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Abstract 

The availability of influent wastewater time series is crucial when using models to assess the 

performance of a wastewater treatment plant (WWTP) under dynamic flow and loading 

conditions. Given the difficulty of collecting sufficient data, synthetic generation could be the only 

option. In this paper a hybrid of statistical and conceptual modeling techniques is proposed for 

synthetic generation of influent time series. The time series of rainfall and influent in DWF 

conditions were generated using two types of statistical models (a periodic-multivariate time series 

model for influent in DWF conditions and a two-state Markov chain-gamma model for rainfall). 

These two time series serve as inputs to a conceptual sewer model for generation of influent time 

series during WWF conditions. The effect of total model uncertainty on the generated outputs is 

taken into account through a Bayesian calibration and is communicated to the user by constructing 

uncertainty bands with a desired level of confidence. The proposed influent generator is a powerful 

tool for realistic generation of the influent time series and is well-suited for risk-based design of 

WWTPs as it considers both the effect of input variability (i.e. variability in rainfall and influent 

during DWF) and total model uncertainty in the generation of the influent. Considering the fact 

that the proposed influent generator only requires readily-available or easy-to-obtain information 

and data on climate and the general characteristics of sewershed, it is an attractive tool for practical 

applications.   
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INTRODUCTION 

One of the major sources of uncertainty/variability that both plant designers and operators must deal 

with is the dynamics of the influent. The recent advances in mathematical modeling and improved 

computational power have enabled researchers to better understand the performance of different 

WWTP design alternatives (Hao et al., 2001; Salem et al., 2002) and/or evaluate control strategies 

under dynamic flow and loading conditions. However, the application of mathematical models used 

for simulating the performance of a WWTP could be misleading unless, among others, models are 

provided with representative influent time series. One of the problems that arise in this regard is the 

scarcity or even lack of long-term influent data. To remedy this problem, some researchers have 

proposed models for synthetic dynamic influent time series scenarios (Bechmann et al., 1999; 

Gernaey et al., 2011). 

One of the simplest approaches in synthetic generation of influent time series is the application of 

empirical stochastic models (Capodaglio et al., 1990; Martin et al., 2007). However, these models 

may have a poor performance especially during wet weather flow conditions as different complex 

processes affect the dynamics of the influent. Indeed, such statistical models do not consider the 

underlying elements and processes that govern the generation and the dynamics of the influent. To 
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consider the underlying phenomena that are involved, some researchers have advocated the use of 

detailed and physically-based models (Hernebring et al., 2002; Temprano et al., 2007). The 

application of these complex models might be useful for certain purposes, (e.g. evaluating the 

performance of different operating strategies in a sewer system). However, in cases in which the 

overall behavior of the influent time series is of interest, they might not be very useful as they 

require detailed information on the sewage system and running them for a large number of times 

could be computationally expensive.  

Some researchers have proposed parsimonious conceptual models as an alternative to the complex 

mathematical models that require detailed information and data (Achleitner et al., 2007; Gernaey et 

al., 2011). In these models a conceptual view of the main phenomena and interactive processes 

contributing to the influent are formulated in terms of mathematical equations. Despite successful 

application of these models (at least in giving an overall view of the system), the performance of 

these models to a great extent depends on the proper choice of model parameters. Since some of the 

parameters may not have a clear physical meaning they are usually estimated through model 

calibration. In cases in which there is no measured data available for model calibration, only a 

rough estimate or a range of values could be inferred from the values reported in literature. Besides, 

it is almost impossible to have a complete similarity between the model output(s) and the observed 

values owing to the inextricable uncertainties (e.g. input data uncertainty and/or model structure 

uncertainty) in any modeling exercise (Belia et al., 2009; Freni and Mannina, 2010). 

Given the importance of the issue of uncertainty, several studies have been conducted to consider its 

effect on both water quality and quantity in urban drainage modeling (Freni et al., 2009; Dotto et 

al., 2012). However, in these studies, only the effect of model uncertainty under a set of historical 

rain events (WWF conditions) has been considered (i.e. the time series of rainfall and also the 

contribution of wastewater in DWF conditions were known a priori). In this study on the contrary 

not only are we interested in considering the effect of model uncertainty, but also in the variability 

of rainfall and influent time series in DWF conditions which significantly affect both the amount 

and the dynamics of the influent. 
 

 

PROPOSED INFLUENT GENERATOR 

In this paper, a hybrid of statistical and conceptual modeling tools is proposed for synthetic 

generation of influent time series considering both the effect of model uncertainty and input 

variability. Given the importance of rainfall time series in the generation of the influent, a two-state 

Markov chain-gamma model (Richardson, 1981) in conjunction with two time series disaggregation 

methods were used  for stochastic generation of rainfall time series with a high temporal resolution 

(i.e. 15-minute). To generate the influent time series in DWF conditions taking into account the 

daily periodic variation, auto-correlation, and cross-correlation in time, a multivariate time series 

models was developed and its parameters were estimated using the methodology proposed by 

Neumaier and Schneider (2001). The proposed stochastic model is superior to previous attempts in 

the generation of influent, as in previous studies the diurnal variation of the influent in DWF 

conditions was modeled using univariate time series models (Martin et al., 2007), or by multiplying 

the daily average influent values to a set of coefficients representing the ratio of influent at different 

times of a day to its average value with or without addition of a noise term to the generated time 

series (Achleitner et al., 2007; Langergraber et al., 2008; Gernaey et al., 2011). The outputs of the 

two statistical models used for the generation of rainfall and influent time series in DWF conditions 

are then input to a conceptual model for modeling the influent time series in WWF conditions. In 

this study the CITYDRAIN model (Achleitner et al., 2007) was selected as the conceptual model 
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owing to its flexibility and parsimony. The CITYDRAIN model of the sewershed is calibrated using 

the measured influent data through a Bayesian calibration procedure to account for the total model 

uncertainty. Finally, different realizations of the influent time series can be generated by running 

the calibrated CITYDRAIN model using an instance of a generated time series of rainfall and an 

instance of influent under DWF conditions (i.e. the two stochastic input time series). Figure  shows 

the schematic of the proposed influent generator. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic of the proposed influent generator 

The main objective of the proposed influent generator is to produce a dynamic influent time series 

of flow and traditional wastewater component concentrations (TSS, COD, TN, TP, NH4) with 15-

min temporal resolution in order to capture the sub-daily time variations of the influent which could 

affect the operating parameters and the performance of WWTPs. One of the constraints was that the 

generator should only be using limited information on climate and the general characteristics of 

combined sewer systems. Depending on the biological model that would be used for modelling the 

biological processes inside a WWTP system, an influent fractionation block must be added to 

convert the generated traditional wastewater composition into state variables of the adopted 

biological models, e.g. the ASM models. The generated influent time series using the proposed 

tools can be used among others for the design of WWTPs under uncertainty (Martin et al., 2012). 
 

Data and case study  

The Eindhoven WWTP with a design capacity of 750000 population equivalent (PE) is the third 

largest WWTP in the Netherlands. The sewershed served by the Eindhoven WWTP has a total area 

of approximately 600km
2
 and comprises of three main sub-sewersheds called Nuenen/Son, 

Eindhoven Stad, and Riool-Zuid. The influent data used in this study are related to sensor data of 

flow, ammonia (measured using an ion-selective sensor) soluble COD, total COD, and TSS (the 

latter 3 measured using an UV/VIS-based sensor) in the period of September 2011 to September 

2012 at the outlet of the Nuenen/Son, Eindhoven Stad, and Riool-Zuid sub-sewersheds. It should be 

noted that the raw sensor data were cleaned up using visual inspection and a wavelet-based 

denoising strategy (details are not included in this paper).  
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The long-term daily rainfall data and also rainfall data with finer temporal resolution provided by 

KNMI (Royal Netherlands Meteorological Institute) and Waterschap De Dommel were used for 

estimating the parameters of the weather generator proposed in this paper. 
 

 

Weather generator 

Realistic generation of rainfall time series is crucial as it is one of the most important factors that 

affect the dynamics of the influent during WWF conditions. In this study a stochastic model 

proposed by Richardson (1981) was used for the synthetic generation of daily rainfall and air 

temperature time series. According to this method the sequence of dry and wet days is generated 

using a two-state Markov chain model with parameters ( | )P W W  and ( | )P W D  which represent 

the probability of having a wet day at day t  given a wet day at day 1t   and the probability of 

having a wet day at time t  given a dry day at time 1t   respectively (Figure ). 

 

 

 

 

 

 

 

 

Figure 2 Schematic of a two-state Markov chain, i.e. wet (W) or dry (D) 

The other two parameters of the transition matrix needed for generation of dry and wet days 

(i.e. ( | )P D D  the probability of having a dry day at day t  given a dry day at day 1t   and 

 |P D W  the probability of having a dry day at day t  given a wet day at day 1t  ) can be 

calculated using Equation 1 and Equation 2. 

( | ) 1 ( | )P D D P W D   Equation 1 

( | ) 1 ( | )P D W P W W   Equation 2  

Once the sequence of wet and dry days is generated, the amount of rainfall in a wet day is generated 

by sampling from a gamma probability distribution (Equation 3)  

 
   

 

1
/ exp /x x

f x


 

 







 Equation 3 

 

where x  is the depth of daily rainfall,   and   are the two parameters of the distribution, and 

   represents the gamma function evaluated at .  The time series of minimum and maximum 

air temperature are generated conditioned on the state of the day (i.e. wet or dry) using a 

multivariate linear first-order time series model (Matalas, 1967). The above weather generator is 

suited for random generation of daily rainfall and temperature. However, in this study we need to 

generate rainfall time series with a finer temporal resolution than daily resolution (15-min temporal 

resolution, comparable to the temporal resolution of rainfall in the BSM influent model (Gernaey et 

al., 2011)). Some methodologies have been proposed for random generation of hourly rainfall time 

P(W|D) 

P(D|W) 

D W 

P(D|D) 
P(W|W) 
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series based on historical hourly rainfall data. However, long-term hourly rainfall data may not be 

available in every region and using a limited hourly rainfall record for random generation of long-

term hourly rainfall time series may result in misrepresentation of the inter-annual variability in 

rainfall. 

That being said, in this study it is proposed to combine the Richardson-based weather generator (i.e. 

which is used for daily rainfall generation) with two time series disaggregation techniques. In other 

words, daily rainfall time series is first generated using the Richardson (1981) method and then two 

time series disaggregation models, including a daily-to-hourly model (Koutsoyiannis and Onof, 

2001) and an hourly-to-15-minutes model (Ormsbee, 1989) are applied for generation of long-term 

rainfall time series with 15-minute temporal resolution. Moreover, the original Richardson-based 

weather generator is also suited for the generation of daily air temperature. However, in this study 

not the air temperature but the wastewater temperature is of interest as it affects the rate of many 

biological processes taking place in the bioreactors. To estimate the wastewater temperature a 

simple linear regression model was fitted between the daily air temperatures and the corresponding 

wastewater temperature measured during the period of September 2011 to September 2012. The 

fitted regression model was used to calculate the daily wastewater temperature as a function of daily 

air temperature generated using the Richardson-based weather generator.  
 

Influent generation in DWF conditions 

The influent time series in DWF conditions usually shows specific periodic patterns which can be 

mainly attributed to the socio-economic fabric of society and also to the physical characteristics of 

the wastewater collection system. To mimic these variations in time, it is common practice to 

estimate representative values (e.g. multiplying flow per person to the total population for 

estimating flow) for flow and loads and then multiplying them to a set of normalized coefficients 

reflecting diurnal, weekly and seasonal time variation of the influent time series (Jeppsson et al., 

2007; Gernaey et al., 2011; Flores-Alsina et al., 2014). Moreover, Gernaey et al. (2011) proposed to 

add a noise term to the deterministic influent profile in order to avoid generating the same influent 

time series in subsequent days. In this study the application of a multivariate auto-regressive model 

(Neumaier and Schneider, 2001) with periodic components is proposed. 

To estimate the parameters of the proposed time series model, the influent time series during DWF 

conditions were extracted and analyzed for estimating the parameters of the multivariate auto-

regressive model. First, the seasonal (e.g. associated to groundwater infiltration) and diurnal 

periodic components of flow and other wastewater constituents were estimated using different 

Fourier series approximations and removed from the original influent time series to calculate the 

residual time series. The zero-mean residual time series of influent flow and composition were 

furthered standardized to have an influent time series with a zero mean and unit standard deviation. 

The parameters of the multivariate autoregressive model in Equation 4 (i.e. , ,lp A C ) were then 

estimated through a stepwise least square algorithm proposed by Neumaier and Schneider (2001). 

1

p

t l t l t

l

v A v 



    Equation 4 

 

In Equation 4, 
tv  is an m-dimensional vector (i.e. for our application m=5 which corresponds to the 

flow and the four wastewater compositions) containing the generated influent component at time t , 

p  is the order of the auto-regressive model, 1,..., pA A are the coefficient matrices of the auto-

regressive model, and 
t  is a noise term generated from an uncorrelated zero-mean multivariate 

normal distribution with the covariance matrix C  (i.e.  0,t N C ). Different realizations of the 
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residual influent time series can be generated using this time series model and converted to the 

original scale depending on the mean and standard deviation of the original influent time series.  

 
 

Influent generation in WWF conditions 

Synthetic generation of the influent time series during WWF conditions is relatively more 

complicated than the generation of the influent time series during DWF conditions. Difficulties 

arise as various phenomena are occurring during WWF conditions and as the availability of 

measured data is usually scarce for these periods. Hence, using a purely statistical model may result 

in significant discrepancies between simulated and observed time series. Therefore, we used a 

combination of statistical modeling techniques and a conceptual model to generate the time series of 

the influent during WWF conditions. The CITYDRAIN model (Achleitner et al., 2007) was 

selected as the conceptual model as it takes into account the basic phenomena that govern the 

amount and dynamics of the influent and also requires only a small number of parameters whose 

values or ranges of values can be inferred from the basic information of a sewershed. 
 

Flow 

CITYDRAIN calculates the amount of effective rainfall by adopting the concept of virtual basins in 

which effective rainfall is calculated by subtracting the initial loss from rainfall and then 

multiplying it with the runoff coefficient. The height of the effective rainfall is then multiplied by 

the fraction of sewershed area which contributes to the generation of runoff to calculate flow. A 

simplified routing method based on the well-known Muskingum method is then used for routing 

flow and pollutants inside the sewer system. 
 

Composition 

For the generation of pollutant time series in WWF conditions, CITYDRAIN uses a rather 

simplistic approach in which a fixed pollutant concentration is imposed to the system: 

( ) 0

( ) 0 0

e

e

C t C if h

C t if h

 


 
 

 

Equation 5 

 

where, ( )C t  is the generated pollutant concentration in time, C  is a model parameter representing 

the concentration in WWF conditions, and 
eh  is the effective rainfall. Given the importance of the 

influent time series in WWF conditions, a more appropriate conceptual model was used for 

simulating the accumulation-wash off processes corresponding to the particulate concentrations. To 

this aim, a new block was developed and implemented in CITYDRAIN to generate the pollutant 

concentration time series in WWF conditions. Equation 6 shows the mathematical formulation of 

the selected accumulation-wash off model (Kanso et al., 2005).  

  

 

( )

lim

( )

( )

Accumulation model:

Wash off model :

t

a imp t

t w

e tt

dM
K m S M

dt

dM
W I M

dt


  


    


 Equation 6 

where, ( )tM  is the vailable pollutant mass on the sewershed at time t  (kg), 
aK  is the accumulation 

coefficinet (1/day), 
limm  is the maximum accumulated mass (kg/ha), impS  is the impervious area 

(ha), 
 t

I  is the rainfall intensity (mm/hr), 
eW , and w  are calibration parameters.   
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Bayesian model calibration and long-term influent generation 

As explained in the previous section, the dynamics of the influent time series in WWF conditions is 

modeled using the CITYDRAIN model. However, one should be aware of the fact that modeling 

the influent time series in WWF conditions using a conceptual model may not lead to reliable 

results unless the model is calibrated and the effect of different sources of uncertainties on the 

outputs (e.g. flow and other pollutants) are taken into account. To this aim, a Bayesian framework 

was used to update the ranges of values that were initially assigned to the parameters of the 

CITYDRAIN model (i.e. estimating the posterior distribution of parameters using their prior 

distribution and the measured data on flow and pollutant concentrations). In general, the posterior 

distribution of parameters using Bayes’ theorem can be formulated by Equation 7. 

 
   

 

|
|

f Data p
h Data

f Data

 
   Equation 7 

where  |h Data  is the posterior distribution,  p   is the prior distribution,  f Data  is merely 

a proportionality constant so that  | 1h Data  , and  |f Data   constitutes the likelihood 

function which measures the likelihood that the data correspond to the model outputs with 

parameter set θ . Assuming homoscedastic uncorrelated Gaussian error terms the likelihood 

function function can be formulated according Equation 8 (Bates and Campbell, 2001; Marshall et 

al., 2004). 

   
 

2

/2
2

2

;
| 2

2

t t

t

n
n Data R x

f Data exp



      
  


θ

θ  Equation 8 

 

where n  is the number of observations, 
2  is the variance of the residual error (i.e. the difference 

between model predictions and observed values), 
tData  is the observed variable at time t , 

tx  is the 

set of inputs at time t , θ  is the set of model parameters and  ;tR x θ  represents the model output as 

a function of 
tx  and θ .  

A specific form of Markov chain Monte Carlo (MCMC) sampler known as differential evolution 

adaptive Metropolis or DREAM (Vrugt et al., 2008) was used to efficiently estimate the posterior 

distribution of the CITYDRAIN model parameters given the time series of flow and influent 

composition of the Eindhoven WWTP. It should be noted that the proposed Bayesian approach is 

not only capable of capturing the effect of model parameter uncertainty, but also of capturing the 

effect of other sources of uncertainties that could result in some discrepancies between the 

simulated influent time series and the observed series.  

Once the uncertainty ranges of the CITYDRAIN model parameters are updated, synthetic influent 

time series for a desired number of years considering the variability in the inputs of the 

CITYDRAIN model (i.e. rainfall and influent time series in DWF conditions) and also the total 

uncertainty can be obtained as follows: 

 

1. Synthetic generation of the 15-minute time series of rainfall for one year 

2. Synthetic generation of the 15-minute time series of the influent in DWF conditions for one 

year 

3. Sampling a point from the posterior distribution of the CITYDRAIN model parameters 
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4. Inputting the generated time series 1) and 2) and the parameters sampled in 3) and running  

the CITYDRAIN model for one year 

5. Repeating  1) to 4) for a desired number of years 
 

 

RESULTS AND DISCUSSION 

This section presents the outputs and some discussion on the results of different components of the 

proposed influent generator. The performance of the weather generator and the influent generator 

under DWF conditions are evaluated by comparing the statistical properties of the generated time 

series with those of the historical time series. The results corresponding to the Bayesian calibration 

of CITYDRAIN model are explained and at the end a 7-day snapshot of generated one year influent 

time series is presented and discussed.  
 

 

Synthetic generation of rainfall 

The parameters of the statistical Markov-gamma model were estimated using the recorded rainfall 

data in the studied Eindhoven catchment. The results indicate that not only are the basic yearly 

statistics (i.e. average and variance) of the generated rainfall time series consistent with the recorded 

rainfall time series, but also the seasonal variations in rainfall intensity and frequency of wet days 

are respected (Figure  and Table 1).  
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Figure 3 Cumulative distribution function of daily rainfall in the studied Eindhoven catchment  

 

Moreover, Table  shows that the hourly time series of rainfall which was generated using the time 

disaggregation method (i.e. disaggregation of daily to hourly time series) has the same statistical 

characteristics as the observed one. Overall, the synthetic generation of rainfall in which the 

statistical properties of the time series is respected across different time scales is a significant 



 Talebizadeh et al. 

55 

improvement compared to the rainfall generation in for instance the BSM influent generator in 

which there is no clear way for extracting and incorporating the statistical properties of available 

recorded rainfall data into synthetic rainfall time series generation. Besides, the flexibility of the 

proposed rainfall generator allows users to define different scenarios reflecting future changes in 

precipitation regime (e.g. due to climate change (Chen et al., 2010)) and its effect on the influent 

time series (e.g. what would happen if the amount of precipitation increases by 20%). 

  
 

Table 1 Average rainfall amount and number of wet days for Eindhoven catchment 

Month Amount of Rainfall (mm) Expected number of Wet Days 

 Observed Generated Observed Generated 

Jan 72.3 67.0 16 14 

Feb 52.0 57.0 12 11 

Mar 63.4 54.4 13 12 

April 44.1 51.9 12 11 

May 58.3 60.9 12 12 

Jun 68.0 68.4 12 11 

Jul 74.7 73.5 12 11 

Aug 64.6 71.0 11 11 

Sep 67.9 62.1 12 10 

Oct 62.0 65.0 12 11 

Nov 71.1 66.4 15 12 

Dec 70.0 74.0 14 14 

Annual 768 772 152 141 

 
Table 2 Basic statistics of hourly rainfall data for Eindhoven catchment 

Statistics Unit Observed Value Simulated Value 

Mean mm 0.08 0.08 

Standard deviation mm 0.60 0.60 

Lag 1 auto-correlation --- 0.33 0.36 

Proportion of dry hours --- 0.92 0.94 

 

Synthetic generation of influent temperature 

As mentioned in the methodology section, the daily temperature of wastewater is estimated through 

a linear regression model which relates the daily average wastewater temperature to the daily 

average air temperature. Figure  illustrates a random generation of air and wastewater temperature 

time series for one year. The linear model in Figure  shows that the average wastewater temperature 

can be estimated reasonably (
2 0.70R  ) as a linear function of air temperature. To further 

disaggregate the daily average wastewater temperature into a time series with 15-minute temporal 

resolution, the average diurnal variation of wastewater temperature which was extracted and 

smoothed using a first order Fourier series estimate (Figure c) was multiplied to the daily average 

wastewater temperature. Despite the fact that the diurnal variation pattern in Figure c clearly shows 

a periodic behavior in time (which corresponds to the diurnal variation of wastewater temperature), 

there is no significant difference between the highest and lowest temperature throughout a day (i.e. 

the highest temperature is only around 1.001 times the daily average wastewater temperature and 
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the lowest temperature is around 0.9985 times the daily average wastewater temperature). 

Therefore, in practical applications (at least for the case study in this research), the diurnal 

temperature variation can be ignored. 
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Figure 4 Random generation of air and wastewater temperature for one year for the Eindhoven WWTP:  

a) Randomly generated average daily air temperature for a year, b) linear regression model for calculating the 

average daily wastewater temperature as a function of average daily air temperature, c) the average and fitted 

normalized coefficients (the normalized coefficients for each day were calculated by dividing the influent 

temperature at different moments of a day by the daily average influent temperature in the same day) for calculating 

the diurnal wastewater temperature variations, and d) randomly generated wastewater temperature time series with 

15-minute temporal resolution. 

 

Multivariate auto-regressive model for DWF generation 

As explained, the parameters of the multivariate auto-regressive model were estimated using a 

specific least square algorithm (Neumaier and Schneider, 2001). Figure  shows a continuous 3-day 

DWF influent time series with the results corresponding to the fitted multivariate auto-regressive 

model. The uncertainty band was generated through random generation of the noise term (i.e. , lp A  

in Equation 4 were fixed and the noise term was generated from  0,t N C ). 

One of the main advantages of the proposed multivariate time series model over univariate time 

series models (Martin et al., 2007) or the DWF generator in the BSM influent generator (Gernaey et 

al., 2005) is that not only are the auto-correlation structures in time respected but also the cross-

correlation structures. Table  shows the correlation matrix for the randomly generated and observed 

influent time series in DWF conditions. 
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Figure 5 Observed and simulated influent time series under DWF conditions 

Table 3 Correlation matrix for the generated and observed influent time series in DWF  
Generated influent time series  Observed influent time series 

 Flow Soluble 

COD 

Total 

COD 

TSS NH4  Flow Soluble 

COD 

Total 

COD 

TSS NH4 

Flow 1.00     Flow 1.00     

Soluble COD -0.11 1.00    Soluble COD -0.12 1.00    

Total COD -0.04 0.77 1.00   Total COD -0.06 0.77 1.00   

TSS 0.06 0.32 0.80 1.00  TSS 0.05 0.33 0.81 1.00  

NH4 -0.43 -0.04 -0.06 -0.04 1.00 NH4 -0.46 0.00 -0.02 -0.03 1.00 

 

CITYDRAIN model calibration and synthetic influent generation 

As explained in the methodology section, the CITYDRAIN model was used for modeling the 

dynamics of the influent time series during WWF conditions. Uniform distributions representing the 

initial knowledge on parameters were selected as prior distributions and their corresponding 

posterior distributions were estimated by sampling from Equation 7 using the DREAM sampler. 

Figure  and Figure  show the posterior distributions of the CITYDRAIN model after calibrating the 

model for flow and TSS time series in WWF conditions (three days of simulations were used as the 

warm-up period to set the initial conditions of the system). 

As indicated in Figure  and Figure , there exists some correlation among the parameters of the 

CITYDRAIN model. For example in Figure , the parameters that affect the generation of effective 

rainfall (i.e. runoff coefficient, initial loss, and permanent loss) are correlated meaning that different 

combinations of these parameters could result in the same amount of effective rainfall given the 

same inputs and values for other parameters. However, given the narrow ranges associated to the 

parameters that affect the amount of rainfall, the uncertainty band for flow relating to the total 

model uncertainty is mainly affected by the standard deviation of the residual error (i.e. Sigma in 

Figure ) and not by the uncertainty of the CITYDRAIN model parameters. 

The parameters that affect the accumulation of pollutant (i.e. m_lim, and Ka) and those that affect 

the wash-off of pollutants are also correlated. Given the different correlation structures that exist 

among some parameters it is very important to sample from the joint distribution of parameters to 

propagate the effect of parameter uncertainties to the outputs.  
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Figure 6 Posterior distribution of parameters for flow calibration where, runoff coeff, init loss, and perm loss are 

respectively the runoff coefficient, initial loss (mm), permanent loss (mm/day) parmeters in the virtual basins model 

that is used in the CITYDRAIN model, K (sec) and X are the routing parameters used in the Muskingum method, 

and Sigma is the standard deviation of the residual error.   
 

 
Figure 7 Posterior distribution of parameters for TSS calibration where Ka is the accumulation coefficient (1/day), 

m_lim is the maximum accumulated mass (kg/ha), We, and w are the calibration parameters (Equation 6).  
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To consider the effect of total model uncertainty on the outputs of CITYDRAIN model, a Monte 

Carlo simulation was performed by sampling from the joint posterior distribution of parameters and 

running the model for 1000 times for a particular rainfall time series. Figure  illustrates the 95% 

uncertainty band for flow and TSS which was constructed by selecting the 2.5 and 97.5 percentiles 

of the cumulative distribution of flow and TSS as the lower and upper limits of uncertainty of 

simulation with the rainfall time series shown in the figure. The figure also presents the observed 

and the best simulated time series. The latter corresponds to the set of parameters that has the 

highest likelihood function value. 
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Figure 8 Uncertainty bands for flow (left) and TSS concentration (right) in a 4-day wet weather period 

To further analyze the statistical properties of the simulated influent time series during both the 

DWF and WWF conditions, the cumulative distribution function (CDF) of the simulated and 

observed influent flow and pollutant load were compared in Figure  and Figure 4. The simulated 

and observed influent time series with 15-minute temporal resolution were aggregated to construct 

the corresponding daily and hourly influent series. Figure  and Figure 4 show that the influent 

generator has excellent performance when it comes to predicting the daily and hourly influent flow 

and pollutant load values.  
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Figure 9 CDFs of daily-aggregated influent flow and load of influent pollutants 
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Figure 4 CDFs of hourly-aggregated influent flow and load of influent pollutants 

 

It can be concluded from Figure  and Figure 4 that the statistical properties of the simulated time 

series are similar to the properties of the observed series once the model is fed with the observed 

rainfall time series. As explained in the methodology section, synthetic generation of a one year 

influent time series with 15-minute temporal resolution is thus possible by sampling from the 

posterior distribution of the CITYDRAIN model parameters and inputting the model with 

synthetically-generated rainfall and influent time series for DWF conditions (both with 15-minute 

temporal resolution). The latter two series are to be generated using the proposed rainfall and DWF 

generators respectively. 

 
Figure 5 A 7-day realization of rainfall and influent time series  
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Figure 5 shows a 7-day snapshot of a generated one year influent time series. During the hours of 

the first day the time series of flow has a descending trend as the runoff produced by rainfall event 

just before the first day (not depicted in Figure 5) exits the sewer system and the flow time series 

reaches its DWF conditions with a typical periodic pattern (the second day in Figure 5). During the 

last hours of the third day another rainfall event occurs and the flow time series increases while the 

time series of soluble COD and ammonia drop due to dilution of wastewater by runoff. However, 

during the same period of time there is a sudden increase in the total COD and TSS concentrations 

due to the wash-off of particulate material. After the wash-off of the particulates during the last 

hours of the fourth day, the dilution effect starts to dominate again and the time series of total COD 

and TSS drop due to the dilution of the wastewater by runoff. 
 

CONCLUSION 

In this paper a combination of statistical and conceptual modeling tools was proposed for synthetic 

generation of dynamic influent time series of flows and pollutant concentrations with 15-miniute 

temporal resolution. The rainfall generator is capable of considering the annual and inter-annual 

rainfall regimes and keeping the consistency of the generated rainfall time series across different 

temporal resolutions. Comparison between observed and simulated influent time series for the 

Eindhoven case study proved the capability of the proposed multivariate auto-regressive model in 

generating realistic influent time series in DWF conditions. Moreover, long-term generation of 

influent time series under dry and wet weather conditions could be achieved by running the 

CITYDRAIN model of the sewershed using the generated stochastic inputs (i.e. rainfall and influent 

time series in DWF condition). Uncertainty could be captured by sampling different vectors of the 

model parameters from the posterior distribution obtained after Bayesian parameter estimation on 

the basis of the case study data.  

Overall, the proposed influent generator provides a clear and coherent method to incorporate the 

general and easy-to-obtain information on the physical characteristics of the sewershed as well as 

climate conditions of the region into the synthetic generation of the influent of a treatment plant. 

The flexibility of the presented influent generator allows the users to define different scenarios 

reflecting the projected change in climate and the characteristics of the sewershed (e.g. population 

growth, change in pervious area) and evaluate their effect on the generated influent time series. 
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