# Symbolic Jacobian of ODE: An overlooked tool to improve simulation speed and accuracy

Cyril Garneau and Peter A. Vanrolleghem

Stats and Control Meeting Québec 2017





### **Outline**

- Context
- The Jacobian
- The Symbolic Jacobian
- Test cases
- Results
- Discussion
- Conclusion

© Garneau and Vanrolleghem, 2016

# Context – Modelling Water Resource Recovery Facilities

 WRRF are traditionally modelled as a set of Ordinary Differential Equations (ODE) expressing mass-balance and reactions processes.

State variable  $\underbrace{M}_{dt} = \underbrace{M_{in} - M_{out}}_{\text{Input - outputs}} + \underbrace{R}_{\text{Reaction term}}$ 

- Inputs and outputs allow to describe the hydraulics through tank-in-series models.
- Reactions refer to physical (i.e. sedimentation), chemical (i.e. precipitation) or biological (i.e. biomass growth) processes.
  - In WRRF models: Activated Sludge Model (ASM).

© Garneau and Vanrolleghem, 2016

Context -**Modelling Water Resource Recovery Facilities** • A simple WRRF model: State variables (ASM0): Water **Biomass** Substrate Oxygen State variables (settler): Total suspended solids in each vertical layer  $-\frac{1-Y}{Y}$  $-\frac{1}{Y}$ 1  $\frac{\hat{\mu}S_8}{K_8+S_8}X_8$ -1 $bX_{B}$ 

### **Context - Solving WRRF models**

- Ordinary Differential Equations (ODE) describing WRRF model:
  - Large diversity of the dynamics of the state variables
    - Oxygen is consumed in minutes
    - · Biomass takes weeks to grow
  - The model is stiff and highly non-linear
  - Control strategies can involve discrete events (discontinuities).
- ODE solvers range from very simple to very complex:
  - Explicit Euler method
  - Runge-Kutta 4
  - Implicit Euler
  - Matlab ODE suite (ode45, ode23, ode15s, etc...)
  - Adams-Moulton / Adams-Bashford (CVODE)
  - Diagonally Implicit Runge-Kutta method (DIRK)
  - Etc...

© Garneau and Vanrolleghem, 2016

\_

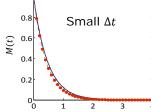
### **Context – Euler solver**

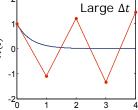
• The simplest ODE solver is the Euler method:  $\frac{dM}{dt} = \frac{dM}{dt} = \frac{dM}$ 

For 
$$\frac{dM}{dt} = f(M)$$
 and  $M(t_0) = M_0$ :

$$M_1 = M_0 + f(M_0) \times \Delta t$$

Small  $\Delta t$ 





• If f(M) is stiff and  $\Delta t$  is large, instability ruins the solution, unless we solve:

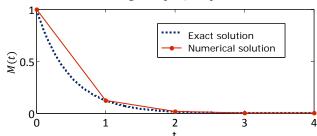
$$\begin{aligned} M_1 &= M_0 + f(M_1) \times \Delta t \\ 0 &= M_0 - M_1 + f(M_1) \times \Delta t \end{aligned}$$

© Garneau and Vanrolleghem, 2016

### **Context - Euler solver**

• The simplest ODE solver is the Euler method: For  $\frac{dM}{dt}=f(M)$  and  $M(t_0)=M_0$  :

$$M_1 = M_0 + f(M_0) \times \Delta t$$



• If f(M) is stiff and  $\Delta t$  is large, instability ruins the solution, unless we solve:

$$\begin{aligned} M_1 &= M_0 + f(M_1) \times \Delta t \\ 0 &= M_0 - M_1 + f(M_1) \times \Delta t \end{aligned}$$

© Garneau and Vanrolleghem, 2016

-

# **Context - Solving WRRF models**

· Since it is not possible to solve directly

$$0 = M_0 - M_1 + f(M_1) \times \Delta t$$

The Jacobian matrix

$$J(M) = \begin{bmatrix} \frac{\partial f_1}{\partial m_1} & \cdots & \frac{\partial f_1}{\partial m_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial m_1} & \cdots & \frac{\partial f_n}{\partial m_n} \end{bmatrix}$$

provides a linear approximation of the function

$$f(M_1) \cong f(M_0) + J(M_0) \times (M_1 - M_0)$$

© Garneau and Vanrolleghem, 2016

### The Jacobian

- · How to estimate the Jacobian?
  - Finite differences:  $f'(M)\cong \frac{f(M+\Delta M)-f(M)}{\Delta M}$ Requires n+1 model evaluations. Subject to round-off error.
  - Automatic Differentiation (AD): Numerical evaluation of the Jacobian through specialized libraries.
     Requires in-depth dependency of the model to additional code.
  - Matrix-free techniques (i.e. Krylov subspace): Efficient on very large models, but less stable and biased solution.
  - Symbolic derivation: Exact derivative expression computed before the execution of the model.

© Garneau and Vanrolleghem, 2016

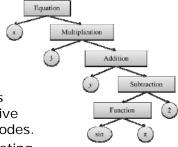
9

# Symbolic derivation of large set of equations

- WEST, the WRRF model simulator, generates various representations of a model:
  - · Object-oriented Modelica
  - Flat Modelica
  - Abstract Syntax Tree (AST)
  - Plain and compiled C-code

$$x = 3 * y + (\sin \pi - 2)$$

- The AST structure of an equation is easily derived with a simple recursive derivation function applied on all nodes.
- Chain derivation then allows generating an arbitrarily complex Jacobian



© Garneau and Vanrolleghem, 2016

# Symbolic derivation of large set of equations

- Non-analytical constructs must be derived as well.
  - IF-Test, Min, Max, Abs, etc. Example of IF-Test:

$$\frac{d}{du}(if(\textit{COND}) \ then \ A \ else \ B) = if(\textit{COND}) \ then \ \frac{dA}{du} \ \ else \ \frac{dB}{du}$$

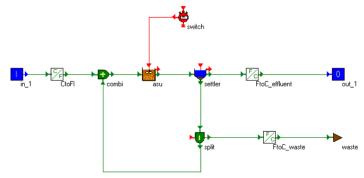
- Algorithmic constructs or external computations are managed through Finite Differences (\*\*work in progress\*\*).
  - Ex: PHREEQC = m chemical species and n chemical compounds. Solution computed through complex mathematical algorithms.

© Garneau and Vanrolleghem, 2016

1

# Test case no. 1 for symbolic derivation

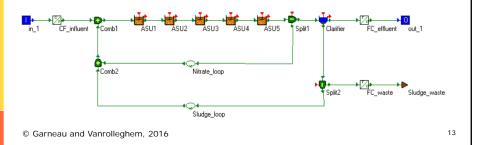
- ASM2d\_ASU: simplest layout of one activated sludge unit and one settler
- 30 state variables
  - Jacobian = 30 x 30 matrix = 900 partial derivatives
- 418 equations



© Garneau and Vanrolleghem, 2016

# Test case no. 2 for symbolic derivation

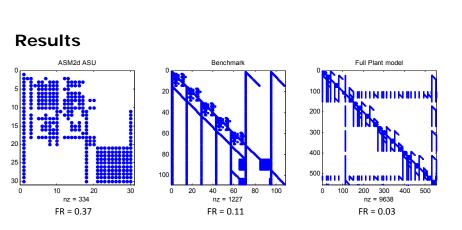
- Benchmark Simulation Model No. 1 (BSM1)
- Simple WRRF plant layout of 5 ASU and one settler used in many articles to test control strategies
- 108 state variables
  - Jacobian = 11664 partial derivatives
- 946 intermediate equations



# Test case No. 3 for symbolic derivation

- Full scale WRRF model
- 17 ASU and 2 settlers
- 554 state variables
  - Jacobian = 306 916 partial derivatives
- 5694 intermediate equations

© Garneau and Vanrolleghem, 2016



- Jacobians are sparse matrices -> Use sparse matrix tools!
- The Filling Ratio (FR, ratio of non-zero elements versus total number of elements) decreases as model complexity increases.
- The structure of the WRRF model is apparent (ASU, settlers, etc.)

© Garneau and Vanrolleghem, 2016

15

### **Results**

• Investment versus Reward: Comparison of Jacobian calculation: Symbolic derivation (SD) vs Finite difference (FD)

|                                                                               | ASM2d_ASU<br>30 state var | Benchmark<br>108 state var | Full plant<br>554 state var |
|-------------------------------------------------------------------------------|---------------------------|----------------------------|-----------------------------|
| Time to generate and compile the Symbolic Jacobian                            | 16 s                      | 98 s                       | 505 s*                      |
| Speedup of Jacobian calculation                                               | 12                        | 23                         | 28                          |
| Speedup of simulation<br>time<br>(Diagonally Implicit Runge-<br>Kutta method) | 1.5                       | 4.7                        | 40**                        |

<sup>\*</sup> Compilation was done without optimisation (insufficient memory)

© Garneau and Vanrolleghem, 2016

<sup>\*\* 80%</sup> of the speedup was attributable to sparse matrix operations.

### Discussion

- Developing a symbolic Jacobian provided a deep insight in the matrix structure
  - Sparse matrix tools were overlooked and provide an easy way to speedup simulations without affecting accuracy.
  - The structure of the WRRF model can be recovered from the Jacobian structure -> Automatic model analysis possible
- Improved numerical performance was demonstrated
  - Investing in a symbolic Jacobian pays back in 1 to 10 simulations
    - New virtual experiments may need 100s to 1000s of simulations (e.g. sensitivity analysis, Monte Carlo experiment, etc.)!
  - Round-off free Jacobian: New solution options for challenging ODE (i.e. chemical speciation models)

© Garneau and Vanrolleghem, 2016

13

#### Conclusion

- Symbolic manipulations allow faster, more stable and more precise computations than traditional finite differences.
- Large symbolic Jacobian computation is not trivial, but possible thanks to the available computer power.
- Non-differentiable functions and algorithms can still be evaluated numerically (finite differences), but their integration to a generic framework is challenging.
- Symbolic Jacobian offered optimal use of sparse matrix tools.
- A reliable and inexpensive Jacobian provides a useful approximation of a complex model.

© Garneau and Vanrolleghem, 2016