying the ASM2-3P model to an MLE system with ND does not stimulate EBPR (i.e., there is no PAO growth, hence no polyphosphate (PP) storage) and its effluent P comprises mainly the OP not utilized by the biomass (mainly OHOs) for growth.
- ii. For MLE systems with little or no nitrification taking place, high quantities of P and acetate in the un-aerated ('anoxic') zone will result in the growth of phosphorus accumulating organisms (PAOs) rather than ordinary heterotrophic organisms (OHOs) only as expected in fully aerobic or nitrogen (N) removal systems. The concentration of acetate available for this PAO growth (and associated EBPR) depends on the rate of fermentation of biodegradable soluble organics (BSO) that occurs and the concentration of nitrate that gets recycled to the anaerobic reactor in these systems. Moreover, as noted in 3 and 5-stage Bardenpho systems in winter, when denitrification is lower, the nitrates recycled to the anaerobic reactor can be sufficiently high to suppress EBPR. The ASM2-3P model predicts this behaviour qualitatively well.
- iii. Applying ASM2-3P for sludge treatment with anoxic-aerobic digestion (AAD), the absence of VFA and an anaerobic period renders the PAOs unable to compete with the OHOs. Consequently, the PAOs do not grow and undergo endogenous respiration and die, releasing their stored PP as magnesium (Mg), calcium (Ca), potassium (K) and orthophosphate (OP). Struvite (MgNH<sub>4</sub>PO<sub>4</sub>) precipitation occurs when the concentration of Mg, ammonia and OP is high enough (i.e., the struvite is supersaturated) in the mixed liquor. If the ammonia is low (< 1mg/N/*l*), due to nitrification, K-struvite (MgKPO<sub>4</sub>) forms.
- iv. In AD, organically bound N is released with the hydrolysis of biodegradable organics in the non-ionic NH<sub>3</sub> form, which are non-reference species (reference species of a weak acid system being one that, when added to pure water, creates a solution state, relative to which the alkalinity of the weak acid system is measured) for the ammonia weak acid/base system. Therefore, the aqueous alkalinity increases by the concentration of NH<sub>3</sub> transferred from the organics (the NH<sub>3</sub> being an intrinsic alkalinity content of the organics) to the aqueous phase. This is the main aqueous H<sub>2</sub>CO<sub>3</sub><sup>\*</sup> alkalinity generation



process in an AD treating PS or WAS that is not P-rich. For P-rich systems with PP, the aqueous  $H_2CO_3^*$  alkalinity increase also depends on PP and cell bound P release because PP is released as  $H_2PO_4$  and biomass P is released as  $H_3PO_4$ , which interact with the other weak acid/base systems and influence pH. The ADM3P model predicts the pH for both these systems (P- rich or not) really well.

- v. In the dynamic model of the AD, initially, PP release and poly-hydroxy-alkanoate (PHA) storage by PAOs takes place with the uptake of acetate, as would happen in the anaerobic part of the parent NDEBPR system. This results in increased alkalinity because the PP is released as H<sub>2</sub>PO<sub>4</sub><sup>-</sup>. Because the PAOs also require alternating aerobic conditions for their growth, they cannot grow in the AD. Therefore, the PAOs are modelled to "die" in AD at a rate faster than their endogenous respiration; releasing their PHA and the remainder of their stored PP, adding more H<sub>2</sub>PO<sub>4</sub><sup>-</sup> and alkalinity. Depending on the charge/proton balance requirements, some of the H<sub>2</sub>PO<sub>4</sub><sup>-</sup> species become HPO<sub>4</sub><sup>2-</sup> species by reacting with HCO<sub>3</sub><sup>-</sup> to form HPO<sub>4</sub><sup>2-</sup>, H<sub>2</sub>O and CO<sub>2</sub>. The increase in CO<sub>2</sub> gas increases the partial pressure of the gas phase, which influences the aqueous speciation. The split between the OP species co-dependent on the inorganic carbon (IC) system (and any other weak acid/base system that may be present), which together establish the AD pH.
- vi. Because  $H_3PO_4$  is the reference species for the OP weak acid/base system, the total alkalinity does not change with the slower release of organically bound P, but the species that represent it do.
- vii. The rapid release of PP and associated  $Mg^{2+}$  and the slow release of biomass N and P generate high concentrations of P,  $NH_4^+$  and  $Mg^{2+}$  species in the AD liquor, which promotes struvite precipitation. This struvite precipitation decreases the total alkalinity and so results in re-speciation of the IC system, which increases the CO<sub>2</sub> partial pressure and decreases AD pH.

# COMPARISON OF EXPERIMENTAL AND PREDICTED RESULTS

Figures 1a to f show a comparison between the data measured and simulated by the three phase AD dynamic model for the AD1 fed with the NDBEPR WAS (i.e. the AD effluent from UCT NDBEPR linked to AD in a plant wide setting). Considering the general complexities in characterization of the AD influent (i.e. the NDBEPR WAS; Ikumi et al., 2013), the simulated results match quite well for COD removal (Fig 1a, which it should because the hydrolysis rates were calibrated on to the experimental results), and FSA (Fig1b) and OP (Fig 1c) release. Because all the AD products, including the H<sub>2</sub>CO<sub>3</sub> and H<sub>3</sub>PO<sub>4</sub> alkalinities and gas  $CO_2$  partial pressure ( $p_{CO2}$ ), are entirely dependent on the composition of the biodegradable organics (x,y,z,a,b,q,c,d,e in C<sub>x</sub>H<sub>y</sub>O<sub>z</sub>N<sub>a</sub>P<sub>b</sub> qMg<sub>c</sub>K<sub>d</sub>Ca<sub>e</sub>PO<sub>3</sub>), if the organics' composition entered into the model is not "correct", then the simulated and measured results will not match, even with 100% experimental material balances (which of course were not achieved on the UCT and AD systems). Improving the comparison between predicted and measured results is a complex exercise because multiple processes act on single compounds. For instance under-predicted FSA (Fig 1b) means the determined N content of the biodegradable part of the OHO and PAO biomass is too low, but this does not mean that the  $H_2CO_3$ alkalinity also has to be under-predicted (through  $NH_3+H_2CO_3 \rightarrow NH_4^+ + HCO_3^-$ , as it would for an AD fed with low P organics, Sötemann et al., 2005a,b) because the release of PP also produces alkalinity (through MePO<sub>3</sub> + H<sub>2</sub>O  $\rightarrow$  Me<sup>+</sup> + H<sub>2</sub>PO<sub>4</sub><sup>2-</sup>).





# Figure 1e

Figure 1f

*Figure 1*: Comparison between simulated and measured results for AD of WAS from the laboratory scale UCT NDBEPR system fed with settled WW and added acetate to increase BEPR.



#### CLOSURE

The BIOMATH protocol was applied for the calibration of the UCT–PW model, for promotion of its widespread utilisation in a reproducible way. However, it is noted that the effective calibration of this model requires a further step - from modelling the laboratory scale systems (under controlled and completely mixed environments) to assessment of model predictions for full-scale wastewater treatment plant systems, interlinked to plant-wide configurations. This prospective work may be of particular interest to the IWA group on benchmarking of control strategies for WWTPs who are including P into an extended BSM model.

### ACKNOWLEDGEMENTS

Peter Vanrolleghem holds the Canada Research Chair in Water Quality Modelling

#### REFERENCES

- 1. Brouckaert C.J., Ikumi D.S. and Ekama G.A. (2010). *A 3-phase anaerobic digestion model*. In: Proceedings. 12<sup>th</sup> IWA Anaerobic Digestion Conference (AD12), Guadalajara, Mexico, 1-4 Nov, 2010.
- 2. Brun R., Kühni M., Siegrist H., Gujer W. and Reichert P. (2002). Practical identifiability of ASM2d parameters—systematic selection and tuning of parameter subsets. *Water Research*, **36**, 4113–4127.
- 3. Ekama G.A. and Wentzel M.C. (2004). A predictive model for the reactor inorganic suspended solids concentration in activated sludge systems. *Water Research*, **38**, 4093-4106.
- 4. Hauduc H., Rieger L., Takács I., Héduit A., Vanrolleghem P.A. and Gillot S. (2010). A systematic approach for model verification: Application on seven published activated sludge models. *Water Science and Technology*, **61** (4), 825-839.
- 5. Henze M., Gujer W., Mino T., Matsuo T., Wentzel M.C. and Marais G.v.R. (1995). *Activated Sludge Model No.2 (ASM2)*. IWA Scientific and Technical Report No.3, IWA Publishing, London, U.K.
- 6. Ikumi D.S., Brouckaert C.J. and Ekama G.A. (2011). A 3 phase anaerobic digestion model. In: Proceedings 8<sup>th</sup> IWA Watermatex conference, San Sebastian, Spain, 20-22 June, 2011.
- 7. Ikumi D.S. (2011). *The Development of a Three Phase Plant-Wide Mathematical Model for Sewage Treatment*. Water Research Group (WRG). Department of Civil Engineering. University of Cape Town, South-Africa.
- 8. Ikumi D.S., Harding T.H., Brouckaert C.J. and Ekama G.A. (2013). *Plant-wide integrated biological, chemical and physical bioprocesses modelling of wastewater treatment plants in 3 phases (aqueous-gassolid)*. Research Report W136, Department of Civil Engineering. University of Cape Town, South Africa.
- Musvoto E..V. Wentzel M.C., Loewenthal R.E. and Ekama G.A. (2000a). Integrated chemical, physical and biological processes modelling Part I - Development of a kinetic based model for weak acid/base systems. *Water Research*, 34, 1857-1867.
- 10. Musvoto E.V., Wentzel M.C. and Ekama G.A. (2000b). Integrated chemical, physical and biological processes modelling Part II Modelling aeration treatment of anaerobic digester supernatants. *Water Research*, **34**, 1868-1880..
- 11. Sötemann S.W., van Rensburg P., Ristow N.E., Wentzel M.C., Loewenthal R.E. and Ekama G.A. (2005). Integrated chemical, physical and biological processes modelling Part 2 : Anaerobic digestion of sewage sludges. *Water SA*., **31**, 545-568.
- 12. Neumann M.B. (2012). Comparison of sensitivity analysis methods for pollutant degradation modelling: A case study from drinking water treatment. *Science of the Total Environment*, **433**, 530-537.
- 13. Sötemann S.W., Ristow N.E., Wentzel M.C. and Ekama G.A. (2005a) A steady-state model for anaerobic digestion of sewage sludges. *Water SA*, **31**, 511-527.
- Sötemann S.W., van Rensburg P., Ristow N.E., Wentzel M.C., Loewenthal R.E. and Ekama G.A. (2005b) Integrated chemical, physical and biological processes modelling Part 2 - Anaerobic digestion of sewage sludges. *Water SA*, 31, 545-568.
- 15. Vanrolleghem P.A., Insel G., Petersen B., Sin G., De Pauw D., Nopens I., Weijers S. and Gernaey K. (2003). A comprehensive model calibration procedure for activated sludge models. In: Proceedings WEF 26<sup>th</sup> Annual Technical Exhibition and Conference (WEFTEC, 2003), Los Angeles, CA, USA, 11-15 Oct, 2003.
- 16. Volcke E.I.P., van Loosdrecht M.C.M. and Vanrolleghem P.A. (2006). Continuity-based model interfacing for plant-wide simulation : A general approach. *Water Research*, **40**, 2817-2828.



| Name              | Empirical formula                                                    | Description                          | Units                            |
|-------------------|----------------------------------------------------------------------|--------------------------------------|----------------------------------|
| H2O               | H2O                                                                  | Water                                | m <sup>3</sup> /d                |
| S_H               | $\mathrm{H}^+$                                                       | Hydrogen ion                         | gH/m <sup>3</sup>                |
| S_Na              | Na <sup>+</sup>                                                      | Sodium                               | gNa/m <sup>3</sup>               |
| S_K               | $\mathbf{K}^+$                                                       | Potassium                            | gK/m <sup>3</sup>                |
| S_Ca              | $Ca^{2+}$                                                            | Calcium                              | gCa/m <sup>3</sup>               |
| S_Mg              | $Mg^{2+}$                                                            | Magnesium                            | gMg/m <sup>3</sup>               |
| S_NH <sub>x</sub> | NH4 <sup>+</sup>                                                     | Ammonium                             | gNH <sub>4</sub> /m <sup>3</sup> |
| S_Cl              | Cl                                                                   | Chloride                             | gCl/m <sup>3</sup>               |
| S_VFA             | CH <sub>3</sub> COO <sup>-</sup>                                     | Acetate                              | gAc/m <sup>3</sup>               |
| S_Pr              | CH <sub>3</sub> CH <sub>2</sub> COO <sup>-</sup>                     | Propionate                           | gPr/m <sup>3</sup>               |
| S_CO <sub>3</sub> | $CO_{3}^{2}$                                                         | Carbonate                            | gCO <sub>3</sub> /m <sup>3</sup> |
| S_SO <sub>4</sub> | SO4 <sup>2-</sup>                                                    | Sulphate                             | gSO <sub>4</sub> /m <sup>3</sup> |
| S_PO <sub>4</sub> | PO <sub>4</sub> <sup>3-</sup>                                        | Phosphate                            | gPO <sub>4</sub> /m <sup>3</sup> |
| S_NO <sub>x</sub> | NO <sub>3</sub> <sup>-</sup>                                         | Nitrate                              | gNO <sub>3</sub> /m <sup>3</sup> |
| S_H2              | H <sub>2</sub>                                                       | Dissolved hydrogen                   | $gH_2/m^3$                       |
| S_O2              | $O_2$                                                                | Dissolved oxygen                     | $gO_2/m^3$                       |
| S_U               | CH <sub>Yu</sub> O <sub>Zu</sub> N <sub>Au</sub> P <sub>Bu</sub>     | Unbiodegradable Soluble Organics     | g/m <sup>3</sup>                 |
|                   |                                                                      | Fermentable Biodegradable Soluble    | <u> </u>                         |
| S_F               | $CH_{Yf}O_{Zf}N_{Af}P_{Bf}$                                          | Organics                             | g/m <sup>3</sup>                 |
| S_Glu             | $C_{6}H_{12}O_{6}$                                                   | Glucose                              | g/m <sup>3</sup>                 |
|                   |                                                                      | Unbiodegradable particulate          |                                  |
| X_U_inf           | $CH_{Yup}O_{Zup}N_{Aup}P_{Bup}$                                      | organics                             | g/m <sup>3</sup>                 |
| X_B_Org           | CH <sub>Ybp</sub> O <sub>zbp</sub> N <sub>Abp</sub> P <sub>Bbp</sub> | Biodegradable particulate organics   | g/m <sup>3</sup>                 |
|                   | · · · · ·                                                            | Influent biodegradable particulate   |                                  |
| X_B_Inf           | $CH_{Ybps}O_{Zbps}N_{Abps}P_{Bbps}$                                  | organics                             | g/m <sup>3</sup>                 |
| X_PAO_PP          | $K_{kp}Mg_{mp}Ca_{cp}PO_3$                                           | Polyphosphate                        | g/m <sup>3</sup>                 |
| X_PAO_Stor        | $C_4H_6O_2$                                                          | Poly-hydroxy-alkanoate               | g/m <sup>3</sup>                 |
| X_Str_NH4         | MgNH <sub>4</sub> PO <sub>4</sub> .6H <sub>2</sub> O                 | Struvite                             | g/m <sup>3</sup>                 |
| X_ACP             | $Ca_3(PO_4)_2$                                                       | Calcium Phosphate                    | g/m <sup>3</sup>                 |
| X_Str_K           | MgKPO <sub>4</sub> .6H <sub>2</sub> O                                | K-struvite                           | g/m <sup>3</sup>                 |
| X_Cal             | CaCO <sub>3</sub>                                                    | Calcite                              | g/m <sup>3</sup>                 |
| X_Mag             | MgCO <sub>3</sub>                                                    | Magnesite                            | g/m <sup>3</sup>                 |
| X_Newb            | MgHPO <sub>4</sub>                                                   | Newberyite                           | g/m <sup>3</sup>                 |
| X_ISS             |                                                                      | Influent inorganic settleable solids | gISS/m <sup>3</sup>              |
| X_OHO             | $CH_{Yo}O_{Zo}N_{Ao}P_{Bo}$                                          | Ordinary heterotrophic organisms     | g/m <sup>3</sup>                 |
| X_PAO             | $CH_{Yo}O_{Zo}N_{Ao}P_{Bo}$                                          | Phosphate accumulating organisms     | g/m <sup>3</sup>                 |
| X_ANO             | $CH_{Yo}O_{Zo}N_{Ao}P_{Bo}$                                          | Autotrophic nitrifying organisms     | g/m <sup>3</sup>                 |
| X_ZAD             | $CH_{Yo}O_{Zo}N_{Ao}P_{Bo}$                                          | Acidogens                            | g/m <sup>3</sup>                 |
| X_ZAC             | $\overline{CH}_{Yo}O_{Zo}N_{Ao}P_{Bo}$                               | Acetogens                            | g/m <sup>3</sup>                 |
| X_ZAM             | CH <sub>Yo</sub> O <sub>Zo</sub> N <sub>Ao</sub> P <sub>Bo</sub>     | Acetoclastic Methanogens             | g/m <sup>3</sup>                 |
| X_ZHM             | $CH_{Yo}O_{Zo}N_{Ao}P_{Bo}$                                          | Hydrogenotrophic methanogens         | g/m <sup>3</sup>                 |
| X_U_Org           | $CH_{ye}O_{ze}N_{ae}P_{be}$                                          | Endogenous residue                   | g/m <sup>3</sup>                 |
| G_CO <sub>2</sub> | CO <sub>2</sub>                                                      | Carbon dioxide                       | gCO <sub>2</sub> /m <sup>3</sup> |
| G CH <sub>4</sub> | CH4                                                                  | Methane                              | $\sigma CH_4/m^3$                |

| Table 1: Universally se | elected model com | ponents for UCT three | phase plant wid | le model (UCT-PW) |
|-------------------------|-------------------|-----------------------|-----------------|-------------------|
|-------------------------|-------------------|-----------------------|-----------------|-------------------|



|    | ~p ~                                               |                          |    |                                              |                                     |
|----|----------------------------------------------------|--------------------------|----|----------------------------------------------|-------------------------------------|
|    | Formula                                            | Description              |    | Formula                                      | Description                         |
| 1  | $\mathrm{H}^{\scriptscriptstyle +}$                | Hydrogen<br>ion          | 23 | NH <sub>4</sub> SO <sub>4</sub> <sup>-</sup> | Ammonium sulphate                   |
| 2  | $Na^+$                                             | Sodium                   | 24 | MgPO <sub>4</sub> <sup>-</sup>               | Magnesium<br>phosphate              |
| 3  | $\mathbf{K}^+$                                     | Potassium                | 25 | CaCH <sub>3</sub> COO <sup>+</sup>           | Calcium acetate                     |
| 4  | Ca <sup>2+</sup>                                   | Calcium                  | 26 | $CaCH_3CH_2COO^+$                            | Calcium propionate                  |
| 5  | $Mg^{2+}$                                          | Magnesium                | 27 | CaHCO <sub>3</sub> <sup>+</sup>              | Calcium bi-carbonate                |
| 6  | $\mathrm{NH_4^+}$                                  | Ammonium                 | 28 | NaSO <sub>4</sub> <sup>-</sup>               | Sodium sulphate                     |
| 7  | Cl                                                 | Chloride                 | 29 | MgHPO <sub>4</sub>                           | Magnesium<br>hydrogen phosphate     |
| 8  | CH <sub>3</sub> COO <sup>-</sup>                   | Acetate                  | 30 | CH <sub>3</sub> COONa                        | Sodium Acetate                      |
| 9  | CH <sub>3</sub> CH <sub>2</sub> COO <sup>-</sup>   | Propionate               | 31 | $H_2CO_3$                                    | Di-hydrogen<br>carbonate            |
| 10 | $CO_{3}^{2}$                                       | Carbonate                | 32 | MgSO <sub>4</sub>                            | Magnesium sulphate                  |
| 11 | $SO_4^{2-}$                                        | Sulphate                 | 33 | $HPO_4^{2-}$                                 | Hydrogen phosphate                  |
| 12 | $PO_4^{3-}$                                        | Phosphate                | 34 | NH <sub>3</sub>                              | Ammonia                             |
| 13 | NO <sub>3</sub>                                    | Nitrate                  | 35 | MgCO <sub>3</sub>                            | Magnesium<br>carbonate              |
| 14 | OH                                                 | Hydroxide ion            | 36 | ACPO <sub>4</sub>                            | Calcium Phosphate                   |
| 15 | CH <sub>3</sub> COOH                               | Acetic acid              | 37 | MgHCO <sub>3</sub> <sup>+</sup>              | Magnesium<br>hydrogen carbonate     |
| 16 | CH <sub>3</sub> CH <sub>2</sub> COOH               | Propionic acid           | 38 | CaHPO <sub>4</sub>                           | Calcium hydrogen phosphate          |
| 17 | HCO <sub>3</sub> <sup>-</sup>                      | <b>Bi-carbonate</b>      | 39 | NaCO <sub>3</sub>                            | Sodium carbonate                    |
| 18 | $CaSO_4$                                           | Calcium sulphate         | 40 | $MgH_2PO_4^{+}$                              | Magnesium di-<br>hydrogen phosphate |
| 19 | $H_2PO_4^-$                                        | Di-hydrogen<br>phosphate | 41 | NaHCO <sub>3</sub>                           | Sodium hydrogen carbonate           |
| 20 | MgCH <sub>3</sub> COO <sup>+</sup>                 | Magnesium acetate        | 42 | NaHPO <sub>4</sub> <sup>-</sup>              | Sodium hydrogen phosphate           |
| 21 | MgCH <sub>3</sub> CH <sub>2</sub> COO <sup>+</sup> | Magnesium propionate     | 43 | $CaOH^+$                                     | Calcium hydroxide                   |
| 22 | CaCO <sub>3</sub>                                  | Calcium<br>carbonate     | 44 | $MgOH^+$                                     | Magnesium<br>hydroxide              |

**Table 2:** Ionic species selected for the UCT three phase model (UCT-PW)

### **Table 3:** Example for equilibrium and mass balance equations for ionic speciation

\*Aqueous Phase Equilibrium

 Weak Acid Sub-System
 Equations
 Mass Balance Equation

 
$$[NH_3] = \frac{K_{NH_4} \cdot [NH_4^+]}{(H^+)}$$
 $[NH_4SO_4^-] = \frac{[SO_4^{2^-}]NH_4^+]}{K_{NH_4SO_4}}$ 
 $NH_x = [NH_4^+] + [NH_3] + [NH_4SO_4^-]$ 

 Ammonia
 \*Where (H^+) is the hydrogen ion activity, [X] the molar concentrations of species X and K<sub>X'</sub> is the

thermodynamic equilibrium constant for species X, adjusted for Debye Hückel effects to account for the activity of ions in low salinity water (Stumm and Morgan, 1996).



| Name                 | Description                                                    |
|----------------------|----------------------------------------------------------------|
| AerHydrol            | Aerobic hydrolysis of biodegradable particulate organics (BPO) |
| AnHydrol             | Anoxic hydrolysis of BPO                                       |
| AnaerHydrol          | Anaerobic hydrolysis of BPO                                    |
| AerGrowthOnSf        | Aerobic OHO growth on fermentable soluble organics (FBSO)      |
| AerGrowthOnSa        | Aerobic OHO growth on Acetate                                  |
| AnGrowthOnSfDenitrif | Anoxic OHO growth on FBSO                                      |
| AnGrowthOnSaDenitrif | Anoxic OHO growth on Acetate                                   |
| Fermentation         | Fermentation of FBSO                                           |
| LysisOfAuto          | Storage of poly-hydroxy-alkanoate (PHA) by PAOs                |
| StorageOfXPP         | Aerobic storage of PP with PHA uptake                          |
| AerGrowthOnXPHA      | Aerobic growth of PAOs                                         |
| LysisOfXPP           | Release and hydrolysis of polyphosphate (PP)                   |
| LysisOfXPHA          | Release and hydrolysis of PHA                                  |
| GrowthOfAuto         | Aerobic growth of ANOs with nitrification                      |
| OHO_Lysis            | Lysis of OHOs in aerobic systems                               |
| LysisOfXPAO          | Lysis of PAOs in aerobic systems                               |
| LysisOfAuto          | Lysis of ANOs in AS system                                     |
| Aeration             | Oxygen supply to aerobic reactor                               |
| FSO_Hydrolysis       | Hydrolysis of FBSO in AD system                                |
| BPO_Hydrolysis       | Hydrolysis of BPO produced by dead biomass                     |
| BPO_PS_Hydrolysis    | Hydrolysis of BPO from primary sludge (PS)                     |
| OHO_Lysis_AD         | Lysis of OHOs in AD system                                     |
| PAO_Lysis_AD         | Lysis of PAOs in AD system                                     |
| PP_Release           | Release of PP with uptake of PHA in AD system                  |
| PP_Hydrolysis        | Release and hydrolysis of PP in AD system                      |
| PHA_Hydrolysis       | Release and hydrolysis of PHA in AD system                     |
| Acidogenesis_L       | Low hydrogen partial pressure (p <sub>H2</sub> ) Acidogenesis  |
| Acidogenesis_H       | High p <sub>H2</sub> Acidogenesis                              |
| AD_decay             | Lysis of acidogens                                             |
| Acetogenesis         | Growth of acetogens in AD system                               |
| AC_decay             | Lysis of acetogens                                             |
| Acet_methanogenesis  | Growth of acetoclastic methanogens in AD system                |
| AM_decay             | Lysis of acetoclastic methanogens                              |
| Hyd_methanogenesis   | Growth of hydrogenotrophic methanogens in AD system            |
| HM decay             | Lysis of hydrogenotrophic methanogens                          |

Table 4: Processes used in the application of UCT three phase plant wide model