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a b s t r a c t

Obtaining high quality data collected on wastewater treatment plants is gaining increasing attention in
the wastewater engineering literature. Typical studies focus on recognition of faulty data with a given set
of installed sensors on a wastewater treatment plant. Little attention is however given to how one can
install sensors in such a way that fault detection and identification can be improved. In this work, we
develop a method to obtain Pareto optimal sensor layouts in terms of cost, observability, and redundancy.
Most importantly, the resulting method allows reducing the large set of possibilities to a minimal set of
sensor layouts efficiently for any wastewater treatment plant on the basis of structural criteria only, with
limited sensor information, and without prior data collection. In addition, the developed optimization
scheme is fast. Practically important is that the number of sensors needed for both observability of all
flows and redundancy of all flow sensors is only one more compared to the number of sensors needed for
observability of all flows in the studied wastewater treatment plant configurations.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Asset management of urban water infrastructures is the set of
practices that utilities execute to ensure that infrastructure per-
formance corresponds to service targets over time, that risks are
adequatelymanaged, and that the corresponding costs are as lowas
possible. Water asset management cannot be understood without
proper data collection, either from routine off-line measurements
or online data gathered from sensors and actuators. Modern small
wastewater treatment plants (WWTPs) generate up to 500 signals,
whereas larger ones typically register over 30,000 (Olsson et al.,
2014). Despite the data-rich nature of modern WWTPs, limited
useful information is typically generated, often due to improper
sensor placement, installation, and/or maintenance. As a result, the
resources e both in terms of time and capital e spent on installing
and maintaining on-line sensors, and on collecting and storing on-
line data in databases, are to a large extent lost since the collected
data is not transformed into actionable knowledge for system
optimization. Despite the historical recognition of the need for high
quality data (Rieger et al., 2010), sub-optimal operation of a WWTP
is still the norm rather than the exception. This situation is
unacceptable given the need for an efficient, resilient, and sus-
tainable use of available resources.

The focus of this paper is on sensor placement as a way to
improve fault detection performance. This has been studied for
safety-critical systems such as drinking water supply systems (Hart
andMurray, 2010), but is not addressed forWWTPs. The placement
of sensors on a WWTP typically responds to arbitrary choices,
regulatory needs, or controller performance (Rehman et al., 2015).
Furthermore, practically all studies focussing on data quality and
fault detection in WWTPs consider the available sensor signals a
given (e.g., Corominas et al., 2011; Maere et al., 2012; Puig et al.,
2008; Ros�en and Lennox, 2001; Spindler and Vanrolleghem,
2012; Spindler, 2014; Villez et al., 2012; Villez and Habermacher,
2016; Yoo et al., 2004, 2006a,b,c). However, sensor placement can
also be conducted wisely to increase redundancy and hence,
improve the overall reliability of the plant. Indeed, the placement of
sensors affects (i) the ability to reduce random errors, i.e. improve
noise reduction and estimation accuracy (What is the best esti-
mate?) and (ii) fault detection performance (Is there a fault?). Our
vision is therefore that prior optimal sensor placement can be
conducted to increase redundancy and hence, facilitate (posterior)
fault detection for WWTP measurements.

For the placement of flow sensors, methods based on structural
observability and redundancy criteria are applicable (Meyer et al.,
1994). Such methods only consider whether a particular variable
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can be estimated (structural observability) and whether a sensor
fault can be detected (structural redundancy). Structural criteria
allow evaluating a sensor layout without detailed sensor informa-
tion, such as failure rates or measurement uncertainty. We there-
fore adopt this approach and evaluate to which extent these
structural criteria alone permit sensor layout optimization in
typical WWTPs.

The proposed method is inspired by earlier studies focused on
drinking water supply systems (Hart and Murray, 2010) and com-
plex plants (Meyer et al., 1994). As in earlier works we make use of
graph-based methods for evaluation of observability and redun-
dancy criteria (Kretsovalis and Mah, 1987, 1988a,b; Ponzoni et al.,
1999, 2004). In contrast to earlier sensor placement studies, the
sensor placement problem (i) is posed as a multi-objective opti-
mization problem, (ii) is solved to guaranteed global optimality, and
(iii) leads to an enumeration of all Pareto-optimal sensor layouts. In
addition, cost, observability, and redundancy are optimized
simultaneously and optimal sensor layouts for typical WWTP
configurations are discussed for the first time.

2. Materials and methods

2.1. Studied systems

The three studiedWWTP configurations are shown in Fig. 1a/c/e
and are (i) a simple organics removing WWTP (Tchobanoglous
et al., 2003) (WWTP1), (ii) a WWTP for nitrogen removal
(WWTP2, the so-called modified Ludzack Ettinger, MLE) which is
also a popular benchmark WWTP (Gernaey et al., 2014), and (iii) a
WWTP for biological nitrogen and phosphorus removal, namely the
modified University of Cape Town (MUCT) system (Tchobanoglous
et al., 2003) (WWTP3). In all cases, each flow is considered a
feasible candidate for sensor placement.
Fig. 1. Schemes and graph representations of the studied plant layouts. WWTP1: (a) schem
graph.
2.2. Sensor placement as a multi-objective optimization problem

2.2.1. Problem description
The sensor placement problem consists of finding sensor layouts

which are optimal in terms of cost, observability, and redundancy. A
variable is structurally observable when (i) a measurement of this
variable is available or (ii) a unique value for the variable can be
computed by means of a set of balance equations and other mea-
surements. A sensor is considered structurally redundant if the
measured variable remains observable when the considered sensor
is removed. For optimization purposes, a sensor layout is described
by means of binary decision variables, xj, which represent the
absence (0) or presence (1) of a sensor for flow j. Given values for all
flows, x, one can compute which variables are observable and
which of the placed sensors are redundant. Practically, yj indicates
whether flow j is observable (1) or not (0). Similarly, zj indicates
whether flow j is equipped with a redundant sensor (1) or not (0).
The set of feasible sensor layouts consists of all considered vectors x
and is further referred to as the root set. All symbols used in what
follows are given in Table 1.

For the purpose of optimization, the cost, observability, and
redundancy objectives are:

fCðxÞ ¼
X
j

wx;j$xj ¼ wT
x $x (1)

fOðxÞ ¼
X
j

wy;j �
X
j

wy;j$yj ¼ wT
y$ð1� yÞ (2)

fRðxÞ ¼
X
j

wz;j �
X
j

wz;j$zj ¼ wT
z $ð1� zÞ (3)
e, (b) graph. WWTP2 (MLE): (c) scheme, (d) graph. WWTP3 (MUCT): (e) scheme, (f)



Table 1
List of mathematical symbols.

Symbol Description

j Flow index
fCðxÞ Cost objective
fOðxÞ Observability objective
fRðxÞ Redundancy objective
nj Number of flows
woðjÞ, wo;j Weight for flow j
xðjÞ, xj Presence of a sensor for flow j
yðjÞ, yj Observability of flow j
zðjÞ, zj Presence of a redundant sensor in flow j
oX , oX Lower/upper bound over the set X
X Set of vectors x
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with wx;j, wy;j, and wz;j non-negative weights. The optimization
problem consists of finding vectors x which minimize fCðxÞ, fOðxÞ,
and fRðxÞ. Without loss of generality, all results are obtained with
the weights set equal to one:

cj2
�
1;2;…;nj

�
:
�
wxðjÞ ¼ 1∧wyðjÞ ¼ 1∧wzðjÞ ¼ 1

�
(4)

2.2.2. Nature of the problem
The optimization problem described above is an integer pro-

gram. Despite this complexity, the following rules are easily
verified:

ca;b : xa � xb0fCðxaÞ � fCðxbÞ (5)

ca;b : xa � xb0fOðxaÞ � fOðxbÞ (6)

ca;b : xa � xb0fRðxaÞ � fRðxbÞ (7)

Equations (5)e(7) are used below to prove the lower bounds.

2.3. Labeling observable variables and redundant sensors

To evaluate y and z, graph-based labeling procedures are used.
The graphs (Deo, 2004) for the studiedWWTPs are given in Fig. 1b/
d/f. Edges correspond to flows in theWWTP. Cycles and components
are critical concepts for our method. A cycle is defined here as a
non-empty combination of edges in a graph which enables to
connect a given node to itself by traversing one or more edges of
the graph in any direction and without repetition. A component or
connected component is a subgraph (Deo, 2004) withinwhich each
pair of nodes can be connected by traversing the edges of the graph.

Labeling is executed as follows. First, label all edges with mea-
surements as observable and remove them from the graph. In the
reduced graph, label the edges which are not on a cycle as
observable. Label all other edges as unobservable. For redundancy
labeling, identify all components of the reduced graph. For each of
the removed edges, evaluate whether the start and end node are in
different components and label the measurement as redundant
when so. All remaining measurements are non-redundant. For
proofs we refer to the existing literature (Stanley and Mah, 1981;
Kretsovalis and Mah, 1988a,b).

2.4. Optimization

Optimization is executed by multi-objective branch-and-bound
optimization in a breadth-first manner (Nemhauser and Wolsey,
1988; Ehrgott and Gandibleux, 2002). This is a deterministic algo-
rithm for nonlinear global optimization as explained in the
Supplementary Information (S.I.). The necessary bounds are given
in the next section. The specific Matlab-based software needed to
reproduce our results is published under the GPL v3 license and is
added in the S.I. All computations were executed with Matlab
R2014b (64-bit, win64) on a Lenovo ThinkPad X240 (Applied CPU:
1.40 GHz, Available RAM: 4.00 GB).
2.5. Bounds

At every branch-and-bound iteration, one evaluates the bounds
to the objectives for a set of sensor layouts, X . Each set consists of
layouts for which some, none, or all values xj are the same. For a
remaining set of flows, the value for xj can be 0 or 1. Consider two
extremal sensor layouts within the set. The first of these layouts,
xX , is the solution corresponding to placing sensors only in the
locations for which every sensor layout within the set includes a
sensor:

xX ðjÞ ¼
�
1 if cx2X : xðjÞ ¼ 1
0 otherwise

(8)

The second extremal sensor layout, xX , is obtained by placing a
sensor in every location for which at least one sensor layout in the
set includes a sensor:

xX ðjÞ ¼
�
1 if dx2X : xðjÞ ¼ 1
0 otherwise (9)
2.5.1. Upper bounds
In this study, upper bounds are obtained for the xX solution:

f C ¼ fC
�
xX

�
¼ wT

x$xX (10)

f O ¼ fO
�
xX

�
¼ wT

y$
�
1� yX

�
(11)

f R ¼ fR
�
xX

�
¼ wT

z $
�
1� zX

�
(12)

The values for yX and zX are determined with the provided
labeling procedures. These are valid upper bounds since the
computed objective values are simultaneously attained with a
single solution (xX ) in the considered set.
2.5.2. Lower bounds
The lower bounds are obtained as follows. The lowest value of

the cost within a set is obtained for the xX solution. Based on Eq.
(5) one obtains:

cx2X : xX � x0 fC ¼ fC

�
xX

�
� fCðxÞ (13)

The lowest value of the observability function within a set is
obtained for the xX solution. This follows from Eq. (6):

cx2X :

�
xX � x0yX � y0 fO ¼ fO

�
xX

�
� fOðxÞ

	
(14)

The lowest value of the redundancy objective within a set is
obtained for the xX solution. This follows from Eq. (7):



Table 2
WWTP1. Observability and redundancy labeling for example layouts. Note that
absence of a sensor (xj ¼ 0) logically implies the absence of a redundant sensor
(zj ¼ 0).

Flow Layout A Layout B Layout C Layout D

j x y z x y z x y z x y z

1 1 1 0 1 1 0 1 1 1 1 1 1
2 0 1 0 0 1 0 0 1 0 0 1 0
3 0 1 0 0 1 0 1 1 1 1 1 1
4 0 0 0 0 1 0 0 1 0 1 1 1
5 0 0 0 0 1 0 0 1 0 0 1 0
6 1 1 0 1 1 0 1 1 1 1 1 1
7 0 0 0 1 1 0 1 1 0 1 1 1
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cx2X :

�
xX � x0zX � z0 fR ¼ fR

�
xX

�
� fRðxÞ

	
(15)

3. Results

The basic methodological concepts are demonstrated first by
means of WWTP1. Afterwards, the results for WWTP2 andWWTP3
are discussed.

3.1. WWTP1

3.1.1. Sensor layout examples
Each of the seven flows in Fig. 1(a) is given as an edge in Fig.1(b).

The nodes a, b, c, and d correspond to physical locations. A fifth
node, e, is the environmental node which represents the system
boundary. This makes it a mathematically consistent graph, i.e.
there are no loose ends.

To demonstrate the labeling procedures, consider that F1 and F6
are measured (layout A). Flows F1 and F6 are then removed for
observability labeling (Fig. 2, top-left). Edges not lying on any cycle
correspond to observable flows (F2, F3). All other flows are on cy-
cles and thus unobservable (F4, F5, F7). The resulting graph consists
of a single component so that all sensors are non-redundant. The
situation changes when a flow sensor is added for the excess sludge
flow (F7, layout B). Now there are no cycles (Fig. 2, top-right).
Therefore, all flows are observable. Once more, a single-
component graph results and the sensors remain non-redundant.
Another sensor is now placed at the exit of the reactor (F3, layout
C). All flows remain observable (Fig. 2, bottom-left). Two graph
components result after removal of measured flows. The start and
end nodes of edges 1, 3, and 6 correspond to different components,
F1

F2 F3
F4

F5

F7

F6

a b c

d

e

F1

F2 F3
F4

F5

F7

F6

a b c

d

e

Layout A L

Layout C L

Fig. 2. WWTP1. Modified graphs for four sensor layouts. Removed edges are dashed and gre
none. Layout C: observable: all, redundant: F1, F3, F6. Layout D: observable: all, redundant
so F1, F3, and F6 are redundant. This is because these flow mea-
surements are tied through a balance equation. In contrast, edge 7
has start and end nodes on the same component of the graph.
Equivalently, no balance equation without unmeasured flows and
including the F7 measurement exists. Therefore, F7 is non-
redundant. Adding another sensor for the WWTP effluent (F4,
layout D) makes all sensors redundant (Fig. 2, bottom-right). These
results are summarized in Table 2.
3.1.2. Pareto-optimal sensor layouts
Deterministic optimization is now used to evaluate the Pareto

optimal sensor layouts. The complete set of feasible solutions
consists of 27 ¼ 128 solutions. Ten distinct Pareto-optimal combi-
nations for the objectives are shown in Fig. 3 with bubble sizes
reflecting the number of layouts for each combination. These
combinations and all individual solutions are listed in S.I. (Tables S1
and S2). Layouts A, B, and D discussed above are part of the Pareto
front. Layout C is not part of this Pareto front. A total of 70 layouts lie
on the Pareto front. Of these layouts, 37 layouts exhibit no
ayout B

ayout D

F1

F2 F3
F4

F5

F7

F6

a b c

d

e

F1

F2 F3
F4

F5

F7

F6

a b c

d

e

y. Layout A: observable: F2, F3, redundant: none. Layout B: observable: all, redundant:
: all installed sensors.



Fig. 3. WWTP1. Visualization of the Pareto front. The size of the bubbles reflects the number of layouts in each point on the Pareto front. The ideal solution is indicated with dashed
lines. Black: trivial sensor layout without any sensor. Blue: 23 layouts, observable: all, redundant: none. Green: five layouts, observable: some, redundant: some. Orange: five sensor
layouts, cost: minimal, observable: all, redundant: all. Red: 33 layouts, observable: all, redundant: all. White: 13 layouts, observable: some, redundant: none. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article).
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redundant sensors (layouts 1e37), 38 layouts render all variables
observable and all sensors redundant (layouts 43e70), and five
layouts exhibit some redundant sensors while not all variables are
observable (layouts 38e42). Note that these 5 layouts cannot be
obtained through conventional optimization methods since these
methods (e.g., Ali and Narasimhan, 1998) add sensors first until all
variables are observable and proceed to increase the number of
redundant sensors only after this is achieved. The Pareto front
contains the layout without any sensors as a trivial solution (layout
1) and 23 layouts with three non-redundant sensors making all
variables observable (layout 14e37). Four sensors are sufficient to
make all variables observable and all sensors redundant. Five such
layouts exist (layout 43e47).
Table 3
WWTP2 (LME). Observability and redundancy labeling for example layouts. Note
that absence of a sensor (xj ¼ 0) logically implies the absence of a redundant sensor
(zj ¼ 0).

Flow Layout A Layout B Layout C Layout D

j x y z x y z x y z x y z

1 0 1 0 0 1 0 0 1 0 1 1 1
2 0 1 0 0 1 0 0 1 0 0 1 0
3 1 1 0 1 1 0 1 1 1 0 1 0
4 0 1 0 0 1 0 0 1 0 1 1 1
5 0 1 0 0 1 0 0 1 0 0 1 0
6 0 0 0 0 1 0 1 1 1 0 0 0
7 0 0 0 0 1 0 0 1 0 0 0 0
8 1 1 0 1 1 0 1 1 1 1 1 1
9 0 0 0 1 1 0 1 1 1 0 0 0
10 1 1 0 1 1 0 1 1 1 1 1 1
11 1 1 0 1 1 0 1 1 1 1 1 1
3.2. WWTP2 (MLE)

3.2.1. Sensor layout examples
Fig. 1(d) shows the graph representation of WWTP2. In Table 3,

the results for a few layouts on the Pareto front are displayed in
detail. Layout A is a layout with measurements for F3, F8, F10, and
F11. In this case, eight flows are observable and none of the sensors
is redundant. F6, F7, and F9 remain unobservable. Adding a sensor
for F9 makes all flow rates observable (layout B). None of the sen-
sors is redundant. Adding another sensor in F6 makes all placed
sensors redundant (layout C). Layout D is a layout where all sensors
are redundant but not all variables observable. Sensors are placed
in F1, F4, F8, F10, and F11. F6, F7, and F9 remain unobservable as is
the case for layout A.

A typical plant may already have sensors for the influent flow
(F1) and flows equipped with pumps (F8-11). This makes all flows
observable based on the labeling procedures discussed above. This
is typical and means that all flows are observable in most WWTPs.
In this case, at least two more sensors (seven sensors in total) are
necessary to make all sensors redundant if the already installed
sensors are kept in their positions. However, layout C has only six
sensors while all flows are observable and all sensors are redun-
dant. There are no minimal sensor layouts with all sensors redun-
dant which include sensors for F1 and F8-11 simultaneously. The
Pareto optimal set of sensor layouts thus depends on previously
installed sensors. This can be taken into account easily by setting
the corresponding cost weights (wx;j) to zero. This is however not
studied in detail.
3.2.2. Pareto-optimal sensor layouts
In the WWTP2 (MLE) case, there are eleven distinct flows for

which a sensor can be placed. This leads to a total of 211 ¼ 2048



Table 4
WWTP3 (MUCT). Observability and redundancy labeling for example layouts. Note
that absence of a sensor (xj ¼ 0) logically implies the absence of a redundant sensor
(zj ¼ 0).

Flow Layout A Layout B Layout C Layout D

j x y z x y z x y z x y z

1 0 0 0 0 1 0 0 1 0 1 1 1
2 0 0 0 0 1 0 0 1 0 0 1 0
3 0 0 0 0 1 0 0 1 0 0 1 0
4 0 0 0 1 1 0 1 1 1 1 1 1
5 0 0 0 0 1 0 0 1 0 0 1 0
6 0 0 0 0 1 0 0 1 0 0 1 0
7 0 0 0 0 1 0 1 1 1 0 0 0
8 0 1 0 0 1 0 0 1 0 0 0 0
9 1 1 0 1 1 0 1 1 1 0 0 0
10 1 1 0 1 1 0 1 1 1 1 1 1
11 1 1 0 1 1 0 1 1 1 1 1 1
12 1 1 0 1 1 0 1 1 1 1 1 1
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feasible sensor layouts. The resulting Pareto front consists of 609
layouts in 15 unique objective combinations (Fig. 4). All combina-
tions and solutions are given in the S.I. (Tables S3 and S4). Six
combinations represent the 383 solutions without any redundant
sensors (layout 1e383). Five sensors are sufficient to make all flow
rates observable. There exist 209 such layouts (layout 175e383).
With one to four sensors, one obtains at most one, three, six, and
eight observable flow rates (layouts 2e174). Placing six sensors is
sufficient to make all flow rates observable while also making all
sensors redundant. Interestingly, there exist only seven such lay-
outs (layout 402e408). Beyond six installed sensors, each addi-
tional sensor placement will increase the cost and the number of
redundant sensors with one unit (201 layouts, layout 409e609).
There are 18 sensor layouts for which not all flow rates are
observable while all installed sensors are redundant (layout
384e401). The number of observable variables is three, six, and
eight for three, four, and five installed sensors.
3.3. WWTP3 (MUCT)

3.3.1. Sensor layout examples
Fig. 1(f) shows the graph representation of WWTP3. Table 4 lists

four layouts on the Pareto front. The first (layout A) consists of four
sensors placed in the excess sludge flow and the recycle flows (F9-
12). Five flows are observable and there is no redundancy. Adding a
sensor for F4 (anoxic reactor outlet) makes all variables observable
(layout B). Adding another sensor for F7 (effluent) makes all sensors
redundant (layout C). Layout D involves a flow sensor in the
influent (F1), the anoxic reactor outlet (F4), and the recycle flows
(F10-12). Nine flow rates are observable and all sensors are
redundant. Note that adding a sensor for F4 might be unrealistic for
many plants as F4 typically exists between two tank zones
Fig. 4. WWTP2 (MLE). Visualization of the Pareto front. The size of the bubbles reflects the n
dashed lines. Black: trivial sensor layout without any sensor. Blue: 209 layouts, observable:
seven sensor layouts, cost: minimal, observable: all, redundant: all. Red: 201 layouts, obser
interpretation of the references to colour in this figure legend, the reader is referred to the
separated with a baffle. To account for this, one can set the corre-
sponding value for x to zero in the root solution set or one can set
the corresponding cost weight (wx;j) to infinity. The effect of such
changes is however not studied in detail.

3.3.2. Pareto-optimal sensor layouts
WWTP3 exhibits twelve distinct flows leading to 212 ¼ 4048

feasible layouts. The Pareto front in Fig. 5 contains 1154 of these.
Sixteen unique points exist on this front and are described in detail
in S.I. (Tables S5 and S6). Six of the points represent 577 solutions
without redundancy (layout 1e577). These include the trivial so-
lution without any sensors (layout 1) and 336 layouts with five
sensors which make all flows observable (layout 242e577). Adding
sensors delivers layouts with additional redundant sensors (layouts
umber of layouts in each point on the Pareto front. The ideal solution is indicated with
all, redundant: none. Green: 18 layouts, observable: some, redundant: some. Orange:
vable: all, redundant: all. White: 173 layouts, observable: some, redundant: none. (For
web version of this article).



Fig. 5. WWTP3 (MUCT). Visualization of the Pareto front. The size of the bubbles reflects the number of layouts in each point on the Pareto front. The ideal solution is indicated with
dashed lines. Black: trivial sensor layout without any sensor. Blue: 336 layouts, observable: all, redundant: none. Green: 31 layouts, observable: some, redundant: all. Orange: ten
sensor layouts, cost: minimal, observable: all, redundant: all. Red: 536 layouts, observable: all, redundant: all, White: 240 layouts, observable: some, redundant: none. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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609e1154). Interestingly, only ten layouts exist with six sensors for
which all variables are observable and all sensors are redundant.
The Pareto front also contains 31 layouts for which all sensors are
redundant while not all flow rates are observable (layout 578e608).

4. Discussion

In what follows, the main benefits of the applied optimization
method as demonstrated above are given, followed by more gen-
eral observations regarding the solved sensor placement problem
and a few considerations regarding future work.

4.1. Benefits of the optimization method

In this study, Pareto optimal flow sensor layouts are found by
means of a deterministic optimization scheme combined with
graph-based evaluation of structural observability and redundancy.
These are the most important benefits of this method:

� Using structural objectives for optimization means that sensor
layout optimization (i) can be executed for any plant as well as at
the design stage of a new plant, (ii) does not require information
regarding the performance of candidate sensors, and (iii) does
not require collecting measurements prior to optimization. This
is the most important benefit of the method.

� The provided Pareto front solutions are guaranteed to be glob-
ally optimal thanks to bounds on the objectives developed
specifically for this work. At the same time, the time needed to
compute the Pareto front was less than 20 min for all studied
cases. This indicates that automated screening of candidate
sensor layouts on the basis of structural criteria is possible with
conventionally available computational resources.
� All Pareto-optimal sensor layouts can be found by the proposed
method, including sensor layouts with redundant sensors that
do not make all flows observable. This is not guaranteed by
conventional sequential optimization of observability and
redundancy criteria. This of particular interest when only a few
flows should be estimated with high accuracy and reliability
while other flows are not of interest at all.
4.2. General observations

Based on the three case studies, the following observations can
be made:

� Although the number of Pareto-optimal layouts tends to be large
(e.g., 1154 for MUCT), the fraction of optimal layouts among all
feasible layouts is reduced considerably (28.2% and 29.7% for the
realistic MLE and MUCT plants). Most likely, the resulting Pareto
front is most valuable to assist the end-user with further
elucidation of sensor layout preferences.

� Increasing the complexity of aWWTP configuration, particularly
by increasing the number of flows, leads to a smaller fraction of
feasible sensor layouts lying on the Pareto front. This is thought
to be due to an increased presence of recycle flows.

� For theMLE andMUCT plants, installing five sensors is sufficient
to achieve observability for all flows without any redundant
sensors while installing six sensors is sufficient to achieve the
same observability with this time with all sensors redundant.
This shows that the additional investments to move from
complete observability to complete observability and redun-
dancy are small in many WWTPs.
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� All flows were considered feasible sensor locations. However,
some of the computed solutions require that a sensor is placed
at the inlet of a reactor tank or at the inlet of the settler, which is
not always feasible. Our method however allows accounting for
this by setting the corresponding weights (wx;j) to infinity or
by redefining the root set so it does not contain infeasible
sensor layouts prior to optimization. Similarly, already installed
sensors or legally required instruments can be included auto-
matically by redefining the root set so it contains only sensor
layouts which include these sensors. Importantly, the physical
configuration of a WWTP and existing sensor placements can
restrict the possibilities for sensor layout optimization. Plant
design and sensor layout optimization is thus best considered
simultaneously.
4.3. Outlook

The following enhancements are considered for future work:

� The inclusion of isolability criteria is considered valuable if
one aims not only to facilitate data reconciliation (What is
the best estimate?) and fault detection (Is there a fault?) but
also to automatically execute fault isolation (Which sensor
signal(s) cause the detection?), and (iv) improve diagnosis
performance (What is the root cause?). Unfortunately, there is
no algorithm yet for isolability labeling based on topological
graphs as used in this work. Note however that an alternative
approach based on a bipartite graph is available (Raghuraj
et al., 1999).

� The addition of practical criteria for observability (Waldraff
et al., 1998; Chmielewski et al., 2002) or redundancy (Ali and
Narasimhan, 1998) will enable further refinement of the Par-
eto front. This however requires that detailed information about
the candidate sensors is available.

5. Conclusions

In this study, a systematic search for optimal sensor layouts is
solved as a deterministic multi-objective optimization problem
involving cost, observability and redundancy objectives. The
general applicability of the developed method is demonstrated
by means of three popular wastewater treatment plant configura-
tions. Our results indicate that the additional investments to move
from complete observability to complete observability and redun-
dancy requires only one additional flow sensor in the studied
configurations. Finally and most importantly, the applied optimi-
zation method is fast and is applicable for any plant configuration
without prior data collection or specification of sensor
characteristics.
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