Environmental Modelling & Software 68 (2015) 196—204

journal homepage: www.elsevier.com/locate/envsoft

Contents lists available at ScienceDirect

Environmental Modelling & Software

Environmental
Modelling & Software

—

Review

Efficiency criteria for environmental model quality assessment:
A review and its application to wastewater treatment

@ CrossMark

H. Hauduc * ™ & ™1 M.B. Neumann * “ ¢, D. Muschalla * ¢, V. Gamerith ¢?, S. Gillot

PA. Vanrolleghem **

2 modelEAU, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, QC G1V 0A6, Canada

b Irstea UR HBAN, 1 rue Pierre-Gilles de Gennes, F-92761 Antony Cedex, France

¢ Basque Centre for Climate Change, BC3, Alameda Urquijo, 4 — 4°, 48008 Bilbao, Spain

4 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

€ Graz University of Technology, Institute of Urban Water Management and Landscape Water Engineering, Stremayrgasse 10/I, 8010 Graz, Austria

f Irstea UR MALY, centre de Lyon-Villeurbanne, F-69926 Villeurbanne Cedex, France

& Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
" INRA, UMR 792 Ingénierie des Systemes Biologiques et des Procédés, F-31400 Toulouse, France

! CNRS, UMR 5504, F-31400 Toulouse, France

ARTICLE INFO ABSTRACT

Article history:

Received 5 October 2014
Received in revised form
10 February 2015
Accepted 12 February 2015
Available online

In various cases in environmental modeling, modelers need to account for multiple variables and mul-
tiple objectives in systems with many processes occurring at different time scales. To assist the modeler
to choose a relevant pool of efficiency criteria, a method is proposed to identify dissimilar criteria. A total
of 30 efficiency criteria used in environmental modeling are critically reviewed and classified into six
groups according to different modeling objectives. After accounting for equivalence of functional form 18

criteria remain for further analysis. To quantify the dissimilarity for the remaining criteria a methodology
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based on the ratio of shared parameter sets in regions of good performance is proposed. Then, for a
wastewater treatment plant case-study the dissimilarity of efficiency criteria is analyzed as a function of
target variables and operating conditions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The evaluation of the quality of a model is often based on visual
comparisons between simulation results and observed data. Visu-
alization can be done directly by comparing the time series or by
the use of scatterplots (Ritter and Munoz-Carpena, 2013). Although
visual comparison allows the modeler to evaluate easily many as-
pects of the model quality, it lacks objectivity and cannot be used in
an automatic calibration procedure. It is therefore recommended to
use both visualization and quantitative metrics (Bennett et al.,
2013; Chiew and McMahon, 1993; Houghton-Carr, 1999). A recent
position paper by Bennett et al. (2013) provides a comprehensive
review of methods for measuring quantitative performance of
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environmental models. It further proposes a procedure for model
performance evaluation including i) definition of model aim;
ii) characterization of dataset; iii) visual overview of the overall
performance; iv) selection of basic performance criteria and v) re-
finements and improvement of the model.

Environmental sciences, hydrology in particular, widely use
mathematical comparisons of predicted and observed values
(Bennett et al., 2013; Dawson et al., 2007). In contrast to hydrology,
many applications of environmental modeling use multiple
variables pertaining to processes occurring at various timescales.
For example, in wastewater treatment (WWT) several target con-
stituents are usually considered simultaneously during model
calibration (total suspended solids (TSS), chemical oxygen demand
(COD), O3 consumption, sludge production, NH4—N, Nyt or PO4—P
in the effluent ...) and thus different criteria for assessing multi-
variable model quality have to be used. Furthermore, the fitting
objective may be different for different target constituents: for
example a modeler may want to capture the mean value of the
biological tank TSS, but the dynamics of NO3—N and PO4—P effluent
concentrations. Each efficiency criterion allows emphasizing a
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Abbreviations

Efficiency criteria

AME Absolute Maximum Error
CE Coefficient of Efficiency
CEq> Nash—Sutcliffe

CrBal Balance Criterion

1A Index of Agreement

MAE Mean Absolute Error

MAER  Mean Absolute Error Relative
MARE  Mean Absolute Relative Error
MdAPE Median Absolute Percent Error

ME Mean Error

MPE Mean Percent Error

MRE Mean Relative Error

MSDE  Mean Square Derivative Error
MSE Mean Square Error

MSLE  Mean Square Logarithm Error
MSRE = Mean Square Relative Error
MSSE Mean Square Sorted Errors

NSC Number of Sign Changes

PBIAS  Percent Bias

PDIFF  Peak Difference

PEP Percent Error In Peak

PI Coefficient of Persistence

RAE Relative Absolute Error

RMSE  Root Mean Square Error

RSR RMSE—observation standard deviation ratio
RVE Relative Volume Error

TMC Total Mass Controller

u? Theil's Inequality Coefficient

Others

ASM Activated Sludge Model

COD Chemical Oxygen Demand
HRT Hydraulic Retention Time

PE Population Equivalent

SRT Sludge Retention Time

TKN Total Kjeldahl Nitrogen

TSS Total Suspended Solids
WWT  Wastewater Treatment
WWTP Wastewater Treatment Plant

different aspect of model behavior, but is imperfect to catch other
characteristics of the model. Therefore depending on the modeling
objectives, using a single criterion may lead to favor models that do
not reproduce important behavior of the data (Bennett et al., 2013).
Consequently, the calibration and performance assessment of a
typical wastewater treatment plant model requires a “multi-vari-
able, multi-objective” approach.

Aggregated efficiency criteria (multi-criteria, multi-objective,
multi-variable) have been used in different studies and are based
on the sum of normalized efficiency criteria. To sum several effi-
ciency criteria, van Griensven and Bauwens (2003) proposed to
sum them with appropriate weights to put emphasis on certain
criteria/measurements. Brun et al. (2002) and Sin et al. (2008)
normalized the sum of squared errors by the mean of the mea-
surement and the standard error of the measurement respectively
(%2 criterion). Dochain and Vanrolleghem (2001) show how this
weighting method is generalized by using the inverse of the
covariance matrix of the measurement errors of the different var-
iables. This means that the multi-criteria problem is turned into a
single criterion one. However, aggregating criteria that emphasize
different aspects of model behavior results in the loss of the indi-
vidual information they provide (Efstratiadis and Koutsoyiannis,
2010).

The aim of this study is therefore to assist modeler in the choice
of arelevant pool of efficiency criteria to be used in a multi-objective
problem. A critical review and classification of efficiency criteria was
first undertaken covering a number of water-related disciplines
(wastewater treatment, catchment hydrology, urban hydrology,
climate sciences, environmental sciences ...). The specificity of each
criterion and class of criteria to measure the performance of the
model for describing particular characteristics of the observed data
is discussed. Then, the selected efficiency criteria are computed for a
full scale WWTP case study, which has been modeled with 5000
different parameter sets. A procedure is proposed to identify dis-
similar and thus complementary criteria based on the ratio of
shared parameter sets in regions of good model performance. The
dissimilarity between criteria is tested against three factors: i) the
functional form; ii) the system behavior (dynamics, stiffness, degree
of non-linearity: i.e. the operating region of the model) and iii) the

choice of target variables including the experimental design (loca-
tion of measured data in space and time).

2. Review of quantitative efficiency criteria used in
environmental sciences and engineering

2.1. General methods to compare observed and predicted data

Depending on the modeling objectives, the model performance
can be defined as the capability of the model to capture one or
several characteristics of the observed data: mean, timing or
magnitude of peaks or typical periodical variations (diurnal,
weekly, seasonal ...). For example, if a specific effluent limit of a
wastewater treatment plant is based on a monthly average there is
little sense in evaluating the accuracy of the fit of each single peak.
However, if peak effluent limits have to be met, a criterion evalu-
ating the fit of peaks should be used.

Thus, to characterize the performance of the model, different
efficiency criteria may be needed. Characteristics of these criteria
vary in the way they are computed from the observed and pre-
dicted data:

— Criteria can be averaged over the number of data on which they
were computed, which allows comparing results obtained on
datasets of different sizes;

— Absolute criteria are expressed in the same units as the vari-
ables of interest;

— Relative criteria (divided by observed or predicted values or by
the variance) are dimensionless; which allows for comparison
across different state variables;

— Comparison with a reference model is used to define the
improvement of using the model over a simpler model, such as a
model defined as the mean of the observed values or the pre-
vious observed value (see e.g. Seibert, 2001), or a model
describing typical variations such as an average diurnal or sea-
sonal variation (Legates and McCabe, 1999).

Other arithmetic operations can be applied to emphasize small
or large errors or errors on specific parts of the time series:
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— Partitioning the dataset according to different measurement
magnitudes (e.g.: low, intermediate and high flows) and
computing the efficiency criteria on each of these subsets
(Perrin et al., 2006; Moriasi et al., 2007),

— Emphasizing small errors or low magnitude values: a power
transformation of the data with an exponent lower than 1 or a
logarithmic transformation can be used,

— Emphasizing large errors or high magnitude values: a power
transformation of the data with an exponent larger than 1 or an
exponential transformation can be used,

— Avoiding error compensation: absolute values or power values
avoid compensation of negative and positive errors.

These arithmetic operations are used to modify the general
metrics (e.g. error) to extract the required information, given a
certain objective (e.g. to give more importance to errors at low
magnitude of the variables, to emphasize maximum errors or er-
rors on peaks). It is important to note that most of the criteria
discussed in this review are based on sums (except single events
statistics). Consequently, in case of datasets with variable time
steps, the criteria will emphasize errors on more frequently
sampled periods. A solution to overcome this problem is the use of
weighted criteria inversely proportional to the sampling frequency,
resulting in higher weights for isolated points (Willmott et al.,
1985).

2.2. Review and classification of quantitative criteria used in
environmental sciences

A literature review of efficiency criteria from water-related
disciplines (catchment hydrology, urban hydrology, climate sci-
ences, environmental sciences ...) leads to a pool of thirty different
quantitative efficiency criteria (Table 1). After theoretical analysis
they were grouped into the following six classes:

2.2.1. Single event statistics

When the modeling objectives require accurate simulation of
single events (e.g.: storm flow peaks, toxicity peaks), criteria are
needed to characterize the goodness-of-fit of the model for this
event. The single event statistics peak difference (PDIFF) (Gupta
et al., 1998) and percent error in peak (PEP) (Dawson et al., 2007)
aim at characterizing the difference between the observed and the
modeled peak. However, they do not evaluate whether the peaks
occurred at the same time. Consequently, in case of multiple events
occurring in a given time-series, the corresponding peaks must first
be tagged.

2.2.2. Absolute criteria from residuals

Absolute criteria are based on the sum of residuals (difference
between observed O; and predicted P; values at time step i),
generally averaged with the number of data, n. A low value of this
criterion means a good agreement between observation and
simulation. The general form of these efficiency criteria is pre-
sented in Equation (1) (where v is an exponent):

By =030~ P 1)

i=1

The simplest efficiency criterion of this class is the mean error
(ME) with v = 1, which allows identifying the existence of sys-
tematic bias, i.e. the characteristic of a model leading to systematic
over- or under-prediction (Power, 1993). However, with this crite-
rion errors can compensate each other, and no information on the
magnitude of the errors is obtained. This can be solved by using
|O; — P;| to obtain the mean absolute error (MAE) which indicates

the average magnitude of the model error (accuracy) (Willmott
et al., 1985), but does not indicate the direction of the deviation.

The mean square error (MSE) with y = 2 also avoids error
compensations and furthermore emphasizes high errors, but is
more widely applied in the form of the root mean square error
(RMSE = MSE®?) in the same units as the variables (Willmott et al.,
1985). It indicates the overall agreement between predicted and
observed data and it can be used in conjunction with the MAE to
provide information on the prominence of outliers in the dataset
(Bennett et al., 2013). To put even more emphasis on the larger
errors, the fourth root mean quadruples error can be used
(RAMSA4E) (Dawson et al., 2007).

The mean square logarithm error (MSLE) is the MSE calculated
with the natural logarithm of the predicted and observed value,
which emphasizes small errors (Dawson et al., 2010). For this metric,
asmall number ¢ (negligible)is introduced to avoid a zero value in the
logarithm, in the same way as in the denominator of some metrics.

The absolute maximum error (AME) indicates the maximum
error of the model and is very sensitive to outliers (Gupta et al.,
1998).

The mean square of sorted errors (MSSE) is calculated based on
sorted observed and predicted data (Van Griensven and Bauwens,
2003). Observations and predictions are sorted independently
one from the other to allow comparison of empirical density dis-
tributions. This criterion is then insensitive to the timing of the
events.

The number of sign changes (Gupta et al., 1998), or equivalently
the number of runs (a run is a series of residuals with the same sign,
Dochain and Vanrolleghem (2001)), counts the number of times
the residual (O; — P;j) sign changes. The minimum value is zero and
the maximum n, the length of the dataset. A value close to zero
indicates a systematic error (over-estimating or under-estimating
model) but a more consistent model. A value close to n indicates
a random error. This criterion should be analyzed in association
with other criteria to evaluate the adequacy of a model and in
particular to evaluate whether the residuals behave as random,
independent measurement errors (Dochain and Vanrolleghem,
2001).

2.2.3. Criteria evaluating event dynamics

The mean square derivative error (MSDE) is the square of the
differences of predicted and observed variations between two time
steps (Dawson et al., 2010). This criterion penalizes noisy time se-
ries and series with a timing error; it thus allows evaluating the
peak's timing.

2.2.4. Residuals normalized with observed values

At each time step, the error is related to the corresponding
observed value, which provides a dimensionless criterion.
Furthermore these criteria give more weights to low magnitude
measurements. A low value of this criterion means a good agree-
ment between observation and simulation. The general form of
these efficiency criteria is presented in Equation (2) (where v is an
exponent, ¢ is a small (negligible) value added to handle zero data).

1 /0; —P\”
=030 (650) @
The mean percentage error (MPE) (Power, 1993) and mean
relative error (MRE) (Dawson et al., 2007) provide the average
relative model error with v = 1. However, negative and positive
errors can compensate for each other. This is overcome by the mean
absolute relative error (MARE) (Petersen et al., 2002) and by the
mean square relative error (MSRE) with y = 2, which furthermore
emphasizes larger relative errors (Dawson et al., 2007).
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Table 1

List of efficiency criteria (O for observed data; P for predicted data; n for number of data; ¢ is a small value added when necessary to handle zero data values). In Unit column, C

stands for concentration or any other target variable unit.

Criteria name Equation Characteristics Emphasizes
Minimum Maximum Optimal Unit Mean Large High Low
value value value errors magnitudes magnitudes
1 — Single event statistics
Peak Difference PDIFF = max({0;}) — max({P;}) ) +oo 0 C +
_ (01) (P)) — %
Percent Error In Peak PEP = 100 x maxmax(g?x ) +oo 0 % +
2 — Absolute criteria
Mean error ME = %ZF:] (0; —Py) —o0 +o0 0 C +
Mean Absolute error MAE = %ZL |0; — P;| 0 +oo 0 C +
Root Mean Square Error N0 o 0 400 0 C +
RMSE — /22102
Mean Square Error MSE = 15, (0; — Py)? 0 +o0 0 ¢+
Fourth root mean S (0,-py 0 +oo 0 C ++
quadruples error RAMSAE = |/ =im——
Mean Square Logarithm Error  \SLE = 1570 (In(0; +¢) — In(P; + €))? 0 +oo 0 - +
Absolute Maximum Error AME = max(|0; — P;) 0 +oo 0 C ++
2
Mean Square Sorted Errors MSSE — %Zj":1 o= pj)Z 0 +oo 0 C —+
Number of Sign Changes NSC 0 +oo 0 -
3 — Derivative error
Mean Square Derivative Error ~ MSDE = -1, 30 ((0; — 0;_1) — (P = Pi_1))? 0 +o0 0 C
4 — Relative error criteria
Mean Percent Error MPE = leﬂ:]%ﬁ( —c0 +00 % + +
Mean Relative Error MRE = 1\1/16’(1)5 —o0 +o00 0 — +
Mean Absolute Relative Error  \MARE — iy, \0 P\ 0 +oo 0 - + +
Median Absolute Percent Error  MdAPE = Median (100 x %%’Z“) 0 +00 0 % + +
Mean Square Relative Error 2 0 +00 0 — + +
MSRE = an 1 <O‘+t>
5 — Sum of residuals relative to sum of observed values
Percent Bias PBIAS — 100 x Z, (0P —c0 +0o0 0 % +
Relative Volume Error RVE = PBIAS -0 +00 0 — +
Total Mass Controller " 0 0 %
TMC:]OOXMA‘ oo +
EHP'
Balance Criterion n n —o0 1 1 - +
CrBal =1 | [ 22 — | [ 2
20\
Mean Absolute Error Relative MAER — 2it0—Pi 0P 0 +0o0 0 - +
i=11
Theil's Inequality Coefficient U2 — Zi(o —p)? 0 +o00 0 - +
6 — Comparison of residuals with reference values and with other models
Coefficient of Efficiency CEis o1 S (0P —o0 1 1 - +
(Nash—Sutcliffe) 2= 175" o 6)2
RMSEfot')servat'lon standard RSR — {Z -0 1 0 - +
deviation ratio (RSR) ST, (o, 01
Coefficient of Efficiency CE 1 XL (/o-yPy? — 1 1 - +
- 122=1-Sr ===
variations S (/0i-V0)
1 S0 (In(0i+e)~In(Pi-+e))* —o0 1 1 — ++
CEin2 =1 == 0o no 7o)
Relative Absolute Error S 0P| 0 +o00 0 — +
RAE=1-&F——
22i410-0|
Index of Agreement A1 S (0i-P)? 0 1 1 - + +
>0 (Pi-0]-[oi-0])?
Coefficient of Persistence Plo1_ D, O-P) —o 1 1 - +

S, (0i-0i4)

An alternative criterion is the median of the absolute relative
error (MdAPE) expressed in percentage (Dawson et al., 2007). This
criterion is less affected by outliers and the form of the errors
distribution.

2.2.5. Sum of residuals normalized with sum of observed values

For the criteria presented in this section, the sum of errors is
related to the sum of observed values, without any correspondence
to the time step. The general form of these efficiency criteria is
presented in Equation (3) (with y an exponent). A low value of this

criterion means a good agreement between observation and
simulation. These criteria correspond to the visual comparison of
predicted and observed cumulative plots. In the wastewater field
these criteria can be relevant for analyzing influent and effluent
pollutant loads by summing the fluxes.

TRE, = % (3)

The percent bias (PBIAS) (Dawson et al., 2007) and relative
volume error (RVE) are the sum of errors related to the sum of
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observed values, expressed in percentage or as relative value. These
criteria measure an overall adequacy between distributional sta-
tistics of predicted and observed data. The total mass controller
(TMC) criterion used by van Griensven and Bauwens (2003) is a
transformation of the RVE, however with the loss of information on
the direction of the deviation.

Perrin et al. (2001) use the balance criterion (CrBal) which is a
combination of TMC and RVE. The difference between the inversed
fractions penalizes larger differences between observed and pre-
dicted cumulative values.

For these criteria the errors can be compensated. This is over-
come by the relative mean absolute error (MAER) (Elliott et al.,
2000) and by Theil's inequality coefficient used by Power (1993)
and Elliott et al. (2000), which is the mean square error divided
by the sum of observed data. It emphasizes larger errors.

2.2.6. Comparison of residuals with reference values or with other
models

These criteria compare the residuals with residuals obtained
with a reference model P, such as a model describing the mean
value (P; = 0) or the previous value (P; = 0;_;). The general form
of these efficiency criteria is presented in Equation (4) (with o and y
an exponent).

n (0% — px)Y
CEM,:]——EIZ]( l Ja) (4)

X (0 = Pp)”

The first criterion is the Nash—Sutcliffe criterion (CE4 ), a widely
used criterion in hydrology. The values range between — and 1. A
value of zero means that the model is not better than the “no
knowledge” model, which is characterized by the mean value of
observations. This criterion is sensitive to extreme values. From a
functional analysis it follows that it is equivalent to the RMSE-
observation standard deviation ratio (RSR) which is the RMSE of
the predicted data divided by the RMSE of the no knowledge model
(mean of observed values) (Moriasi et al., 2007). Most importantly
it leads to the same optimal parameter set (same location of the
minimum). Its values are in the magnitude of the target constituent
unit and can be compared to the RAE (see below) to indicate the
influence of larger errors.

The second criterion CEqp is close to the Nash—Sutcliffe cri-
terion, but it is calculated from the root values, which emphasizes
low magnitudes and the third criterion CEjj  is calculated from the
logarithms of the values, which emphasizes very low magnitudes
(Perrin et al., 2001).

The relative absolute error (RAE) compares the sum of absolute
residuals to the residuals of the no knowledge model (mean of
observed values) (Legates and McCabe, 1999). This criterion does
not allow error compensation.

The index of agreement (IA) is the ratio of the sum of squared
errors (SSE) and the largest potential error with respect to the mean
of observed values (Willmott et al., 1985). This parameter is sensi-
tive to the model mean and to the peak values, and is insensitive to
low magnitude values.

The coefficient of persistence (PI) is close to the Nash—Sutcliffe
criterion, but the simplistic model used is the last observed value
instead of the mean of observed values (Moriasi et al., 2007).

Krause et al. (2005) use relative deviations for these criteria in
order to make these criteria less sensitive to the effect of magnitude
variations in the dataset.

3. Material and methods
3.1. Dissimilarity analysis

Model simulations are performed for a large number of parameter sets
(n = 5000), sampled from ranges defined appropriately by the modeler (see section

3.2.2). For each simulation the efficiency criteria are calculated. For each efficiency
criterion the parameter sets that lead to the (o = 1%) best performance are selected.
In a pairwise manner it is tested how many sets n¢, (number of common parameter
sets) are shared within the subsets of two criteria. Thus, the distance d is obtained
with following equation (5):

_ Nep
d=1-.7% (5)

Two efficiency criteria with a distance of d = 0 means that the parameter sets
leading to the best model performance for both criteria are the same. This implies
that the two criteria contain very similar information. Only the % best parameter
sets are considered because the criteria could be very dissimilar for many of the
parameter sets tested in the Monte Carlo analysis that are poor-performing and thus
would normally not be relevant to the selection of the best parameter set. It should
however be noted that in this study, the choice of the o = 1% best parameter sets to
compute cluster analysis and determination of similar sets of criteria was chosen
arbitrarily by the authors. This threshold could be reduced with increasing number
of Monte Carlo simulations (n). Testing the sensitivity of dissimilarity towards
changes in the threshold value was out of the scope of the paper.

A cluster analysis is then applied to the distance measure leading to a dendro-
gram characterizing dissimilarity between criteria. The hierarchical cluster analysis
is performed with the “hclust” function of R (R Core Team, 2012, http://www.r-
project.org/), in which the distance between two groups is re-computed following
the Lance—Williams formula as the distance between the most remote pair of ele-
ments (Lance and Williams, 1967).

3.2. Case study

3.2.1. Description of the wastewater treatment plant (WWTP)

The studied municipal WWTP is located in France and has a capacity of about
250.000 population equivalent (PE) and is configured in two parallel lanes operating
under similar conditions. Each lane consists of a plug-flow tank with a pre-
denitrification zone. The simulation period consists of 84 consecutive days, the
first half of this period exhibiting typical operating conditions. On day 48, all aera-
tors broke down for 3 days. Then from day 51—68 the aerators were running
permanently. On day 68 normal operation is reinstated. Differences in similarity
between criteria for two periods (normal condition (day 1—48) and disturbed con-
dition (day 48—68)) are explored. The target constituents include total suspended
solids (TSS) in the biological reactor as well as TSS, COD, total Kjeldahl nitrogen
(TKN), nitrate and ammonia in the effluent. All constituents are measured daily as
flow-proportional daily averages (supplementary material).

3.2.2. Model and parameter ranges

The Activated Sludge Model n°1 (ASM1) (Henze et al., 2000) was chosen to
model this WWTP as there is no biological phosphorus removal and because it is the
simplest and most commonly used model, for which parameter value ranges are
known (Hauduc et al., 2011, 2009). Biokinetic parameter ranges were obtained from
a database of modeling projects (Hauduc et al., 2011). As no correlation between
parameters could be identified from this extensive modeling projects database
(Hauduc et al., 2011), the parameters were considered to be independent. Further-
more, ranges for wastewater fractionation parameters were included as no reliable
fractionation information on the plant influent was available. Overall, 14 kinetic, 4
stoichiometric, 2 compositional, 1 settling and 5 fractionation parameters were
characterized by value ranges (Table 1 in supplementary material).

3.3. Simulations and efficiency criteria calculation

The proposed procedure is based on Monte Carlo simulation of a large number of
(n = 5000) parameter sets. The parameter sets are sampled in a Latin hypercube
from the ranges provided in Table 1 of supplementary material. The sampling is
performed with the R software (R Core Team, 2012, http://www.r-project.org/).

The n = 5000 simulations of the WWTP model were carried out in Tornado
(Claeys et al., 2006), the generic kernel of WEST software (mikebydhi.com). To
ensure correct initial steady-state conditions for the 84 days of dynamic simulation
of each parameter set, 100 days (>3 times the Sludge Retention Time (SRT)) were
first simulated under pseudo steady-state conditions (alternating aeration periods,
constant influent).

4. Results and discussion
4.1. Results of the Monte Carlo simulation

The results of the n = 5000 simulations are presented for
selected target constituents in Fig. 1: TSS in tanks, effluent COD,
NH4—N, and NO3—N.

These graphs show the dependency of the model response (gray
shaded lines) to changes in the parameter set, compared to the
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Fig. 1. Results of the n = 5000 simulations for a) Effluent TSS, b) Effluent COD, c) Effluent NH,—N and d) Effluent NO3—N. Bold lines correspond to the observed daily composite
values. On day 48 all aerators broke down for 3 days, then from day 51 to 68 the aerators were running permanently (days 48, 51 and 68 indicated by vertical lines).

observed values represented by the thick line. During the break-
down of the aerators, the model behavior seems to follow the
observed tendency of target constituents: As nitrification cannot
occur anymore the ammonium (NH4—N) concentration increases
and the nitrate concentration (NO3—N) decreases to zero. Between
days 51—68, the aerators are running permanently, resulting in low
ammonium concentrations when nitrification is re-established,
and to high nitrate concentrations.

4.2. Analysis of dissimilar criteria

4.2.1. Equivalence due to functional form

The analysis of functional forms is performed based on the 30
reviewed quantitative efficiency criteria. It should be noted that
criteria presented in the classes 5 and 6 of Table 1, namely the total
relative error criteria and the comparison of residuals with refer-
ence values and with other models, are generally computed from
an absolute criterion and a metric based only on observed data.
Those criteria then have a different significance than the absolute
criteria, but are highly correlated to the absolute criteria from
which they are computed. This analysis leads to the 18 non-
equivalent groups of criteria listed in Table 2 that were used for
further analysis in the case study.

4.2.2. Dissimilarities due to the choice of variables

The location of sensors within the plant and the frequency of
measurements (continuous sensors, daily grab samples, 2 samples
a week ...) may affect the relevance of some efficiency criteria (e.g.
single event statistics, event dynamics ...). Some variables may also
be correlated (e.g. nitrate and ammonium, total suspended solids
and volatile suspended solids), leading to higher similarity between
criteria for some of the variables.

For each target constituent in the dynamic simulation periods of
the case study, a selection of 16 non-equivalent efficiency criteria
based on Table 2 (section 4.2.1.) were automatically calculated (the
authors have chosen to not include TMC and CrBal in this calcula-
tion). To analyze the results of the case study efficiency criteria, for

each target constituent and dataset partition (day 1—47 and day
48—84), a dendrogram was built from a cluster analysis based on
the distance measures calculated with equation (5). The dendro-
grams computed for the efficiency criteria for effluent COD, NH4—N,
NOs—N and reactor TSS are presented in Fig. 2. These dendrograms
provide a global view of the relationship between efficiency criteria
for the case study by identifying the efficiency criteria that are most
similar to each other: a node height close to zero means they
provide essentially the same information, whereas a node height
close to one means they provide completely different information.

Scatterplots for the oo = 1% best parameter sets of selected pairs
of criteria are shown in Fig. 3 to illustrate the relationship among

Table 2
Identification of non-equivalent criteria. Group-representative criteria selected for
the case study are in bold.

Efficiency criteria Functional form characteristic

PEP, PDIFF Errors in peaks

MPE, MRE Relative error

MAE, MAER, RAE Absolute error

MARE Absolute relative error

RMSE, MSE, U?, CE; 5, RSR Squared error (large errors)

MSRE Squared relative error (large errors)

R4MS4E Quadrupled error (very large errors)

AME Maximum error (very large errors)

MdAPE Median relative error

CEip22 Error of variables roots (low magnitudes)

MSLE, CEj, 2 Error of variables logarithm (very low
magnitudes)

MSSE Error in predicted distribution

MSDE Error in timing

PBIAS, ME, RVE Global error

TMC Adequacy of observed and predicted
cumulative values

CrBal Adequacy of observed and predicted
cumulative values (large errors)

1A Comparison of model prediction to mean
of observed values

PI Comparison of model prediction to last

observed value
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Fig. 2. Dendrograms (0: similar criteria; 1: dissimilar criteria) obtained for effluent COD, NH4—N, NO3—N and TSS in reactor; and for the two partitions of the dataset (left (a1—d1):

normal operating condition; right (a2—d2) disturbed operating condition).

the different efficiency criteria and the computation of the distance
measure d. Fig. 3 a and b represent the scatterplots of MSLE and
MAE for effluent COD and NH4—N respectively. For effluent COD
these two efficiency criteria have an overlapping rate of OL = 68%,
meaning that 68% of their o = 1% best parameter sets are shared.
The distance for these two efficiency criteria computed with
equation (5) is 0.32 (=1 — 0.68). In the dendrogram a1l (Fig. 2) the
two efficiency criteria are then close to each other. Note that the
distance in the dendrogram (close to zero for this pair of criteria) is
not equal to the actual calculated distance d that feeds the hierar-
chical cluster analysis (0.32) as it has been re-computed following
the Lance—Williams formula (section 3.1). The same pair of effi-
ciency criteria for effluent NH4s—N shows an overlapping rate of
only 2% (Fig. 3 b). This low overlapping rate indicates that

the efficiency criteria provide different information, and are
consequently complementary. This leads to a large distance in the
dendrogram for MAE and MSLE (closest node distant from 1) as can
be seen in dendrograms b1 and b2 of Fig. 2.

This behavior of the couple MAE/MSLE may be explained by
analyzing the functional form and the data. The functional differ-
ence between MAE and MSLE is the logarithm used for observed
and predicted result in MSLE, the difference then being squared.
These operations allow emphasizing errors on low magnitude re-
sults, whereas MAE operations change any prominence of low or
high magnitudes or small or large errors. The analysis of Fig. 1
shows that predicted values are much more variable for effluent
NH4—N than for COD. The dissimilarity of MAE and MSLE for
effluent NH4—N could then reveal the prominence of errors on low
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Fig. 3. Scatterplots for selected pairs of efficiency criteria for COD and NHy: circles represent the o = 1% best parameter sets of the efficiency criterion on the x-axis and crosses
represent the o = 1% best parameter sets of the efficiency criterion on the y-axis. Overlap (OL) occurs where crosses and circles coincide. The distance d is defined as 1 — OL.

magnitudes in the computation of the MSLE metric for effluent
NH4—N. If one of the objectives of the modeling project is to
accurately predict the effluent NH4—N, it is then relevant to choose
the MSLE criteria over or in addition to the MAE, whereas for
effluent COD the simpler MAE criterion would be sufficient to
assess the model quality. This example illustrates that a same pair
of criteria that are not similar in their functional form, may or may
not be similar for a particular variable.

4.2.3. Dissimilarities due to operating conditions

The similarity between two efficiency criteria can also be
affected by the system behavior, here, for instance, the operating
mode. For example, in case of a narrow range of data values (con-
stant aeration, nitrification/denitrification control by sensors ...),
using transformations such as power or logarithm will not allow
catching different model behavior and will result in similar criteria.

The clustering for the two operational periods (Fig. 2) is very
similar for all target constituents. The main difference is found for
the behavior of RAMS4E, which is very similar to many other effi-
ciency criteria (RMSE and AME among them) for effluent COD of
part 1 (dendrogram al), whereas it is dissimilar from any other
efficiency criterion for effluent COD of part 2 (dendrogram a2). The
similarity of R4MS4E, RMSE and AME in part 1 suggests that the
errors of the models are quite homogenous, whereas some larger
errors appear in the simulation of part 2, which is also revealed by
the larger dissimilarity between AME and RMSE. The behavior is
totally different for effluent NH4—N, where R4MS4E is very dis-
similar to any other criteria in part 1 and is quite similar to some of
the criteria in part 2 and among them, of MSLE. This reveals that in
part 1 large errors exist but are not necessarily correlated to high or
low magnitude values, whereas the similarity of RAMS4E and MSLE
in part 2 shows that the large errors are related to low magnitude
values.

4.3. Discussion on choosing dissimilar criteria

The modeler has to carefully choose the efficiency criteria in
view of the objectives of the modeling project and specificities of
the plant and dataset. This choice may lead to several relevant
criteria depending on objectives and on target variables. As an
example, RMSE is often selected by modelers as it quantifies the
global error of the model in the same unit as the target constituent
(Bennett et al., 2013; Boyle et al., 2000; Legates and McCabe, 1999;
Ritter and Munoz-Carpena, 2013). However RMSE tends to over-
emphasize fitting of peaks and higher values, which often leads
to biased simulations in case of datasets with a wide range of
values. Other absolute criteria may then be preferred or should be

combined with a total relative error criterion, such as MPE,
depending on the modeling objectives (Boyle et al., 2000; Ritter
and Munoz-Carpena, 2013). In this case-study, the modeler may
evaluate the ability of the model to reproduce i) the average TSS in
the biological tanks (by applying RMSE and MPE criteria to the bi-
weekly TSS measurements), and ii) the diurnal dynamics of nitrate
to ensure an hourly effluent limit (by applying PDIFF and MSDE
criteria to the continuous sensor measurements of effluent nitrate).
This leads to a multi-criteria, multi-objective and multi-variable
study.

Contrary to aggregated efficiency criteria as presented in the
introduction, the use of Pareto optimization methods and multi-
objective evolutionary algorithms (Efstratiadis and Koutsoyiannis,
2010; Muschalla et al., 2008; Yapo et al, 1998) allow taking
advantage of information provided by each individual criterion
selected. The dissimilarity analysis presented here could be used to
avoid using similar criteria thus reducing the dimensionality of the
computationally expensive Pareto optimization. The choice of one
criterion in a pool of similar criteria is then essentially led by the
preference of the modeler and/or for results visualization or
discussion.

The aim of this case study was to illustrate the different kind of
similarities in criteria that depend on the dataset under study. It
should therefore be noted that the results obtained by the
dissimilarity analysis are always case study dependent. They
depend on the operating region of the model (determined by in-
puts, parameter values, temporal and spatial resolution we are
interested in) and the target variables including the experimental
design (location of measured data in space and time). We suggest
an approach with which the modeler can determine dissimilarity in
his/her case study starting from the 18 identified non-equivalent
criteria. The only case-study independent conclusions that can be
made are those presented in paragraph 4.2.1 “equivalence due to
functional form”.

5. Conclusions

Thirty efficiency criteria to evaluate the environmental models
were compiled and grouped into six classes: 1) single event sta-
tistics, 2) absolute criteria from residuals, 3) derivative errors, 4)
relative error criteria, 5) total relative error criteria, and 6) com-
parison of residuals with reference values and with other models.

In a first step criteria with equivalent functional form were
identified, leading to 18 groups. From each group a representative
criterion was sub-selected for quantitative evaluation in an illus-
trative wastewater treatment plant modeling case study consid-
ering four target variables and two operating conditions.
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A methodology was proposed to quantify dissimilarity between
remaining criteria. It is based on assessing the ratio of shared
parameter sets in the regions of best model performance for pair-
wise criteria. The application of this methodology to the WWTP
modeling case study illustrated how dissimilarity between effi-
ciency criteria depends not only on their functional form but also
on the system behavior and on the experimental design. Varying
any of these factors can change the dissimilarity between criteria.

The proposed methodology can assist the modeler to choose a
relevant pool of dissimilar efficiency criteria in the presence of
multiple objectives and variables.
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