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ClimateClimateClimateClimate changechangechangechange

� IPCC reports …
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ClimateClimateClimateClimate change (change (change (change (cont’dcont’dcont’dcont’d))))

� Global warming… (3 scenarios)
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ClimateClimateClimateClimate change (change (change (change (cont’dcont’dcont’dcont’d))))

� … and precipitation (winter - summer)
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PotentialPotentialPotentialPotential effectseffectseffectseffects of of of of climateclimateclimateclimate changechangechangechange

� Higher temperatures

=> Faster reaction rates

� More important algae growth

� Increased biodegradation activity

� Faster oxygen depletion
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PotentialPotentialPotentialPotential effectseffectseffectseffects of of of of climateclimateclimateclimate changechangechangechange

� More intense rains – longer drought periods

� More important erosion, more run-off

� Higher flow rate in (combined & storm) sewers• Resuspension and transport of sediments• Increased number/volume of overflows

WastewaterWastewaterWastewaterWastewater –––– flow and compositionflow and compositionflow and compositionflow and composition

� Influent flow time series in Brussels (Belgium)
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“First flush” of particles

+ Dilution of dissolved pollution

WastewaterWastewaterWastewaterWastewater –––– flow and compositionflow and compositionflow and compositionflow and composition

� TSS and conductivity in Brussels (Belgium)
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PotentialPotentialPotentialPotential effectseffectseffectseffects of of of of climateclimateclimateclimate changechangechangechange

� More intense rains

� More important erosion, more run-off

� Higher flow rate in (combined & storm) sewers• Resuspension and transport of sediments• Increased number/volume of overflows• Overloads on treatment plants (wet weather operation)
� Higher flow rate in rivers• Resuspension and transport of sediments• Hydromorphology affected, « eco-hydraulics »
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PotentialPotentialPotentialPotential effectseffectseffectseffects of of of of climateclimateclimateclimate changechangechangechange
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PotentialPotentialPotentialPotential effectseffectseffectseffects of of of of climateclimateclimateclimate changechangechangechange
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Questions to Questions to Questions to Questions to bebebebe answeredansweredansweredanswered::::

� How to manage infrastructures that have a 

lifetime of 30 years (wastewater treatment), 

or even 100 years (storm and combined sewers)?

� What characteristics of these infrastructures 

must we focus on and develop nownownownow in view of 

the changes (climate and others) we anticipate?

� What can we do?
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What can we do? Retention!What can we do? Retention!What can we do? Retention!What can we do? Retention!

What can we do? Retention!What can we do? Retention!What can we do? Retention!What can we do? Retention!
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What can we do? Retention!What can we do? Retention!What can we do? Retention!What can we do? Retention!

What can we do? Retention!What can we do? Retention!What can we do? Retention!What can we do? Retention!
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What can we do?What can we do?What can we do?What can we do? Flexible retention!Flexible retention!Flexible retention!Flexible retention!

� RTC = Real-time Control

� Improved combined sewer retention tank 

operation

21

What can we do?What can we do?What can we do?What can we do? RTC!RTC!RTC!RTC!

� Improved retention tank operation to 

minimize WWTP overload

22
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What can we do?What can we do?What can we do?What can we do? RTC!RTC!RTC!RTC!

� Evaluation through integrated WQ simulation

23

WEST

What can we do?What can we do?What can we do?What can we do? RTC!RTC!RTC!RTC!

� Discharges for different operating scenarios

� Optimal emptying scenario depends on • Weather forecast• Current treatment capacity
24

  Location 
of 

overflow 

Scenario 

  
0 1 2 3 4 5 6 7 8 

Discharged 

Volume (m³) 

a 2430 2430 2430 0 0 0 0 0 0 

b 2038 2038 2038 1943 1943 1943 0 0 0 

c 8041 8041 4394 8997 8997 4777 9691 9691 5187 

Total 12509 12509 8862 10940 10940 6720 9691 9691 5187 

Discharged 

Solds 
(kg) 

a 259 259 259 0 0 0 0 0 0 

b 211 211 211 188 188 188 0 0 0 

c 441 136 68 478 147 71 500 154 76 

Total 911 606 538 666 335 259 500 154 76 
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What can we do? What can we do? What can we do? What can we do? RTC!RTC!RTC!RTC!

What can we do? What can we do? What can we do? What can we do? RTC!RTC!RTC!RTC!

Event 1, Stratiform event 
Nov 18, 2009 09:10

Event 2, Cyclonic rotation
Nov 18, 2009 16:10

Event 3, Convective event
May 28, 2010 14:00Source: Michael Rasmussen and Søren Thorndahl
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Wastewater utility GHGWastewater utility GHGWastewater utility GHGWastewater utility GHG

� Greenhouse gases in wastewater systems:

� CO2 (Biodeg., energy, chemicals) 1 CO2eq
� CH4 (Anaerobic digestion) 34 CO2eq
� N2O (Nitrogen removal) 265 CO2eq

28
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Wastewater utility GHGWastewater utility GHGWastewater utility GHGWastewater utility GHG

29

GHG in sewer systemsGHG in sewer systemsGHG in sewer systemsGHG in sewer systems

� CH4 formation

in rising mains

30Guisasola et al. (2009) Water Res. 43: 2874-2884
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GHG in sewer systemsGHG in sewer systemsGHG in sewer systemsGHG in sewer systems

� CH4 formation in gravity sewers (with O2 transfer)

31

What can we do?What can we do?What can we do?What can we do? Add chemicals!Add chemicals!Add chemicals!Add chemicals!

� Chemicals used for sulfide control (Brisbane: 6 M$/yr repair � 1 M$/yr chemical addition)
also reduce methane formation

32Zhang et al. (2009) Water Res 43(17): 4123
methane production rates
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Acidified nitrite was added in the sewer intermittently 

at 100 mg N/L during Day 0–2 (for 33 hours)

What can we do?What can we do?What can we do?What can we do? Add chemicals!Add chemicals!Add chemicals!Add chemicals!

Wastewater utility GHGWastewater utility GHGWastewater utility GHGWastewater utility GHG

34
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GHG GHG GHG GHG emissionsemissionsemissionsemissions fromfromfromfrom WWTPWWTPWWTPWWTP

35353535
Scope 1Scope 1Scope 1Scope 1DIRECTScope 2Scope 2Scope 2Scope 2INDIRECT Scope 3Scope 3Scope 3Scope 3INDIRECTBiomassBiomassBiomassBiomass respirationrespirationrespirationrespirationBOD BOD BOD BOD oxidationoxidationoxidationoxidationCreditCreditCreditCredit nitrificationnitrificationnitrificationnitrificationNNNN2222O O O O (de)(de)(de)(de)nitrificationnitrificationnitrificationnitrificationSludeSludeSludeSlude processingprocessingprocessingprocessingSludgeSludgeSludgeSludge disposaldisposaldisposaldisposal ((((agricultureagricultureagricultureagriculture))))

Production ofpurchased materialsPurchased electricity Carbon additionCarbon additionCarbon additionCarbon additionNet Power consumptionNet Power consumptionNet Power consumptionNet Power consumption

EvaluationEvaluationEvaluationEvaluation of GHG of GHG of GHG of GHG emissionsemissionsemissionsemissions

� Different approaches to estimate GHG emissions:

� Empirical factors:• e.g. IPCC, 2006; LGO, 2008; NGER, 2008
� Simple comprehensive models:• e.g. Cakir and Stenstrom, 2005; Monteith et al., 2005; Bridle et al., 2008; Foley et al., 2009
� Dynamic deterministic models:• ASMG1 (Guo & Vanrolleghem, 2014) � N2O• ADM1 (Batstone et al., 2002) � CH4

36

+ complexity
BSM2G benchmarking platformCorominas et al. (2012) Biotechnol. Bioeng., 109, 2854-2863
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EvaluationEvaluationEvaluationEvaluation of GHG of GHG of GHG of GHG emissionsemissionsemissionsemissions
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EvaluationEvaluationEvaluationEvaluation of GHG of GHG of GHG of GHG emissionsemissionsemissionsemissions

38
Corominas et al. (2012) Biotechnol. Bioeng., 109, 2854-2863
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Breakdown of GHG emissions ((((kg CO2e·m-3)))) No controlNo controlNo controlNo control Yes controlYes controlYes controlYes control %%%%Bio-treatment GHG emissions 0.4510.4510.4510.451 0.3760.3760.3760.376 ----17171717Biomass respiration 0.179 0.178 -1BOD oxidation 0.212 0.212 0Credit nitrification -0.168 -0.167 -1N2O emissions 0.228 0.152 -33Sludge processing GHG emissions 0.2310.2310.2310.231 0.2310.2310.2310.231 0000Net power GHG emissions 0.0000.0000.0000.000 ----0.0380.0380.0380.038 ----Power 0.311 0.272 -13Credit power GHG emissions -0.311 -0.310 0Embedded GHG emissions from chemical use 0.0990.0990.0990.099 0.0990.0990.0990.099 0000Sludge disposal and reuse GHG emissions 0.1930.1930.1930.193 0.1930.1930.1930.193 0000
� Comparison of no controlno controlno controlno control and yes yes yes yes control control control control (DO control in aerobic reactors, DO = 2mg·L-1)EvaluationEvaluationEvaluationEvaluation of GHG of GHG of GHG of GHG emissionsemissionsemissionsemissions
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Benchmarking control Benchmarking control Benchmarking control Benchmarking control strategiesstrategiesstrategiesstrategies
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EQI (kg pollution day-1) 
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� Overall result of our studies so far:
� Compromise between:

� Effluent quality
� Treatment costs
� GHG emissions
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Wastewater utility GHGWastewater utility GHGWastewater utility GHGWastewater utility GHG
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GHG emissions from WW utilityGHG emissions from WW utilityGHG emissions from WW utilityGHG emissions from WW utility
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ConclusionsConclusionsConclusionsConclusions

� Climate change and wastewater management -

A two way street
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ConclusionsConclusionsConclusionsConclusions
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� Wastewater systems emit greenhouse gases
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The revenge …The revenge …The revenge …The revenge …

ConclusionsConclusionsConclusionsConclusions

� Climate change and wastewater management -

A two way street:

� Mitigation

� Adaptation

46
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ConclusionsConclusionsConclusionsConclusions

� Mitigation

� Reduce GHG emissions• Sewer � chemical addition• WWTP � improved operation, but compromise with effluent quality
� Adaptation

� Pursue flexibility in long-living WW systems• Sewer � Retention tank operation – RTC• WWTP � Wet weather handling – RTC
47
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