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a b s t r a c t

The availability of influent wastewater time series is crucial when using models to assess the perfor-
mance of a wastewater treatment plant (WWTP) under dynamic flow and loading conditions. Given the
difficulty of collecting sufficient data, synthetic generation could be the only option. In this paper a
hybrid of statistical (a Markov chain-gamma model for stochastic generation of rainfall and two different
multivariate autoregressive models for stochastic generation of air temperature and influent time series
in dry conditions) and conceptual modeling techniques is proposed for synthetic generation of influent
time series. The time series of rainfall and influent in dry weather conditions are generated using two
types of statistical models. These two time series serve as inputs to a conceptual sewer model for
generation of influent time series. The application of the proposed influent generator to the Eindhoven
WWTP shows that it is a powerful tool for realistic generation of influent time series and is well-suited
for probabilistic design of WWTPs as it considers both the effect of input variability and total model
uncertainty.

© 2015 Elsevier Ltd. All rights reserved.
Software availability

Name of the software: WWTP influent advisor
Developer: Mansour Talebizadeh, Evangelia Belia, Peter A.

Vanrolleghem
Programing language: Matlab 2012
Availability: The software can be obtained upon request by

contacting Evangelia Belia, Primodal Inc., 145 Aberdeen,
Qu�ebec, QC G1R 2C9, Canada. Email:belia@primodal.com
1. Introduction

One of the major sources of uncertainty/variability that both
plant designers and operatorsmust deal with is the dynamics of the
influent (Belia et al., 2009). The recent advances in mathematical
modeling and improved computational power have enabled re-
searchers to better understand the performance of differentWWTP
design alternatives (Hao et al., 2001; Salem et al., 2002; Hyland
ulaval.ca (M. Talebizadeh),
.ulaval.ca (P.A. Vanrolleghem).
et al., 2012) and/or evaluate control strategies under dynamic
flow and loading conditions. However, the application of mathe-
matical models used for simulating the performance of a WWTP
could be misleading unless, among other reasons, models are
provided with representative influent time series. One of the
problems that arise in this regard is the scarcity or even lack of
long-term influent data. To remedy this problem, some researchers
have proposed models for synthetic dynamic influent time series
scenarios (Bechmann et al., 1999; Gernaey et al., 2011). The devel-
opment of a tool capable of generating dynamic influent time series
that is representative of the climate and characteristics of the
sewershed could have several applications. Synthetically-
generated influent time series can serve as input to a dynamic
model of a plant for checking the performance of different config-
urations, sizings, as well as devising an optimum control strategy
regarding the treatment of wastewater (Benedetti et al., 2006;
Devisscher et al., 2006; Guerrero et al., 2011; Ciggin et al., 2012).
In addition, realistic generation of different realizations of influent
time series is one of the most important component of studies that
take into account the issue of uncertainty in design and operation
of WWTPs (Rousseau et al., 2001; Bixio et al., 2002; Martin et al.,
2012; Talebizadeh et al., 2014).

Various approaches have been adopted by different researchers
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for influent generation (for a review see Martin and Vanrolleghem
(2014)). One of the simplest approaches in synthetic generation of
influent time series is the application of stochastic or regression
models with or without periodic components (Capodaglio et al.,
1990; Martin et al., 2007; Rodríguez et al., 2013). However, these
models may have a poor performance especially during wet
weather flow conditions as different complex processes affect the
dynamics of the influent. Indeed, such statistical models do not
consider the underlying processes that govern the generation and
the dynamics of the influent. Langeveld et al. (2014) proposed an
empirical model for predicting the influent pollutant time series as
a function of influent flow for both dry and wet weather flow
conditions (simulation of pollutant time series as a function of flow
was also adopted by Rousseau et al. (2001) and Bixio et al. (2002)).
Although the proposed model could be used for prediction of
pollutant influent time series, it requires a stochastic input (i.e.
influent flow) generator if it is to be used for generating different
realizations of influent time series.

To consider the underlying phenomena, some researchers have
advocated the use of detailed conceptual and/or physically-based
models (Hernebring et al., 2002; Temprano et al., 2007). The
application of these complex models might be useful for certain
purposes, e.g. evaluating the performance of different operating
strategies in a sewer system. However, in cases inwhich the overall
behavior of the influent time series is of interest (i.e. the overall
variation of influent time series, not all the different phenomena
that have resulted in that time series), theymight not be very useful
as they require very detailed information on the sewer system and
running them for a large number of times could be computationally
expensive. Besides, even if a detailed sewershed model proves to
have a good performance regarding the simulation of the influent
time series under a given set of inputs, it cannot be called an
influent generator unless a procedure is available for the generation
of different realizations of stochastic inputs (e.g. rainfall time series,
wastewater time series in dry weather flow (DWF) conditions).

Some researchers have proposed parsimonious conceptual
models as an alternative to the complex mathematical models that
require detailed information and data (Gernaey et al., 2011). In
these models a conceptual view of the main phenomena and
interactive processes are formulated in terms of mathematical
equations. Despite successful application of these models (at least
in giving an overall view of the system), the performance of these
models to a great extent depends on the proper choice of model
parameters. Since some of the parameters may not have a clear
physical meaning they are usually estimated through model cali-
bration. In cases in which there is no measured data available for
model calibration, only a rough estimate or a range of values could
be inferred from the values reported in literature. In addition, it is
almost impossible to have a complete similarity between themodel
output(s) and the observed values owing to the inextricable un-
certainties (e.g. input data uncertainty and/or model structure
uncertainty) in any modeling exercise (Belia et al., 2009; Freni and
Mannina, 2010).

Given the importance of the issue of uncertainty, several studies
have been conducted that consider its effect on both water quality
and quantity prediction in urban drainage modeling (Freni et al.,
2009; Dotto et al., 2012). However, in these studies, only the ef-
fect of model uncertainty under a set of historical rain events (wet
weather flow, WWF, conditions) has been considered (i.e. the time
series of rainfall and also the contribution of wastewater in DWF
conditions were assumed known a priori). In this study not only are
we interested in the effects of model uncertainty, but also in the
variability of rainfall and influent time series in DWF conditions
which significantly affect both the amount and the dynamics of the
influent loads.
Considering the shortcomings of the previous studies, this study
aims to develop an influent generator which is capable of produc-
ing dynamic influent time series of flow and traditional wastewater
component concentrations (TSS, COD, TN, TP, NH4) with 15-min
temporal resolution (15-min temporal resolution was assumed to
be enough for capturing sub-daily time variations of the influent
which could affect the operating parameters and the performance
of WWTPs). The proposed methodology will enable users to
generate dynamic influent time series that have the same statistical
properties as the observed ones using a set of statistical and con-
ceptual modeling tools that only require basic information on
climate and characteristics of the sewershed under study. It should
be noted that the proposed influent generator is capable of
considering the effect of uncertainty in model parameters on the
generated influent time series whether the uncertainty can be
reduced using observed data (e.g. for the current study) or not
(uncertainty in model parameters is characterized by a range of
values, determined through expert elicitation or the data from
similar sewersheds). In the current study, the variability in inputs
(captured by generating different realizations of rainfall and
influent time series in DWF conditions, explained in Section 2.1 and
Section 2.2, respectively) as well as the uncertainty in model pa-
rameters (explained in Section 2.4) on the generated dynamic
influent time series are other important issues that will be covered.

2. Methodology

In this paper, a hybrid of statistical and conceptual modeling
tools is proposed for synthetic generation of influent time series
considering both model parameter uncertainty and input vari-
ability. A two-stateMarkov chain-gammamodel (Richardson,1981)
in conjunction with two time series disaggregation methods were
used for the stochastic generation of rainfall time series with a high
temporal resolution (i.e. 15-min). To generate the influent time
series during DWF conditions, taking into account the daily peri-
odic variation, auto-correlation, and cross-correlation in time, a
multivariate time series models was developed and its parameters
were estimated using the methodology proposed by Neumaier and
Schneider (2001). The proposed stochastic model is expected to be
superior compared to previous attempts in the generation of
influent, as in previous studies the diurnal variation of the influent
under DWF conditions was modeled using only univariate time
series models (Martin et al., 2007), or by multiplying the daily
average influent values to a set of coefficients representing the
normalized dynamics of the influent at different times of a daywith
or without addition of a noise term to the generated time series
(Achleitner et al., 2007; Langergraber et al., 2008; Gernaey et al.,
2011). The problem resulting from the application of univariate
time series models is that the cross-correlation structure that exists
among different wastewater constituents may not be respected, as
the different constituents are generated independently from the
others.

In DWF conditions, the influent time series is generated using
multivariate time series models. Conversely in WWF conditions,
the outputs of the two statistical models used for the generation of
the rainfall and influent time series in DWF conditions are input to a
conceptual model for modeling the influent time series in WWF
conditions (Fig. 1). In this study the CITYDRAIN model (Achleitner
et al., 2007) was selected as the conceptual model owing to its
flexibility and parsimony. The CITYDRAIN model of the sewershed
under study is calibrated using measured influent data through a
Bayesian calibration procedure to account for the total model un-
certainty (uncertainty stemming from both model parameters and
the distribution of error, i.e. the difference between the observed
and simulated time series).



Fig. 1. Schematic of the proposed influent generator.
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Finally, different realizations of the influent time series can be
generated by running the calibrated CITYDRAIN model using a
realization of a generated time series of rainfall and a realization of
influent under DWF conditions (i.e. the two stochastic input time
series).

Depending on the model to be used for modeling the processes
inside the WWTP, an influent fractionation block must be added to
convert the generated traditional wastewater composition (COD,
TSS, etc) into the state variables of the selected biological models,
e.g. the ASM models. Therefore, influent fractionation should be
one of the components ofWWTPmodeling, not a component of the
influent generator as different WWTP models may have different
state variables.
2.1. Weather and air temperature generators

2.1.1. Daily weather generator
Realistic generation of rainfall time series is crucial as it is one of

the most important factors that affect the dynamics of the influent.
In this study a stochastic model proposed by Richardson (1981) was
used for the synthetic generation of daily rainfall and air temper-
ature time series. According to this method the sequence of dry and
wet days is generated using a two-state Markov chain model with
parameters P(WjW) and P(WjD) which represent the probability of
having a wet day at day t given a wet day at day t�1 and the
probability of having a wet day at time t given a dry day at time t�1
Fig. 2. Schematic of a two-state Markov chain with the two states being wet (W) or
dry (D) and four transitions between them.
respectively (Fig. 2).
The other two parameters of the transition matrix needed for

the generation of dry and wet days (i.e.P(DjD) the probability of
having a dry day at day t given a dry day at day t�1 and P(DjW) the
probability of having a dry day at day t given a wet day at day t�1)
can be calculated using Equation (1) and Equation (2).

PðDjDÞ ¼ 1� PðW jDÞ (1)

PðDjWÞ ¼ 1� PðWjWÞ (2)

Once the transition probabilities have been estimated from
climate data, the sequence of wet and dry days can be generated
and the amount of rainfall in each wet day is generated by sampling
from a gamma probability distribution (Equation (3)) where x is the
depth of daily rainfall, a and b are the two parameters of the dis-
tribution (estimated from the measured rainfall time series), and
G(a) represents the gamma function evaluated at a.

f ðxÞ ¼ ðx=bÞa�1 expð�x=bÞ
b GðaÞ (3)

It should be noted that the seasonal variation of the daily rainfall
generator parameters (Markov chain transition probabilities, i.e.
P(WjD) and P(WjW)) as well as the parameters of the gamma dis-
tribution (i.e. a and b) were taken into account by fitting different
Fourier series models on the parameter values derived from rainfall
records. To do so, each year with rainfall records was divided into
26 two-week time spans and then the transition probabilities were
estimated by dividing the number of wet days preceded by a dry
day by the total number of days (for estimatingP(WjD)) and also
dividing the number of wet days preceded by a wet day by the total
number of days. Moreover, the parameters of the gamma distri-
butions were calculated for each two-week time span using the
maximum likelihood method. Once the parameters of the Markov
chain-gamma model are estimated for each two-week time span,
different Fourier series are fitted on the estimated parameters to
provide a value for each day of the year.

The parameters of the daily rainfall model can be calculated for
different regions using regional rainfall records. In addition,
different values of parameters reflecting future climate change
scenarios could be elicited from experts and used for generating
daily rainfall time series.

The time series of minimum and maximum air temperature are
generated conditioned on the state of the day (i.e. wet or dry) using
a multivariate linear first-order time series model (Matalas, 1967).
Starting points are a time series of daily maximum and minimum
temperature values.

The seasonal variation in mean and standard deviation of
maximum and minimum daily temperature values for dry and wet
days are captured (in two Fourier series models) and subtracted
from the data to derive the residual time series of maximum and
minimum temperature (Equation (4) and Equation (5)).

Yd
i ðjÞ ¼

Xd
i ðjÞ � X

d
i ðjÞ

sdi ðjÞ
for dry days (4)

Yw
i ðjÞ ¼ Xw

i ðjÞ � X
w
i ðjÞ

swi ðjÞ
for wet days (5)

In the above equations X
d
i ðjÞ and sdi ðjÞ are the mean and stan-

dard deviation for a dry day, X
w
i ðjÞ and swi ðjÞ are the mean and

standard deviation for a wet day, and Yi(j) is the residual compo-
nent for transformed variables (i.e. j¼1 for maximum temperature,



Fig. 3. Schematic of BartletteLewis rainfall model.
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and j¼2 for minimum temperature). Once the residual time series
are derived, a multivariate time series model as proposed by
Matalas (1967) is fitted on the residual time series of maximum and
minimum temperatures (Equation (6)).

YiðjÞ ¼ AYi�1ðjÞ þ BεiðjÞ (6)

In the above equation Yi(j) is a 2 � 1 matrix for day i whose
elements are residuals of maximum temperature (j¼1) and mini-
mum temperature (j¼2). Yi�1(j) is a 2 � 1 matrix of the previous
day's residuals, εi is a 2 � 1 matrix of independent random com-
ponents (the noise term is assumed to be a normal, independent,
and identically distributed (i.i.d) variable with zero mean and unit
variance), and A and B are 2 � 2 matrices whose elements are
derived according to (Equation (7)) and (Equation (8)):

A ¼ M1$M
�1
0 (7)

B$BT ¼ M0 �M1$M
�1
0 $MT

1 (8)

where the subscript �1 denotes the inverse of matrix and M0 and
M1 are defined as:

M0 ¼
�

1 r0ð1;2Þ
r0ð1;2Þ 1

�
(9)

M1 ¼
�
r1ð1;1Þ r1ð1;2Þ
r1ð2;1Þ r1ð2;2Þ

�
(10)

where r0(j,k) is the correlation coefficient between variables j and k
on the same day where j and k may be set to 1 (maximum tem-
perature) or 2 (minimum temperature). r1(j,k) is the correlation
coefficient between variable j and k lagged one day with respect to
variable j.

The above weather generator is suited for random generation of
daily rainfall and temperature. However, in this study we need to
generate rainfall time series with a finer temporal resolution than
daily resolution (15-min temporal resolution, comparable to the
temporal resolution of rainfall in the BSM influent model (Gernaey
et al., 2011)). Some methodologies have been proposed for random
generation of hourly rainfall time series based on historical hourly
rainfall data (Pattison, 1965; Rodriguez-Iturbe et al., 1987). How-
ever, long-term hourly rainfall data may not be available in every
region and using a limited hourly rainfall record for random gen-
eration of long-term hourly rainfall time series may result in
misrepresentation of the inter-annual variability in rainfall.

In this study the proposed Richardson-based weather generator
(used for daily rainfall generation) was combined with two time
series disaggregation techniques. Daily rainfall time series is first
generated using the Richardson (1981) method and then two time
series disaggregation models, including a daily-to-hourly model
(Koutsoyiannis and Onof, 2001) and an hourly-to-15-min model
(Ormsbee, 1989) are applied for generation of long-term rainfall
time series with 15-min temporal resolution.

2.1.2. Daily to hourly rainfall time series disaggregation
The time series disaggregation method proposed by

Koutsoyiannis and Onof (2001) is used in the proposed method-
ology to disaggregate the synthetic daily rainfall time series (i.e.
generated using the previously explained Richardson-based
weather generator) into hourly rainfall. The proposed disaggrega-
tion method combines the BartletteLewis stochastic rainfall model
(Rodriguez-Iturbe et al., 1987) with an adjusting algorithm so that
the total amount of hourly rainfall in each day becomes consistent
with its corresponding daily value. A general description of the
BartletteLewis model can be summarized as follows
(Koutsoyiannis and Onof, 2001):

1) Storm origins (t1, t2, t3 in Fig. 3) occur according to a Poisson
process with ratel.

2) Arrival times of the contributing cells in a storm (t21, t22, t23 for
Storm2 in Fig. 3) occur according to a Poisson process with rateb.

3) Cell arrival terminates after time vi (v2 for Storm2 in Fig. 3) that
is exponentially distributed with parameterg.

4) Each cell has a duration that is exponentially distributed with
parameterh.

5) Each cell has a uniform intensity (R21, R22, R23, R24 for Storm2 in
Fig. 5) coming from an exponential distributionm.

The parameters of the BartletteLewis rainfall model can be
calculated from hourly rainfall records (Rodriguez-Iturbe et al.,
1987; Koutsoyiannis and Onof, 2001) and then the model can be
used for synthetic generation of hourly rainfall time series. How-
ever, the hourly rainfall time series generated using the Bar-
tletteLewis model should be adjusted so that the sum of hourly
rainfall time series in each day becomes consistent with its corre-
sponding daily value.

In the proposed methodology, a simple adjusting procedure
known as the proportional adjusting procedure (Koutsoyiannis and
Onof, 200) is used. According to this procedure the initially
generated hourly rainfall values (eXs) are adjusted to new values (Xs)
using Equation 11

Xs ¼ eXs

0BBB@ ZPk
i¼1

eXj
1CCCA ðs ¼ 1;2;3; :::kÞ (11)

where Z is the amount of daily rainfall (generated using the
Richardson-based daily rainfall generator), and k is the number of
hourly rainfall values within a day.
2.1.3. Hourly to 15-min rainfall time series disaggregation
The disaggregated hourly rainfall time series in Section 2.1.2 is

further disaggregated to 15-min rainfall time series using the
empirical time series disaggregation procedure proposed by
Ormsbee (1989). According to this empirical model, four types of
rainfall patterns are identified (Fig. 4) for each 3-h sequence of
hourly rainfall. After determining the type of sequence, the amount
of rainfall at the central hour of each 3-h rainfall sequences is dis-
aggregated into a time series with a desired temporal resolution
(15 min here).

The probability distribution function, F(t) of sub-hourly rainfall



Fig. 4. Four types of rainfall patterns for a 3-h rainfall sequence (Ormsbee (1989).

Fig. 5. Schematic of virtual basin. a) filling of the basin in wet periods where the amount of spilled water is multiplied by the runoff coefficient for calculating the amount of
effective rainfall, b) emptying process with a fixed rate (permanent loss) in dry periods (see Equation (14)).
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intervals of the central hour rainfall (Vt) is calculated using the time
parameter t* and the amounts of rainfall in the first and third hour
(Vt�1 and Vtþ1) of each 3-h rainfall sequence (Equation (12)).
FðtÞ ¼

8>>>>><>>>>>:

Vt�1t

V*
t

� ðVt�1 � VtÞt2
2V*

t t
*

for 0 � t < t*

ðVt þ Vt�1Þt*
2V*

t
þ Vt

�
t � t*

�
t2

V*
t

� ðVt � Vtþ1Þ
�
t � t*

�2
2V*

t
�
60� t*

� for t* � t � 60

(12)
For the proposed methodology the central hour rainfall (Vt) is
disaggregated into 4 intervals and the portion of each interval is
calculated by multiplying the probability of each interval to the
central hour rainfall.

2.1.4. Bioreactor temperature
The explained Richardson-based weather generator is suited for

the generation of daily air temperature which could serve as an
input for modeling the temperature effect of the influent or in the
bioreactors of a WWTP. Bioreactor temperature is of particular in-
terest as it affects the rate of many biological processes taking place
in the bioreactors (Antoniou et al., 1990). Whereas, based on the
influent temperature a heat balance could be constructed around
the bioreactors of the WWTP to calculate the bioreactor tempera-
ture (see Gillot and Vanrolleghem (2003) for details), preference is
often given to directly input the bioreactor temperature in the
WWTP model (e.g. Gernaey et al. (2014)).
To estimate the bioreactor temperature a simple linear regres-

sion model between the concurrently measured daily air and
bioreactor temperatures is used. Once the parameters of the linear
regression model (which calculates the daily bioreactor tempera-
ture as a function of daily air temperature) have been estimated, it
can be used to convert the generated daily air temperatures
(generated using the Richardson-based weather generator) to daily
bioreactor temperatures. It should be noted that the variation in
bioreactor temperature is not solely function of air temperature
(Gillot and Vanrolleghem, 2003). However, calculating the daily
bioreactor temperature as a function of daily air temperaturewould
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capture the seasonal variation of bioreactor temperature time
series.

To further disaggregate the daily bioreactor temperature time
series into a time series with 15-min temporal resolution, the
average normalized pattern representing the diurnal variation of
bioreactor temperature is estimated by a Fourier series and multi-
plied to the daily bioreactor temperature values to obtain a biore-
actor temperature time series with 15-min temporal resolution.

2.2. Influent generation in DWF conditions

The influent time series in DWF conditions usually shows spe-
cific periodic patterns which can be mainly attributed to the socio-
economic fabric of society and also to the physical characteristics of
the wastewater collection system. To mimic these variations in
time, it is common practice to estimate representative values (e.g.
multiplying flow per person to the total population for estimating
flow) for flow and loads and then multiply them to a set of
normalized coefficients reflecting diurnal, weekly and seasonal
time variation of the influent time series (Gernaey et al., 2011;
Flores-Alsina et al., 2014). Moreover, Gernaey et al. (2011) pro-
posed to add a noise term to the deterministic influent profile in
order to avoid generating the same influent time series in subse-
quent days. In this study, the effect of rainfall on the contribution of
infiltration (rainfall induced infiltration) is not considered explic-
itly. Rather, the application of a multivariate auto-regressive model
(Neumaier and Schneider, 2001) with periodic components is
proposed.

To estimate the parameters of the proposed time series model,
an influent time series measured during DWF conditions is to be
extracted and analyzed for estimating the parameters of the
multivariate auto-regressive model. First, the seasonal (e.g. asso-
ciated to groundwater infiltration) and diurnal periodic compo-
nents of flow and other wastewater constituents are to be
estimated using different Fourier series approximations (depend-
ing on the underlying expected periodic patterns, e.g. a bimodal
periodic pattern for flow in urban sewersheds) and removed from
the original influent time series to calculate the residual time series.
The zero-mean residual time series of influent flow and composi-
tion is then further standardized to have an influent time series
with a zero mean and unit standard deviation. The parameters of
the multivariate autoregressive model in Equation (13) (i.e.p,Al,C)
are then estimated through a stepwise least square algorithm
proposed by Neumaier and Schneider (2001).

vt ¼
Xp
l¼1

Al � vt�l þ εt (13)

In Equation (13), vt is an m-dimensional vector (i.e. for our
application m ¼ 5 which corresponds to the flow and the four
wastewater compositions) containing the generated influent
component at time t, p is the order of the auto-regressive model (p
is to be selected based on Schwarz's (1978) Bayesian Criterion SBC,
based on the fitting results). More details can be found in Neumaier
and Schneider (2001)), A1,...,Ap are the coefficient matrices of the
auto-regressive model, and εt is a noise term generated from an
uncorrelated zero-mean multivariate normal distribution with
covariance matrix C (i.e. εt ~ N(0,C)). Different realizations of the
residual influent time series can be generated using this time series
model and converted to the original scale depending on the mean
and standard deviation of the original influent time series.

2.3. Influent generation in WWF conditions

Synthetic generation of the influent time series during WWF
conditions is relatively more complicated than the generation of
the influent time series during DWF conditions. Difficulties arise as
various phenomena are occurring during WWF conditions and as
the availability of measured data is usually scarce for these periods.
Hence, using a purely statistical model may result in significant
discrepancies between simulated and observed time series.
Therefore, we used a combination of statistical modeling tech-
niques and a conceptual model to generate the time series of the
influent during WWF conditions. The CITYDRAIN model
(Achleitner et al., 2007) was selected as the conceptual model as it
is open source (inside Matlab) and it takes into account the basic
phenomena (see 2.3.1 and 2.3.2) that govern the amount and dy-
namics of the influent. Also, it requires the estimation of only a
small number of parameters whose values or ranges of values can
be inferred from the basic information of a sewershed.
2.3.1. Flow
CITYDRAIN calculates the amount of effective rainfall by

adopting the concept of a virtual basin (Achleitner et al., 2007).
According to this concept (Fig. 5), effective rainfall is calculated by
subtracting the initial loss from total rainfall and thenmultiplying it
with the runoff coefficient. Permanent losses like evapo-
transpiration are considered only in dry periods to mimic an
emptying process of the virtual basin (Equation (14)).

8<:
he ¼ MaxðrR � ðInt loss� xtÞ � Runoff coeff ;0Þ Wet periods

dx
dt

¼ �Perm loss Dry periods

(14)

In the above equation, he(mm/t) represents the effective rainfall,
rR(mm/t) the total rainfall, Int_loss(mm) the initial loss, Run-
off_coeff(—) the runoff coefficient, and Perm_loss (mm/t) the per-
manent loss (overall, three parameters).

The height of the effective rainfall is then multiplied by the
fraction of sewershed area which contributes to the generation of
runoff to calculate flow. The routing method, proposed by (Motiee
et al. (1997) that is based on a simplified form of the Muskingum
flow routing equations (Roberson et al., 1995) is then used for
routing flow and pollutants inside the sewer system.
2.3.2. Composition
For the generation of pollutant time series in WWF conditions,

CITYDRAIN uses a rather simplistic approach in which a fixed
pollutant concentration is imposed to the system (Equation (15)):

�
CðtÞ ¼ C if he >0
CðtÞ ¼ 0 if he ¼ 0 (15)

where, C(t) is the generated pollutant concentration in time, C is a
model parameter representing the concentration in WWF condi-
tions, and he is the effective rainfall. Given the importance of the
influent time series in WWF conditions, a more appropriate con-
ceptual model was used for simulating the accumulation-wash off
processes corresponding to the particulate concentrations. To this
aim, a new block was developed and implemented in CITYDRAIN to
generate the pollutant concentration time series in WWF condi-
tions. Equation (16) shows the mathematical formulation of the
selected accumulation-wash off model (Kanso et al., 2005).
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8>>><>>>:
Accumulation model :

dMðtÞ
dt

¼ Ka �
�
mlim � Simp �MðtÞ

�
Wash off model :

dMðtÞ
dt

¼ �We � IðtÞ
w �MðtÞ

(16)

where, M(t) is: the available pollutant mass on the sewershed sur-
face at time t (kg), Ka is the accumulation coefficient (1/day),mlim is
the maximum accumulated mass (kg/ha), Simp is the impervious
area (ha), I(t) is the rainfall intensity (mm/hr), We, and w are cali-
bration parameters to be estimated using observed rainfall and
influent data. In case of the availability of influent data, the CITY-
DRAIN model parameters can be calibrated (i.e. their uncertainty
reduced through Bayesian calibration (see Section 2.4)). However, if
there is no measured influent data, the uncertainty in the param-
eters (i.e. parameters in Equation (14) and Equation (16)) will
remain and the uncertainty on the generated influent time series
could be larger. Other parameters like the sewershed area or
maximum conveyance capacity of the sewer system that have
physical meaning can be obtained from general information on the
sewershed.
2.3.3. Model setup
In the CITYDRAIN model, the components of a sewershed sys-

tem are modeled by a set of sewershed blocks and depending on
the availability of data and level of heterogeneity in the sewershed,
users may choose different numbers of blocks for modeling the
entire sewershed. However, it should be noted that increasing the
number of blocks will results in an increase in the number of model
parameters which in turn could cause difficulties in parameter
estimation (e.g. an unrealistic number of simulations (Martin and
Ayesa, 2010)) when the model is to be calibrated using the
measured flow and water quality data. In the modeling step,
different CITYDRAIN configuration should be tested and a decision
made on the best one.
2.4. Bayesian model calibration of the CITYDRAIN sewer model

As explained in the previous section, the dynamics of the
influent time series under WWF conditions is modeled using the
CITYDRAIN model. However, one should be aware of the fact that
modeling the influent time series under WWF conditions using a
conceptual model may not lead to reliable results unless the model
is calibrated and the effect of different sources of uncertainties on
the model outputs (i.e. flow and other pollutants) are taken into
account. To this aim, a Bayesian estimation framework was used to
update the initial ranges of values (i.e. in a Bayesian parameter
estimation method, the initial probability distributions or prior
distributions reflect the initial knowledge on the value of uncertain
model parameters) that were assigned to the parameters of the
CITYDRAIN model (i.e. estimating the posterior distribution of pa-
rameters using their prior distribution and the measured data on
flow and pollutant concentrations (see Table 5 for the uncertain
model parameters)). In general, the posterior distribution of pa-
rameters using Bayes' theorem can be formulated by Equation (17).

hðqjDataÞ ¼ f ðDatajqÞpðqÞ
f ðDataÞ (17)

where h(qjData) is the posterior distribution, p(q) is the prior dis-
tribution, f(Data) is merely a proportionality constant so thatR
hðqjDataÞ ¼ 1, and f(Datajq) constitutes the likelihood function

which measures the likelihood that the data correspond to the
model outputs with parameter set q. Assuming homoscedastic
uncorrelated Gaussian error (i.e. having normal distribution with
the same variance and no correlation in time), the likelihood
function can be formulated according to Equation (18) (Bates and
Campbell, 2001; Marshall et al., 2004).

f ðDatajqÞ ¼
�
2ps2

��n=2 Yn
t
exp

(
� ½Datat � Rðxt ;qÞ�2

2s2

)
(18)

where n is the number of observations, s2 is the variance of the
residual error (i.e. the difference between model predictions and
observed values which equals the measurement error if it is
assumed that the model is perfectly representing reality), Datat is
the observed variable at time t, xt is the set of inputs at time t, q is
the set of model parameters and R(xt;q) represents the model
output as a function of xt and q.

A specific form of Markov chain Monte Carlo (MCMC) sampler
known as differential evolution adaptive Metropolis or DREAM
(Vrugt et al., 2008) is used to efficiently estimate the posterior
distribution of the CITYDRAIN model parameters that are involved
in the generation and routing of flow and pollutants in WWF
conditions, given the time series of flow and influent composition.
It should be noted that the proposed Bayesian approach is not only
capable of capturing the effect of model parameter uncertainty, but
also of capturing the effect of other sources of uncertainties (model
structure, input, etc) that could result in some discrepancies be-
tween the simulated influent time series and the observed series.
2.5. Synthetic influent generation

Once the uncertainty ranges of the CITYDRAIN model parame-
ters are updated, synthetic influent time series for a desired num-
ber of years considering the variability in the inputs of the
CITYDRAIN model (i.e. rainfall and influent time series in DWF
conditions) and also the total uncertainty can be obtained as
follows:

1. Synthetic generation of the 15-min time series of rainfall for one
year

2. Synthetic generation of the 15-min time series of the influent
under DWF conditions for one year

3. Sampling a point from the posterior distribution of the CITY-
DRAIN model parameters

4. Inputting the generated time series 1) and 2) and the parame-
ters sampled in 3) and running the CITYDRAIN model for one
year

5. Repeating 1) to 4) for a desired number of years

In this study, the contribution of the noise term (i.e. character-
ized using a normal distribution with zero mean and standard
deviation of Sigma) to the output is treated as a source of variability.
This decision is based on the assumption that the main part of the
difference between the simulated and observed signals is due to an
actual fluctuation of the influent time series (an instance of vari-
ability) or some random measurement error (an instance of
uncertainty).

Obviously during the DWF conditions, the influent time series is
generated using the statistical model that is explained in Section
2.2 and the CITYDRAIN model has no effect on the generated
influent time series.
3. Data and case study

The Eindhoven WWTP with a design capacity of 750,000



Table 1
Summary of the data type and their applications.

Types of data Application

Rainfall (1951e2013) ✓ Estimation of the rainfall generator parameters (i.e. P(WjD), P(WjW), a, b
✓ Calibration of the CITYDRAIN model

Minimum and maximum air temperature ✓ Calibration of the air temperature generator
Bioreactor temperature ✓ Calibration of the regression model for the generation of bioreactor temperature as a function of air temperature
Influent data in DWF conditions ✓ Calibration of the DWF generator
Influent data in WWF conditions ✓ Calibration of the CITYDRAIN model
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population equivalent (PE) is the third largest WWTP in the
Netherlands. The sewershed served by the Eindhoven WWTP has a
total area of approximately 600 km2 and comprises of three main
sub-sewersheds called Nuenen/Son, Eindhoven Stad, and Riool-
Zuid. The influent data used in this study comprised of sensor
data of flow, ammonia (measured using an ion-selective sensor)
soluble COD, total COD, and TSS (the latter three measured using an
UV/VIS-based sensor) in the period of September 2011 to
September 2012 at the outlet of the Nuenen/Son, Eindhoven Stad,
and Riool-Zuid sub-sewersheds (entrance point to the treatment
plant).

The long-term daily rainfall data and also rainfall data with finer
temporal resolution provided by KNMI (Royal Netherlands Mete-
orological Institute De Bilt, The Netherlands) and Waterschap De
Dommel (Boxtel, The Netherlands) were used for estimating the
parameters of the weather generator proposed in this paper.
Table 1 shows a summary of the data types and also their appli-
cations in the development of the proposed influent generator.
4. Results and discussion

This section presents the outputs and some discussion on the
results of different components of the proposed influent generator.
As explained in the methodology section, the parameters of the
statistical models used for synthetic generation of rainfall, air and
bioreactor temperature, as well as the multivariate auto-regressive
Fig. 6. Seasonal variation in the Markov
time series models (used for the generation of influent time series
in DWF conditions) were calibrated using the historical weather
data and observed influent time series in DWF conditions. The
parameters of the CITYDRAIN model (the conceptual model for
modeling influent time series under WWF conditions) were esti-
mated using the Bayesian estimation framework. Once the pa-
rameters of the statistical and the conceptual models were
calibrated, different realizations of influent time series would be
generated by running the CITYDRAIN model with different re-
alizations of the rainfall and influent time series under DWF con-
ditions (stochastic inputs) and different sets of parameters sampled
from the posterior distribution of the CITYDRAIN model
parameters.

The performance of the weather generator and the influent
generator under DWF conditions were evaluated by comparing the
statistical properties of the generated time series with those of the
historical time series. The results corresponding to the Bayesian
calibration of the CITYDRAIN model are explained and at the end a
7-day snapshot of a generated one year influent time series is
presented and discussed.
4.1. Synthetic generation of rainfall

The parameters of the statistical Markov-gamma model were
estimated using different Fourier series models fitted on parameter
values derived from the recorded rainfall data (Fig. 6) in the studied
chain-gamma model parameters.



Fig. 7. A year-long realization of daily rainfall (right) versus an observed one (left).

Fig. 8. Cumulative distribution function of daily rainfall in the studied Eindhoven catchment.
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Eindhoven catchment and then different realizations of rainfall
time series (with a random seed used for each year long generation
of rainfall time series) were generated (Fig. 7).

To evaluate the performance of the Markov-gamma model for
realistic generation of rainfall time series, the CDF of the observed
rainfall time series (CDF curves include both wet and dry days)
corresponding to different seasons were compared with those of
the generated rainfall time series (Fig. 8 for the CDF comparison and
Fig. A1 for a qeq plot between the simulated and observed rainfall
time series).
The observed CDFs in Fig. 8 are constructed using the daily
rainfall records between 1951 and 2013 and the generated CDFs
correspond to 1000 years of synthetic rainfall time series, gener-
ated using the explained Markov chain-gamma model whose pa-
rameters (depicted in Fig. 6) were estimated from the daily rainfall
records (i.e. from 1951 to 2013).

The results indicate that not only are the basic yearly statistics
(i.e. average and variance) of the generated rainfall time series
consistent with the recorded rainfall time series, but also the sea-
sonal variations in rainfall intensity and frequency of wet days are



Table 2
Average rainfall amount and number of wet days for the Eindhoven catchment.

Month Amount of rainfalla (mm) Average number of wet
daysb

Observed Generated Observed Generated

January 72.3 67.0 16 14
February 52.0 57.0 12 11
March 63.4 54.4 13 12
April 44.1 51.9 12 11
May 58.3 60.9 12 12
June 68.0 68.4 12 11
July 74.7 73.5 12 11
August 64.6 71.0 11 11
September 67.9 62.1 12 10
October 62.0 65.0 12 11
November 71.1 66.4 15 12
December 70.0 74.0 14 14
Annual 768 772 152 141

a The average amount of total rainfall in different months for observed (i.e. rainfall
data from 1951 to 2013) and generated rainfall time series (i.e. 1000 years of rainfall
data, generated using the proposed rainfall generator).

b The average number of wet days in different months for observed (i.e. rainfall
data from 1951 to 2013) and generated rainfall time series (i.e. 1000 years of rainfall
data, generated using the proposed rainfall generator).

Table 3
Basic statistics of hourly rainfall data for the Eindhoven catchment.

Statistics Unit Observed Value Simulated Value

Mean mm 0.08 0.08
Standard deviation mm 0.60 0.60
Lag 1 auto-correlationa e 0.33 0.36
Fraction of dry hours e 0.92 0.94

a Correlation between the amount of rainfall at time t and t�1.
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respected. As indicated in Table 2, the differences between the
observed average rainfall and the simulated average rainfall (based
on the rainfall data from 1951 to 2013 and 1000 years of synthetic
rainfall time series, respectively) in the different months are below
10%, except for the months March and April in which the differ-
ences are �16.5% and 15% respectively. Nevertheless, all the dif-
ferences between the average simulated and average observed
rainfall values are below 20% which is acceptable according to the
work of Richardson (1981) in which the differences between
average simulated and observed values in some months are above
20%. The discrepancies between certain percentiles of the simu-
lated and observed rainfall distributions (Fig. 8 or Fig. A1) could be
associated to the difference between rainfall generator parameters
derived from observed data (sample parameters, i.e. blue circles in
Fig. 6) and those that are estimated using different Fourier time
series and used for the rainfall generator, i.e. solid lines in Fig. 6). In
addition, the difference between the length of observed and
generated rainfall time series (i.e. 62 years of observed data
compared to 1000 years of generated rainfall data) could be
another reason for the difference between the extreme percentiles
(see Fig. A1).

Moreover, Table 3 shows that the hourly time series of rainfall
which was generated using the time disaggregation method (i.e.
disaggregation of daily to hourly time series) has the same statis-
tical characteristics as the observed one. Overall, the synthetic
generation of rainfall in which the statistical properties of the time
series is respected across different time scales is a significant
improvement compared to the rainfall generation in for instance
the BSM influent generator (Gernaey et al., 2011) in which there is
no clear way for extracting and incorporating the statistical prop-
erties of available recorded rainfall data into synthetic rainfall time
series generation. In addition, the flexibility of the proposed rainfall
generator allows users to define different scenarios reflecting
future changes in precipitation regime (e.g. due to climate change
(Chen et al., 2010)) and its effect on the influent time series (e.g.
what would happen if the amount of rainfall or the number of wet/
dry days increases by 20% in specific seasons, a feature that is not
available in previous rainfall generators, e.g. the rainfall generator
proposed by Gernaey et al. (2011)).

4.2. Synthetic generation of air and bioreactor temperature

The seasonal variation in the mean maximum air temperature,
the mean minimum air temperature, the standard deviation of the
maximum air temperature, and the standard deviation of the
minimum air temperature for dry and wet days, captured using
Fourier series models are illustrated in Fig. 9 a to Fig. 9d. As indi-
cated, the mean values for both maximum and minimum air tem-
peratures have an upward trend from the winter until the midst of
summer (when they reach their maximum values), followed by a
downward trend until they reach their minimum values in the
winter again. However, comparing Fig. 9a and b, representing the
seasonal variations for wet and dry days suggest that there is no
significant difference between the seasonal variation when the
state of day (wet or dry) is taken into account. In other words, it can
be concluded that for the case study of this research, the variation
in mean maximum and mean minimum temperatures is mostly a
function of the seasons of the year rather than the state of the day.

As explained in Section 2.1, a multivariate linear first-order
model was fitted on the residual time series of maximum and
minimum air temperatures for synthetic generation of maximum
and minimum air temperatures and in the end the generated air
time series were converted to their original values through Equa-
tion (4) and Equation (5) using the seasonal mean and standard
deviation values illustrated in Fig. 9a to d.

The daily temperature of the bioreactor was generated through
a linear regressionmodel which relates the daily average bioreactor
temperature to the daily average air temperature. Fig. 9e and g
show random generation of an air and bioreactor temperature time
series for one year. The linear model in Fig. 9f which was developed
using the concurrently measured air and bioreactor temperature
for one year (i.e. September 2011 to September 2012, illustrated in
Fig. 9i) shows that the average bioreactor temperature can be
estimated reasonably (R2¼0.70) as a linear function of air temper-
ature. It should be noted that the effect of the state of day (i.e. dry or
wet) on air temperature (although for the current case study it was
not significant) which in turn affects the bioreactor temperature
has, been taken into account in random generation of the air
temperature. Moreover, an attempt to use two different regression
models depending on the state of day (i.e. one regression model for
dry days and another one for wet days) did not result in any
improvement in the prediction of bioreactor temperature as a
function of air temperature.

The average diurnal variation of bioreactor temperature in
Fig. 9h was extracted by fitting a first order Fourier series estimate
to the normalized bioreactor temperature variations which in turn
was used for converting the daily bioreactor temperature time se-
ries into a time series with 15-min temporal resolution.

Despite the fact that the diurnal variation pattern in Fig. 9f
clearly shows a periodic behavior in time (which corresponds to the
diurnal variation of bioreactor temperature), there is no significant
difference between the highest and lowest temperature
throughout a day (i.e. the highest temperature is only around 1.001
times the daily average bioreactor temperature and the lowest
temperature is around 0.9985 times the daily average bioreactor
temperature). Therefore, in practical applications (at least for the



Fig. 9. Random generation of air and bioreactor temperature for one year for the Eindhoven WWTP: Seasonal variation in mean maximum and mean minimum air temperatures in
wet days (a), in dry days (b), Seasonal variation in standard deviations of maximum and minimum air temperatures in wet days (c), in dry days (d), Randomly generated daily air
temperature (e), Linear regression model between daily air and bioreactor temperatures (f), Bioreactor temperature time series with 15-min temporal resolution (g), Average diurnal
variation of bioreactor temperature (h), Observed historical bioreactor temperatures used in the analysis (i).
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Fig. 10. Variation of SBC with order of multivariate time series model.
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case study in this research), the diurnal temperature variation can
be ignored.

4.3. Multivariate auto-regressive model for DWF generation

Influent data corresponding to 82 dry days were analyzed for
estimating the parameters of the multivariate auto-regressive time
Fig. 11. Observed and most likely simulated influent time series under DWF conditions. No
estimating the parameters of the multivariate auto-regressive model.
series model for DWF generation (Table A2). As explained, the order
of the multivariate auto-regressive model was determined based
on the SBC criterion and the parameters were estimated according
to a specific least square algorithm proposed by Neumaier and
Schneider (2001). Fig. 10 shows the variation of the SBC criterion
for different model orders, ranging from 1 to 20 (p in Equation (13)).
As indicated, the SBC criterion reaches its minimum value at 9,
which was thus selected as the order of the multivariate autore-
gressivemodel. Thismeans that the value of the influent time series
at time t is simulated as a function of the last 9 influent values
antecedent to time t.

Fig. 11 shows a continuous 3-day DWF influent time series with
the results corresponding to the most likely simulated multivariate
auto-regressive model. The uncertainty band was generated
through random generation of the noise term (i.e. p,Al in Equation
(13) were fixed and the noise termwas generated from εt~N(0,C)). It
should be noted that the water quality data, except for ammonia,
did not exhibit the strong diurnal variation that is typically
observed in other catchments (Martin and Vanrolleghem, 2014).

One of the main advantages of the proposed multivariate time
series model over univariate time series models (Martin et al.,
2007) or the DWF generator in the BSM influent generator
(Gernaey et al., 2011) is that not only are the auto-correlation
te: The continuous 3-day influent time series belongs to 82 days of DWF data used for



Table 4
Correlation matrix for the generated and observed influent time series in DWF.

Generated influent time series Observed influent time series

Flow Soluble COD Total COD TSS NH4 Flow Soluble COD Total COD TSS NH4

Flow 1.00 Flow 1.00
Soluble COD �0.11 1.00 Soluble COD �0.12 1.00
Total COD �0.04 0.77 1.00 Total COD �0.06 0.77 1.00
TSS 0.06 0.32 0.80 1.00 TSS 0.05 0.33 0.81 1.00
NH4 �0.43 �0.04 �0.06 �0.04 1.00 NH4 �0.46 0.00 �0.02 �0.03 1.00

Table 5
Prior distribution of parameters and the values for the maximum likelihood function.

Parameter Unit Lower limit Upper limit Values corresponding to the maximum likelihood

Runoff coeff — 0.6 0.9 0.69
Init loss mm 0 2 0.3
Perm loss mm/day 0 2 0.57
K (Muskingum coeff) second 8000 20,000 16 869
X (Muskingum coeff) — 0.1 0.4 0.12
Sigma (for flow) m3/hr 0.05 2 0.22
Ka 1/day 0.001 2 0.08
m lim Kg/ha 0.001 120 100
We — 0.0004 0.002 0.0005
w — 1.5 2 1.667
Sigma (for TSS) g/m3 20 70 38.9
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structures in time respected but also the cross-correlation struc-
tures. Table 4 shows the correlation matrix for the randomly
generated and observed influent time series under DWF conditions.

Depending on the type of the model that is to be used for
modeling the treatment processes inside a WWTP (e.g. ASM
models (Henze et al., 2000)), thewastewater constituents in Table 4
can be further converted toWWTPmodel state variables. However,
as illustrated in Fig. 1, influent fractionation should be considered
Fig. 12. Posterior distribution of parameters for flow calibration where, runoff coeff, init loss
(mm/day) parmeters in the virtual basins model that is used in the CITYDRAIN model, K (se
standard deviation of the residual error. The blue histograms represent the marginal poste
relationships corresponding to various combinations of parameters (Equation (14)).
part of WWTP modeling as different WWTP models may have
different state variables (Martin and Vanrolleghem, 2014).
4.4. CITYDRAIN model calibration and synthetic influent generation

As explained in the methodology section, the CITYDRAIN model
with three catchment blocks representing the main sub-
sewersheds in the Eindhoven sewershed was used for modeling
, and perm loss are respectively the runoff coefficient, initial loss (mm), permanent loss
c) and X are the routing parameters used in the Muskingum method, and Sigma is the
rior distributions of the individual parameters and the red scatter plots represent the



Fig. 13. Posterior distribution of parameters used for TSS calibration where Ka is the accumulation coefficient (1/day), m_lim is the maximum accumulated mass (kg/ha), We, and w
are the calibration parameters (Equation (16)).
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the dynamics of the influent time series during WWF conditions.
The decision on the number of catchment blocks was made based
on the information obtained from previous studies as well as the
measured influent data that were used for model calibration
(Schilperoort, 2011).

Uniform distributions representing the initial knowledge on
parameters were selected as prior distributions (Table 5) and their
corresponding posterior distributions were estimated by sampling
from Equation (18) (i.e. 12,000 samples which required around 10 h
of computation) using the DREAM sampler (as indicated in Table 5,
11 parameters were estimated). Fig. 12 and Fig. 13 show the pos-
terior distributions of the CITYDRAIN model after calibrating the
model for flow and TSS time series in WWF conditions (three days
of dry weather simulation were used as the warm-up period to set
the initial conditions of the system).

As indicated in Fig. 12 and Fig. 13, some correlation among the
parameters of the CITYDRAIN model exists. For example, the pa-
rameters that affect the generation of effective rainfall (i.e. runoff
coefficient, initial loss, and permanent loss) are correlated, meaning
Fig. 14. Uncertainty bands for flow (left) and TSS concentration (right) in a 4-day wet we
interpretation of the references to color in this figure legend, the reader is referred to the
that different combinations of these parameters could result in
approximately the same amount of effective rainfall given the same
inputs and values for other parameters. However, given the narrow
ranges of values obtained for the marginal posterior distribution of
the parameters that affect the amount and dynamics of flow (i.e.
Runoff coeff, Init loss, Perm loss, K, and X in Fig. 12), the uncertainty
band for flow relating to the total model uncertainty is mainly
affected by the standard deviation of the residual error (i.e. Sigma in
Fig. 12) and not by the uncertainty of the CITYDRAIN model
parameters.

The parameters that affect the accumulation of a pollutant (i.e.
m_lim, and Ka) and those that affect the wash-off of TSS are also
correlated (Fig. 13). Given the different correlation structures that
exist among some parameters it is very important to sample from
the joint posterior distribution of parameters to properly propagate
the effect of parameter uncertainties to the outputs.

To consider the effect of total model uncertainty (i.e. including
model parameter uncertainty and the standard deviation of noise
(i.e. Sigma for flow and TSS in Fig. 12 and Fig. 13) on the outputs of
ather period (Rain series in blue and maximum likelihood simulation in black). (For
web version of this article.)



Fig. 15. CDFs of daily-averaged influent flow and concentration of influent pollutants.

Fig. 16. CDFs of hourly-averaged influent flow and concentration of influent pollutants.
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CITYDRAIN model, a Monte Carlo simulation was performed by
sampling from the joint posterior distribution of parameters and
running the model for 1000 times for the rainfall time series be-
tween 6th and 10th of October 2011 (i.e. the rainfall time series
concurrent with the observed flow and TSS concentration time
series used for the CITYDRAIN calibration). Fig. 14 illustrates the
95% uncertainty band for flow and TSS. This uncertainty band was
constructed by selecting the 2.5 and 97.5 percentiles of the cumu-
lative distribution of flow and TSS as the lower and upper limits of
uncertainty of simulationwith the rainfall time series shown in the
figure. The figure also presents the observed and the best simulated
time series. The latter corresponds to the simulations obtained with
the set of parameters that has the highest likelihood function value.

To further analyze the statistical properties of the simulated
influent time series during both DWF and WWF conditions, the
cumulative distribution function (CDF) of the simulated and
observed influent flow and pollutant concentrations were
compared in Fig. 15 and Fig. 16. The simulated and observed
influent time series with 15-min temporal resolution were aver-
aged (using the flowand concentration time series) to construct the
corresponding daily and hourly influent series. Fig. 15 and Fig. 16
show that the influent generator has excellent performance when
it comes to predicting the daily and hourly influent flow and
pollutant concentration values (the comparison between the
simulated and observed load values (results not shown) also indi-
cated an excellent performance of the influent generator).

It can be concluded from Fig. 15 and Fig. 16 that the statistical
properties of the simulated time series were very similar to the
properties of the observed series when the CITYDRAINmodel is fed
with the observed rainfall time series.
4.5. Synthetic generation of influent time series

As explained in the methodology section, synthetic generation
of a one year influent time series with 15-min temporal resolution
is thus possible by sampling from the joint posterior distribution of
the CITYDRAIN model parameters (one vector of CITYDRAIN pa-
rameters for each year) and running the model with the
synthetically-generated rainfall and DWF influent time series (both
with 15-min temporal resolution). The latter two series are
generated using the proposed rainfall and DWF generators
respectively.



Fig. 17. A 7-day realization of rainfall and influent time series (flow and composition).
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Fig. 17 shows a 7-day snapshot of a generated one year influent
time series. During the hours of the first day the time series of flow
has a descending trend as the runoff produced by rainfall event just
before the first day (not depicted in Fig. 17) exits the sewer system
and the flow time series reaches its DWF conditions with a typical
periodic pattern (the second day in Fig. 17). During the last hours of
the third day another rainfall event occurs and the flow time series
increases while the time series of soluble COD and ammonia drop
due to dilution of wastewater by runoff. However, during the same
period of time there is a sudden increase in the total COD and TSS
concentrations due to thewash-off of particulatematerial. After the
wash-off of the particulates during the last hours of the fourth day,
the concentrations of total COD and TSS drop due to the dilution of
the wastewater with runoff.
Table A1
Estimated parameters of air temperature model (i.e. Equation (6))	

Tmax
Tmin



t
¼ A�

	
Tmax
Tmin



t�1

þ B� Nð0;1Þt

A B
0.79 0.05 0.56 �0.06
0.34 0.52 0.28 0.52
5. Conclusion

In this paper a combination of statistical and conceptual
modeling tools was proposed for synthetic generation of dynamic
influent time series of flows and pollutant concentrations with 15-
min temporal resolution. The rainfall generator is capable of
considering observed annual and seasonal rainfall regimes and
keeping the consistency of the generated rainfall time series across
different temporal resolutions. For dry weather conditions, com-
parison between observed and simulated influent time series for
the Eindhoven case study confirmed the capability of the proposed
multivariate auto-regressive model in generating realistic influent
time series for flow and pollutants composition. Moreover, long-
term generation of influent time series under dry and wet
weather conditions could be achieved by running a constructed
CITYDRAIN model of the sewershed using the generated stochastic
inputs (i.e. rainfall and influent time series in DWF condition).
Further, uncertainty could be captured by sampling different vec-
tors of the model parameters from the posterior distribution ob-
tained after Bayesian parameter estimation on the basis of the case
study data.

Overall, the proposed influent generator provides a clear and
coherent tool to incorporate general and easy-to-obtain informa-
tion on the physical characteristics of a sewershed as well as
climate conditions of the region into the synthetic generation of the
influent flow and composition of a treatment plant. If there are no
observed data for calibrating the parameters of the proposed
influent generator, a range of values should be assigned to the
uncertain model parameters based on expert elicitation or transfer
of information from similar sewersheds. The flexibility of the pre-
sented influent generator allows users to define different scenarios
reflecting the projected change in climate and the characteristics of
the sewershed (e.g. population growth, change in pervious area)
and evaluate their effect on the generated influent time series and
the treatment plant to be designed.
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Appendix



Table A2
Estimated parameters of influent model in DWF conditions (i.e. Equation (13))0BBBB@

Flow
Solube CO
Total COD

TS
NH4

1CCCCA
t

¼ Pl¼9
l¼1Al �

0BBBB@
Flow

Solube COD
Total COD

TSS
NH4

1CCCCA
t�1

þ εt

A1 A2
1.62 0.05 �0.09 0.03 �0.18 �0.90 �0.13 0.18 �0.09 0.23
0.00 2.06 �0.90 0.67 0.00 �0.02 �1.88 1.80 �1.33 �0.01
�0.02 0.26 1.10 0.36 �0.03 0.03 �0.51 0.05 �0.73 0.04
�0.02 0.38 �0.57 2.00 �0.01 0.04 �0.78 1.25 �1.84 0.02
�0.08 0.01 �0.04 0.04 1.58 0.14 0.00 0.06 �0.05 �0.81
A3 A4
0.07 0.12 �0.16 0.10 �0.06 0.27 �0.01 0.03 �0.03 �0.04
0.02 0.81 �1.34 0.99 0.04 �0.01 0.17 0.23 �0.12 �0.05
0.00 0.37 �0.59 0.51 �0.01 �0.02 �0.05 0.40 �0.04 �0.04
0.00 0.59 �0.94 0.79 �0.01 �0.02 0.01 0.01 0.29 �0.02
�0.05 0.00 �0.06 0.04 0.13 �0.05 �0.02 0.06 �0.05 0.14
A5 A6
�0.10 �0.05 0.06 �0.04 0.03 �0.13 0.05 �0.10 0.08 0.05
0.00 �0.39 0.66 �0.57 0.03 0.00 0.16 �0.65 0.55 0.02
0.00 �0.17 0.25 �0.28 0.04 0.01 0.13 �0.43 0.24 0.04
0.00 �0.40 0.58 �0.47 0.00 0.02 0.29 �0.44 0.15 0.05
0.04 0.00 �0.04 0.04 �0.01 0.01 0.03 0.00 �0.02 �0.12
A7 A8
0.12 �0.01 0.04 �0.02 �0.04 �0.13 �0.11 0.13 �0.08 0.01
0.00 0.02 0.24 �0.21 �0.03 0.01 �0.21 0.12 �0.11 0.00
�0.01 �0.02 0.18 �0.06 �0.04 0.00 �0.17 0.08 �0.18 �0.01
�0.02 �0.05 0.06 0.08 �0.04 �0.01 0.01 �0.02 �0.13 0.00
�0.02 �0.02 0.02 0.00 0.06 0.01 0.14 �0.17 0.14 �0.06
A9
0.04 0.00 0.01 �0.03 �0.03
�0.01 0.11 �0.03 0.03 �0.02
�0.01 0.02 0.08 0.04 �0.01
�0.01 0.00 0.01 0.12 0.01
0.00 �0.11 0.09 �0.07 0.05
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Fig. A1. qeq plot for observed and simulated rainfall quantiles in different month and the entire year. Note: the qeq plots were generated by plotting 1 to 99 quantiles of observed
rainfall (Obs Q) data against their corresponding quantiles in simulated rainfall series (Sim Q). The red dotted lines represent the locations where the corresponding quantiles are
equal.
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