

Protocol applications Example 2: Results phase 1						
	_	Sub-group	Model output	Influential parameters sub-group		
	$\left(\right)$	P	S _{P0,1} , S _{P0,2} , S _{P0,3} , S _{P0,5}	κ _H , η _{FE} , K _{NO3} , μ _H , b _H , q _{PHA} , q _{PP} , μ _{PAO} , b _{PAO} , Y _H , f _{XI} , Y _{PAO} , i _{PXI} , i _{PXS} , i _{P,BM}		
	Ш	N	S _{NH4,1} , S _{NO3,1} , S _{NH4,2} , S _{NO3,2} , S _{NH4,3} , S _{NO3,3} , TN _{,5} , S _{NH4,5} , S _{NO3,5}	$\begin{array}{c} k_{H},K_{O},\mu_{H},\eta_{NO3,H},b_{H},K_{NH,H},\mu_{AUT},Y_{H},\\ f_{XI},F_{SA},f,i_{N,XI},i_{N,XS} \end{array}$		
	ш	COD	COD _{TOT,1} , COD _{TOT,2} , COD _{TOT,3} , COD _{SOL,3} , COD _{TOT,5}	$k_{H},\mu_{H},b_{H},K_{NH,H},\mu_{AUT},Y_{H},\beta,f$		
	\ IV /	MLSS	MLSS,1, MLSS,2, MLSS,3	k_{H},μ_{H},f_{XI}		
		good consistency with the relevant processes occurring in each plant section				
Calibration order:						
The av sub-gr sub-gr sub-gr	verage s oups ha oups we oup whi	sum of the as been es ere ranked ich presen	i of each sub-group (β_M) has been calculated. The order of the different calibration ablished by ranking the calibration sub-group with respect to β_M . The model output on the basis of the β_M values. The first calibration order has been assigned to the sthe highest β_M value.			
Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo						

Conclusions

- □ The proposed protocol has the advantage to perform the sensitivity analysis considering different plant sections, in this way it is possible to better interpret the connections between parameters/processes/outputs
- The proposed protocol has provided acceptable results for full scale and pilot scale modelling applications, using local and global sensitivity analysis
- In view of its high potentiality the protocol has been applied in river modelling (Mannina, 2011), further investigations have also been performed in the WWTP modelling field (other case studies; uncertainty analysis...). The protocol has provided acceptable results!