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Content of the seminar
 Three recent and ongoing developments on 

modeling and control in my research team
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Content of the seminar
 Three developments on modeling and control in 

my research team:
 Modeling and control of the 

integrated urban wastewater system
(sewer, treatment plant and receiving water body)

 Modeling and control of greenhouse gas emissions
and the impact of climate change on WWTPs

 Modeling and control of resource recovery in 
WRRFs (water resource recovery facilities)
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Introduction
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Introduction – Context
 CSO
 Major source of pollution of urban rivers
 Insufficient evaluation in practice

• Quantity (on occasion – rudimentary)
• Quality (rare)

 Real Time Control (RTC)
 Cost ?
 Effectiveness ?
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 instrumentation VS construction
 modelling…

Introduction – Challenges
 Many discharge points

 Challenging conditions
 Installation
 Cleaning
 Maintenance

8
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 Evaluate the global impact of an urban
wastewater system on the receiving water
Integrated model
Focus on particulate pollution

 Show the interest of developing water quality
based control strategies
Quantity- VS quality-based control
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Objectives

Methods – Case study Québec
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West 
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Methods – Case study Québec
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WWTP
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Retention tank-1
Saint-Sacrement
(Maruéjouls et al., 2014)

Retention tank-2

Retention
tank-3

WWTP

Methods – Québec case study

CA2

Reference : Maruéjouls, Lessard and Vanrolleghem (2014) –
Urban Water Journal

CA1

No retention
tank

CA4
CA3

SWMM model
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Methods – Integrated model
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Reference : Chebbo and Gromaire (2009) – Journal of Environmental Engineering

Methods – ViCAs

Vitesse de Chute en 
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Methods – ViCAs
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Particle Settling Velocity Distribution
(PSVD)

Reference : Chebbo and Gromaire (2009) – Journal of Environmental Engineering

Methods – PSVD
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Methods – Typical PSVD 
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inlet RT
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RT = retention tank
PC = primary clarifier
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Combined 
sewer

Receiving 
water

Filling control

Emptying 
control

Methods – CA and RT sub-system
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Methods – WWTP sub-system
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Methods – Model calibration 

 Flow at the inlet of the WWTP (only input: rain)

20

Time (d)
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Methods – Model calibration
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TS
S 

(m
g/

L)

 TSS at inlet of primary clarifiers

Time (d)

Methods – RTC comparison
 Wastewater discharges in receiving water 

without primary treatment
 Volume of water discharged
 Load of TSS discharged

 Retention tanks usage time

 Amount of alum added 

22
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Results
 Two rain events evaluated in detail
 Average intensity (20 mm in 24h)
 High intensity (58 mm in 19h)

 Reduction by WQ-based RTC of the WW discharges 
not receiving primary treatment

23

Rain intensity Volume TSS-load

Average -32% -40%

High -18% -25%

Results

 At the retention tanks

24

Pluie Volume max
moyen

Average 58% 35h

High 100% 43h

Rain intensity Max
volume

Usage 
time

Average 42% 32h

High 100% 36h
Quantity-

based 

Quality-
based
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Results
 At the WWTP inlet (flow rate – average rain)
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Results
 At the WWTP inlet (TSS load – average rain)

26
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Results
 Increase of alum consumption

27

Rain 
intensity

Injection
time

Amount of 
alum used

Average +43% +35%

High +41% +36%

Take home
 Advantages
 Reduction of discharges into receiving water

• Volume (+)
• Load (++)

 Biofilter clogging is expected to be reduced

 Disadvantages
 Higher retention tanks usage time
 Higher alum addition

28
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Acknowledgements – Integrated RTC

29

Climate change and 
wastewater management 

– a two‐way street

Peter VANROLLEGHEM

Canada Research Chair
in Water Quality Modelling
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Climate change
 Global warming… (3 scenarios)

32

Climate change (cont’d)
 … and precipitation (winter - summer)
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Potential effects of climate change
 Higher temperatures

=> Faster reaction rates
 More important algae growth
 Increased biodegradation activity
 Faster oxygen depletion

34
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35

Potential effects of climate change
 More intense rains – longer drought periods
 More important erosion, more run-off
 Higher flow rate in (combined & storm) sewers

• Resuspension and transport of sediments
• Increased number/volume of overflows

36
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Potential effects of climate change
 More intense rains
 More important erosion, more run-off
 Higher flow rate in (combined & storm) sewers

• Resuspension and transport of sediments
• Increased number/volume of overflows
• Overloads on treatment plants (wet weather operation)

 Higher flow rate in rivers
• Resuspension and transport of sediments
• Hydromorphology affected, « eco-hydraulics »

40

Potential effects of climate change
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41

Potential effects of climate change

42

Questions to be answered:
 How to manage infrastructures that have a 

lifetime of 30 years (wastewater treatment), 
or even 100 years (storm and combined sewers)?

 What characteristics of these infrastructures 
must we focus on and develop now in view of 
the changes (climate and others) we anticipate?

 What can we do?
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What can we do? Retention!

What can we do? Flexible retention!
 RTC = Real-time Control
 Improved combined sewer retention tank 

operation

44
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What can we do? RTC!
 Improved retention tank operation to 

minimize WWTP overload
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What can we do? RTC!
 Evaluation through integrated WQ simulation

46

WEST
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What can we do? RTC!
 Discharges for different operating scenarios
 Optimal emptying scenario depends on 

• Weather forecast
• Current treatment capacity

47

  Location 
of 

overflow 

Scenario 

  0 1 2 3 4 5 6 7 8 

Discharged 
Volume (m³) 

a 2430 2430 2430 0 0 0 0 0 0 

b 2038 2038 2038 1943 1943 1943 0 0 0 

c 8041 8041 4394 8997 8997 4777 9691 9691 5187 

Total 12509 12509 8862 10940 10940 6720 9691 9691 5187 

Discharged 
Solds 
(kg) 

a 259 259 259 0 0 0 0 0 0 

b 211 211 211 188 188 188 0 0 0 

c 441 136 68 478 147 71 500 154 76 

Total 911 606 538 666 335 259 500 154 76 
 

Climate change and 
wastewater management 

– a two‐way street (Part II)

Peter VANROLLEGHEM

Canada Research Chair
in Water Quality Modelling
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Wastewater utility GHG
 Greenhouse gases in wastewater systems:
 CO2 (Biodeg., energy, chemicals) 1 CO2eq

 CH4 (Anaerobic digestion) 34 CO2eq

 N2O (Nitrogen removal) 265 CO2eq

49

Wastewater utility GHG

50
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GHG in sewer systems
 CH4 formation

in rising mains

51Guisasola et al. (2009) Water Res. 43: 2874-2884

GHG in sewer systems
 CH4 formation in gravity sewers (with O2 transfer)

52
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What can we do? Add chemicals!
 Chemicals used for sulfide control 

(Brisbane: 6 M$/yr repair  1 M$/yr chemical addition)
also reduce methane formation

53Zhang et al. (2009) Water Res 43(17): 4123

methane production rates
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Acidified nitrite was added in the sewer intermittently 
at 100 mg N/L during Day 0–2 (for 33 hours)

What can we do? Add chemicals!
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Wastewater utility GHG

55

GHG emissions from WWTP

56

Scope 1
DIRECT

Scope 2
INDIRECT

Scope 3
INDIRECT

Biomass respiration
BOD oxidation

Credit nitrification
N2O (de)nitrification

Slude processing
Sludge disposal (agriculture)

Production of
purchased 
materials

Purchased 
electricity

Carbon addition

Net Power consumption
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Evaluation of GHG emissions
 Different approaches to estimate GHG emissions:
 Empirical factors:

• e.g. IPCC, 2006; LGO, 2008; NGER, 2008
 Simple comprehensive models:

• e.g. Cakir and Stenstrom, 2005; Monteith et al., 2005; 
Bridle et al., 2008; Foley et al., 2009

 Dynamic deterministic models:
• ASMG1 (Guo & Vanrolleghem, 2014) N2O
• ADM1 (Batstone et al., 2002)  CH4

57

+ complexity

BSM2G benchmarking platform

Corominas et al. (2012) 
Biotechnol. Bioeng., 109, 2854-2863

Evaluation of GHG emissions

58
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Evaluation of GHG emissions

59Corominas et al. (2012) 
Biotechnol. Bioeng., 109, 2854-2863

Breakdown of GHG emissions (kg CO2e·m-3) No control Yes control %
Bio-treatment GHG emissions 0.451 0.376 -17

Biomass respiration 0.179 0.178 -1
BOD oxidation 0.212 0.212 0
Credit nitrification -0.168 -0.167 -1
N2O emissions 0.228 0.152 -33

Sludge processing GHG emissions 0.231 0.231 0
Net power GHG emissions 0.000 -0.038 -

Power 0.311 0.272 -13
Credit power GHG emissions -0.311 -0.310 0

Embedded GHG emissions from chemical use 0.099 0.099 0
Sludge disposal and reuse GHG emissions 0.193 0.193 0

 Comparison of no control and 
yes control (DO control in aerobic reactors, DO = 2mg·L-1)

What can we do? Control!

60
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Benchmarking control strategies

61

EQI (kg pollution day-1) 
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New dimension: Greenhouse gases

$

Water quality

$

 Overall result of our studies so far:
 Compromise between:

 Effluent quality
 Treatment costs
 GHG emissions

Wastewater utility GHG

62
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GHG emissions from a WW utility
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Take home
 Climate change and wastewater management -

A two way street

64
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Take home

65

 Wastewater systems emit greenhouse gases

The revenge …
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Take home
 Climate change and wastewater management -

A two way street:
 Mitigation
 Adaptation

67

Take home
 Mitigation
 Reduce GHG emissions

• Sewer  chemical addition
• WWTP  improved operation, 

but compromise with effluent quality
 Adaptation
 Pursue flexibility in long-living WW systems

• Sewer  Retention tank operation – RTC
• WWTP Wet weather handling – RTC

68
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Acknowledgements for GHG work
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Canada Research Chair
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Resource Recovery 
from Wastewater and Sludge: 

Modelling and Control Challenges
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Outline
 Water resource recovery
 Modelling challenges
 Control challenges
 Take home

71

“Wurfs”
 Water resource recovery facility (WRRF)

72Verstraete & Vlaeminck (2011)
Int. J. Sust. Dev. World Ecol., 18, 253-264.
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Resource recovery processes
 Stripping (NH3, fatty acids)
 Air scrubbing (ammonium sulfate)
 Precipitation (struvite, Ca-phosphate)
 Filtering (paper fibers)
 Extraction (PHA)
 Ion exchange (NH4

+)
 Reverse osmosis (H2O, N-K concentrates)
 Phase separation (butanol)
 Pyrolysis, gasification, incineration (energy)
 Chemically enhanced primary treatment (COD)

73

All 
physico-
chemical 

unit 
processes

Outline
 Water resource recovery
 Modelling challenges
 Control challenges
 Take home

74
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Modelling 
physicochemical processes
 We’ve done it

simply: 
 Aeration: Kla (Csat-C)
 pH: f(pKa, TAN, Alk, …)
 Precipitation: MeOH/MeP
 Membrane:  J = TMP/μ.(Rm+Rf+Rc)

75

Modelling 
physicochemical processes
 We have to do it

differently:

Temperature:

76Fernandez-Arevalo T., Lizarralde I., Grau P., Ayesa E. 
Water Res., 60, 141-155 (2014) 
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Modelling 
physicochemical processes
 We have to do it differently:

Gas exchange:

77

bubbleswater
head-
space

Fernandez-Arevalo T., Lizarralde I., Grau P., Ayesa E. 
Water Res., 60, 141-155 (2014) 

Modelling 
physicochemical processes
 We have to do it differently:

Precipitation:

78
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Modelling 
physicochemical processes
 We have to do it differently:

Precipitation:

79

Solid surface interface
ions migrate to 
surface 
and integrate

solid-phase grows
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Modelling 
physicochemical processes
 We have to do it differently:

Precipitation:

It gets a 
little crowded

in wastewater

80

Mg2+ HCO3-

Na+

Ca2+

Mg2+

SO4
2-

Cl-

K+

Na+

CO3
2-

HPO4
2-

CaCO3 (aq)

CaHCO3
+

MgHCO3
+, CaHPO4 (aq)

CaSO4 (aq)

CaOH+

MgSO4 (aq)

NaHPO4
-

NaCO3
-NaHCO3 (aq)

MgH2PO4
+ CaAc+

NaAc (aq)

NaSO4
-



41

Model-based optimization
of resource recovery trains in WRRFs

8181Céline Vaneeckhaute (2015) 
PhD thesis, Université Laval

Outline
 Water resource recovery
 Modelling challenges
 Control challenges
 Take home

82
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Successful control in WWTP
Fe dosage control
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Control challenges
 Paradigm shift:

85

Safety
margin

Effluent limit Effluent limitControl

Control challenges
 Paradigm shift:

86

Upper quality  limitWRRF
Control

Lower quality  limit

Effluent limit



44

Control challenges
 Much stricter product specifications!

87

Control challenges
 No more forgiving client

88
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Control challenges
 No selection of raw materials

89

Outline
 Water resource recovery
 Modelling challenges
 Control challenges
 Take home

90
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Take home messages
 WWTPs WRRFs !
 Physico-chemical processes !
 Modelling challenges are non-trivial
 Resource recovery products

must compete with existing products
 Product specifications are strict
 Control is much more strict (upper & lower limit)

(no more forgiveness!)

91

Acknowledgements on WRRFs
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 Three recent and ongoing developments on 

modeling and control in my research team:
 Modeling and control of the 

integrated urban wastewater system
(sewer, treatment plant and receiving water body)

 Modeling and control of greenhouse gas emissions
and the impact of climate change on WWTPs

 Modeling and control of resource recovery in 
WRRFs (water resource recovery facilities)
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