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Abstract 

A knowledge-based risk assessment modelling approach is proposed to provide a 

qualitative means of benchmarking WWTP design and control strategies in terms of risk of 

N2O production.  The approach makes use of ASM model output variables corresponding 

to conditions that have been specifically linked to the risk of WWTP N2O production in the 

literature, and applies a fuzzy logic rule-based system to qualitatively assign risk of N2O 

production, as opposed to predicitng actual emission.  To demonstrate the proof of concept, 

the qualitative N2O risk model was used to interpret mathematical simulation data and 

distinguish risk of N2O production resulting from two different aeration control strategies 

(DO set points of 2 mg·L
-1

 and 1.3 mg·L
-1

). The approach demonstrated its potential in 

assessing risk of N2O production on a plant-wide level, as well as the reactor level, which 

allowed diagnosing specific risks and identifying opportunities for mitigation.  Results also 

demonstrated how the N2O risk model tool can be helpful in selecting appropriate 

mechanistic N2O production models through its risk diagnosis.  The N2O risk assessment 

model can also serve as a practical decision support tool for qualitatively assessing multi-

criteria control strategies as seen in the N2O risk, effluent quality, and operational cost 

benchmarking results.  The tool is flexible and can be used not only with mathematical 

model output data, but also online, or SCADA data for examining risk of N2O production 

for current and historical plant operations. 
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INTRODUCTION  

A considerable amount of focus has been placed on modelling full-scale wastewater treatment 

plant (WWTP) nitrous oxide (N2O) emissions in recent years given their high global warming 

potential.  As a result, several promising mechanistic models have been developed (Yu et al., 

2010; Ni et al., 2011; Houweling et al., 2011; Law et al., 2012; Ni et al., 2012; Guo and 

Vanrolleghem, 2013; Mampaey et al., 2013; Ni et al., 2013). However, there is not yet a 

rigorously validated and consensus-based model.  This is largely due to the complex and 

interactive nature of the processes leading to N2O emissions from activated sludge systems, 

including ammonia-oxidizing bacteria (AOB) cell metabolism and gene expressions (Yu et 

al., 2010, Chandran et al., 2011), AOB and nitrite-oxidizing bacteria (NOB) kinetic rates 

(Foley et al., 2010), mass transfer processes, and the dynamic operational and environmental 

conditions that impact the propensity of full-scale microbial populations for producing N2O 

during both nitrification and denitrification (Kampschreur et al., 2009; Foley et al., 2010, 
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Chandran et al., 2011).  As researchers continue to make strides in reaching a consensus on 

N2O dominant pathways, model validation, and implementing and calibrating multiple N2O 

pathway models, a knowledge-based risk assessment modelling approach is proposed to 

complement the progression of the mechanistic description of N2O production, and provide a 

qualitative means of benchmarking WWTP design and control strategies.  A similar 

knowledge-based risk assessment modelling approach (AS risk model) has been successfully 

developed and implemented by Comas et al. (2008) for diagnosing the risk of microbiology 

related solids separation problems, such as filamentous bulking, foaming, and rising sludge, 

resulting from various activated sludge control strategies. Parallels between modelling 

activated sludge solids separation problems and N2O production, such as the lack of validated 

mechanistic models and interest in more holistic benchmarking of control strategies, thus 

motivated the extension of this risk assessment modelling concept for heuristically diagnosing 

WWTP N2O production. 

 

METHODS 

The methodology for developing the N2O risk model is generally consistent with that of the 

AS risk model development (Comas et al., 2008).  The proposed integrated mathematical / 

knowledge-based risk assessment modelling approach makes use of ASM state variables 

corresponding to conditions that have been specifically linked to the risk of WWTP N2O 

production in the literature (Kampschreur et al., 2009; Foley et al., 2010; Ahn et al., 2010; 

GWRC, 2011), but not yet formalized in a modelling platform through which N2O risk can be 

assessed with other criteria in various WWTP simulation scenarios. Therefore, a knowledge 

base of the operational conditions/parameters associated with risk of N2O production via  

heterotrophic denitrification and  AOB nitrification/denitrification pathways was compiled 

and then classified in terms of low, medium, and high risk according to values found in the 

literature correlating to low, medium, and high N2O production in either full-scale or lab-scale 

studies.  This knowledge was then represented in a fuzzy logic, IF / THEN rule-based system 

implemented in both Matlab and Excel, through which a qualitative risk score can be 

dynamically assigned for each variable representing the operational risk condition.  The risk 

score is based on scale from 0 to 1, with 1 representing the highest risk.    

 

To demonstrate the proof of concept of N2O risk assessment modelling, the risk model was 

implemented for only three of the several risk parameters defined in the knowledge base: high 

nitrite (NO2
-
) for nitrification and denitrification reactors, and low dissolved oxygen (DO) and 

ammonia oxidation rate (AOR) via DO for nitrification reactors (Table 1). This portion of the 

N2O risk model was applied to the Benchmark Simulation Model No. 2 (BSM2), a five 

reactor (two anoxic and three aerobic) MLE configuration.  Two different control scenarios 

were compared: Scenario 1 - DO set point of Activated Sludge Unit (ASU) No. 4 (ASU4) is 2 

mg·L
-1

, and Scenario 2 – DO setpoint of ASU4 is 1.3 mg·L
-1

, with kLa set proportionally as 

1.5kLa, kLa, and 0.5kLa for the aerobic reactors ASU3, ASU4, and ASU5, respectively. The 

model implemented in Porro et al. (2011), which includes two-step nitrification and four-step 

denitrification, was used since the NO2
-
 state variable could be used for implementing the 

N2O risk model for the high NO2
-
 condition, whereas the original BSM2 platform 

implementing ASM1 only includes single-step nitrification and, hence, no NO2
-
 variable.  

Although the model used in Porro et al. (2011) also includes the implementation of 

mechanistic models for N2O production, the N2O variables are ignored since the purpose of 

the paper is demonstrating a qualitative approach to assessing control strategies for N2O 

production risk as opposed to a quantitative approach (i.e. mechanistically predicting N2O 

concentrations).  The ASM model output data was then input into the Excel version of the risk 
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model to plot dynamic N2O risk based upon the corresponding BSM2 model output state 

variables. Similarly to Corominas et al. (2012) and Guo et al. (2012), Operational Cost Index 

(OCI), which includes energy costs, and Effluent Quality Index (EQI) per Nopens et al. 

(2010) were also compared for the two scenarios along with overall N2O risk to demonstrate 

the N2O risk assessment model’s potential in multi-criteria decision support. 

 

RESULTS AND DISCUSSION 

Table 2 summarizes N2O risk model results in each of the reactors by average overall risk, 

from taking the maximum risk of the three individual risk parameters results for each time 

step, and by percent of time under high risk, with high risk being a risk score of greater than 

or equal to 0.8, as defined by Comas et al. (2008).  Also summarized in Table 2 is the average 

overall risk score for all of the reactors, as well as the percent of time under high risk 

accounting for all reactors, or the percent of the total simulation time in which at least one 

reactor was under high risk.   As anticipated, the two different DO control set points resulted 

in different conditions in each of the reactors, and hence, noticeable differences in average 

overall risk scores and time under high risk between the two scenarios.  Obviously the largest 

differences are seen in the aerobic reactors, since the only change between the scenarios was 

the DO set point.  These differences in risk results in the aerobic reactors are due to the DO 

concentration itself, as low DO implicates the potential for N2O production via AOB 

denitrification (Kampschreur et al., 2009; Tallec et al., 2008), and higher DO implicates N2O 

production via the hydroxylamine oxidation pathway (Law et al., 2012), as well as the NO2
-
 

concentrations, which implicate AOB denitrification (Kampschreur et al., 2009).  Inspecting 

the N2O production risk results in each of the reactors, ASU5 reactor stands out for Scenario 

2, with an average overall risk score of 0.95 and 96 percent of the time under high risk.  

 

To give a sense of the N2O risk model tool’s capabilities, Figure 1 is provided to illustrate 

further inspection of the risk results, comparing plots of both the individual and overall risk in 

ASU5 for both scenarios.  As the DO set point is lower in Scenario 2, and ASU5 has a kLa 

that is half that of ASU4 where the DO set point is controlled, it can be understood why the 

DO levels are significantly lower and hence the N2O production risk, due to low DO, 

significantly higher.  To add to the risk of ASU5, the lower DO concentrations also lead to 

higher NO2
-
 concentrations compared to Scenario 1 due to the difference in oxygen half-

saturation constants between AOB and NOB (Hanaki et al.,1990; Mota et al., 2005), and 

therefore, higher risk due to high NO2
-
 concentrations. As the ASU5 DO concentrations in 

both scenarios are less than the low risk threshold (<1.8 mg·L
-1

) for AOR risk, N2O 

production risk due to AOR (hydroxylamine oxidation pathway) is always zero in both 

scenarios for ASU5.  As the two remaining risk parameters with high risk values account for 

AOB denitrification, one could surmise that the particular conditions for ASU5 lend to N2O 

production via the AOB denitrification pathway.  This highlights the capability of the tool in 

helping to hypothesize pathways, and therefore, also to select mechanistic models of N2O 

production.  As the specific risks can be diagnosed, the N2O risk model tool also demonstrates 

its potential in identifying opportunities for mitigating N2O production risk.  In this case, it is 

clear that better control of the DO in ASU5, or better distribution of the air between ASU3 

and ASU5 could help to minimize the risk in ASU5, and hence the overall risk for Scenario 2 

since ASU5 was under high risk 96 percent of the simulation time.  The opportunity to better 

distribute air among reactors was also noted by Guo et al. (2012) for minimizing greenhouse 

gas mass transfer and emissions into the air as it is related to the kLa.  However, in this case, 

the N2O risk model assesses only the effect of DO on risk of production and not mass transfer 

and emissions.  It is also clear from these results that looking at only average overall risk 
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alone, may not fully diagnose the potential N2O production risk as the average overall risk 

score for each scenario only differed by 0.07.  Since different reactors can be under high risk 

at different times, it is helpful to also consider the amount of time in which at least one reactor 

is under high risk.     

 

Table 3 summarizes the N2O risk, EQI, and OCI results for both scenarios.  As anticipated 

the lower DO control resulted in some cost savings based upon the OCI; however, the EQI 

decreased slightly, and the average overall N2O risk score increased slightly.  However, the 

time under high risk for all five reactors increased significantly, by 1.5 times to almost 100 

percent of the simulation time.  Depending upon objectives, this information could be helpful 

in determining whether the five percent savings in the OCI is worth increasing the time under 

high N2O production risk to almost 100 percent of the time.  This information could also help 

in decision making by prompting further investigation into the conditions in ASU5.  For 

example, if better control or distribution of the air among ASU3 and ASU5 is feasible, as 

suggested previously, then risk could potentially be mitigated, while still realizing the same 

cost savings since essentially the same amount of air would be added, just distributed 

differently.             

 

CONCLUSIONS AND PERPESCTIVES 

The integrated mathematical / knowledge-based risk assessment modelling concept by Comas 

et al. (2008) has been adapted for assessing the risk of N2O production in WWTPs.  The 

qualitative N2O risk model approach was used to interpret mathematical simulation data and 

distinguish risk of N2O production resulting from two different aeration control strategies.  

The approach demonstrated potential for assessing risk of N2O production on a plant-wide 

level, as well as the reactor level, which allowed diagnosing specific risks and identifying 

opportunities for mitigation.  Results also demonstrated how the N2O risk model tool can 

complement the application of mechanistic models of N2O production through the implication 

of specific N2O production pathways in the risk diagnosis, which can then be used in 

hypothesizing underlying mechanisms and selecting appropriate mechanistic N2O production 

models.  The N2O risk assessment model can also serve as a practical decision support tool for 

qualitatively assessing multi-criteria control strategies as seen in the results.  As the Excel 

version of the risk assessment model was used in this study, the results not only demonstrate 

the potential application of the tool with mathematical model output data, but also with 

online, or SCADA data for operators interested in making use of the available knowledge and 

examining risk of N2O production for current and historical plant operations.  Work is 

ongoing confirming AOR values/risk and to test the entire knowledge base with full-scale 

data from various measurement campaigns.  
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Table 1. Portion of N2O production risk knoweldge base included in N2O risk assessment model  

Low Medium High

range <0.2 0.2 - 0.5 >0.5 

units

range <0.2 0.2 - 0.5 >0.5 

units

range > 1.5 0.4 - 1.5 < 0.4

units

range < 1.8 2.15 > 2.5

units

Kampschreur et al. 2010 Tallec et al., 2008
mg/L

Non-limiting DO, NH4, 

AOR
DO

AOB nitrification
Ahn et al., 2010, 

Chandran et al., 2011, 

Law et al., 2012

Law et al., 2012
O2 mg/L

Nitrification 

high NO2 NO2
AOB denitrification

Kampschreur et al. 

2009; Foley et al., 

2010; Ahn et al., 2010; 

GWRC, 2011

GWRC, 2011

mg/L

low DO DO AOB denitrification

References for 

Operational Risk 

Parameter 

Identification

References for 

Parameter Values

Denitrification high NO2 NO2

- Heterotrophic 

denitrification

- AOB denitrification

Kampschreur et al. 

2009; Foley et al., 

2010; Ahn et al., 2010; 

GWRC, 2011

GWRC, 2011

mg/L

Process/

Condition

Operational 

Parameter / Condition 
ASM Variable

Risk Classification
Mechanism

 
 

 

Table 2. Summary of overall N2O risk results 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Scenario 1_DO2 0.58 21 0.31 21 0.56 33 0.41 10 0.51 19 0.47 64

Scenario 2_DO1.3 0.44 13 0.11 2.4 0.74 50 0.46 30 0.95 96 0.54 98

OverallASU1 ASU2 ASU3 ASU4 ASU5

 
 

 

 

 

 

 
Table 3. Summary of Scenario Benchmarking Results  

  Scenario1 DO_2 Scenario2 DO_1.3 

Time Under High N2O Risk (%) 64 98 

Average Overall N2O Risk Score 0.47 0.54 

EQI (kg poll·d-1) 5612 5694 

OCI (-) 10537 10023 
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Figure 1 Dynamic N2O risk results for ASU5: Scenario 1_DO2 individual (A) and overall 

(B) risks, and Scenario 2_DO1.3 individual (C) and overall (D) risks.  High risk (≥ 0.8) is 

shaded in grey. 
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