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Abstract: Important advances have been made recently regarding several monitoring tasks and 

measurement applications within the global water system. However, besides the huge amount of 

real-time data being collected by such measurement set-ups, one of the most important steps 

forward have been made in the field of data quality evaluation. Challenging measurements 

conditions that characterise the monitored water environments make that data is frequently 

affected by different kinds of faults that degrade the quality of the data and compromise its use 

in further applications. Data validation becomes then critical to guarantee an efficient and reliable 

monitoring strategy. Nevertheless, the decision about when a value can be considered as “valid” 

or “not valid” is not straightforward and the assessment of the data validation approach itself 

should be evaluated, especially in a practical setting. In this paper, practical data validation 

developments from different teams are presented and evaluated using a common framework that 

allows an objective comparison of the methods and their usefulness for water quality time series 

validation. The proposed methodology will allow the unbiased comparison of data validation 

methods with the final objective of improving and applying suitable data validation tools for 

practice. 
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INTRODUCTION 

Well-operated continuous water quality measurement systems have the ability to capture dynamics 

in water and wastewater systems, which allows for the identification of critical events, the evaluation 

of discharge impacts on receiving water bodies and the identification of cause and effect relationships. 

For many activities water authorities and water utilities are increasing the number of continuous 

measurements at different locations within their water and wastewater systems. As a main challenge, 

water quality sensors are subjected to different kinds of faults, leading to bias, drift, precision 

degradation or total failure, all causing a deterioration of the reliability of measurements 

(Branisavljevic et al., 2010; Garcia et al., 2014). Common errors observed in the increasingly long 

raw data series include missing values, NaN values, outliers, measurement values out of range or 

being constant, and varying noise. 

To be able to effectively use the information that is in principle present in those continuous 

measurement data sets, the data should be accurate, verifiable, and properly validated. Given the size 

of the data sets produced nowadays in online water quality monitoring schemes, automated data 

validation is the only practicable option (Alferes et al., 2013). However, existing “standard” methods 

for data validation can only be implemented with difficulty in the water sector due to the properties 
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of the water quality measurements and the water environments they are subjected to. As a result, 

common practice still today is visual inspection and the application of manual procedures. 

In the framework of practical water quality monitoring applications different approaches for 

automatic data quality assessment developed by different teams are presented and compared. The 

approaches are each intended to detect doubtful and unreliable data by evaluating different features 

extracted from the data. However, the decision about when a value can be considered as “valid” or 

“not valid” is not simple. For complex time series, as in case of water quality parameters, an extra 

challenge is the risk of fault under-estimation and over-estimation. Several criteria such as variable 

characteristics, type of sensor, and sensor location should be considered. Expert knowledge about 

expected data variability and sources of faulty situations should be combined to set the methods’ 

parameters for each application.  

Given the differences in methodologies and objectives of the different approaches it is also not evident 

to objectively evaluate the performance of the data validation processes itself in a practical setting. 

Thus, in this paper a methodology will be presented to evaluate and compare the usefulness or 

appropriateness of each approach based on data validation performance indices that are calculated 

from actually collected water quality time series. The final objective of this collaborative effort among 

the different teams is to come up with better tools and improved approaches for implementing 

successful automatic data quality validation procedures. All this will be illustrated with extensive 

data sets collected at different locations in water systems, including sewers, wastewater treatment 

plants (WWTP) and receiving waters. 

COMPARISON OF DATA VALIDATION APPROACHES 

Different expert teams (from the research, utility and consultant side) have developed actual 

implementations that are currently being used in measurement systems with data quality validation 

schemes. In general, different fault types can be detected at different complexity levels with those 

algorithms where evaluated data features include, among others: (i) Measurements outside physically 

acceptable limits, (ii) constant value or regular oscillations, (iii) constant difference between 

consecutive points, (iv) abnormal residual standard deviation between an estimated and an observed 

value, (v) difference between sequential points outside an acceptable tolerance, (vi) autocorrelation 

outside an acceptable tolerance, (vii) abnormal slope values (rate of change between two data points), 

(viii) high percentage of outliers or non-valid data.

Table 1. Results of three data validation approaches applied to four water quality time series 

Accepted data values (%) 

Time series Method 1 Method 2 Method 3 

Ammonia-WWTP 82 61 44 

Flow-WWTP 86 95 94 

Conductivity-WWTP 88 94 42 

Level-Sewer 92 95 91 
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Table 1 summarizes some of the results of applying three different data validation approaches 

(detailed in the next subsection Data validation methods) to different water quality time series 

collected at a WWTP and a sewer location. Important differences concerning the percentage of 

accepted data were obtained for example for conductivity and ammonia time series. Such differences 

are due to different types and frequencies of faults, validations based on different criteria, no clear 

distinction between correct and faulty measurements, tuning of the methods and subjectivity in the 

interpretation and validation task. 

The development of successful on-line data quality validation schemes would benefit greatly from an 

unbiased comparison of different data validation methods, evaluating their performance in terms of 

identifying real sensor/process faults. Taking as basis the objective assessment procedure for process 

monitoring strategies within the benchmark simulation platform BSM1_LT (Corominas et al., 2010), 

a systematic procedure is proposed to compare data validation approaches on the basis of real data 

sets and therefore real sensor faults. Working with real rather than simulated sensor data is the real 

challenge of the work. Indeed, in the work of Corominas et al. (2010) a set of given (‘real’) sensor 

faults is simulated and the fault sequence given by a validation method can be assessed in a simulation 

benchmarking context. Here, the assessment is to be done on actual data for which the faults are not 

known. To replace the real fault sequence, expert evaluation of the time series itself, supported by the 

results of the applied data validation methods, is used to create a surrogate fault sequence to which 

the different validation methods can then be compared. 

 

For illustration, Figure 1 presents an example of the construction of the surrogate fault sequence for 

an online sensor. The output of each data validation method is called the estimated state of the sensor. 

For each data validation method a value of “1” represents normal behaviour and a value of “2” 

represents a fault. The final surrogate sensor status (last graph) is calculated after combining the 

results from each data validation method and the expert evaluation.  

 

Figure 1. Example of the creation of the surrogate fault sequence for an online sensor 

A global monitoring index is used for assessment of the data validation performance. Such index is 

calculated in such a way as to assign penalization points for inadequate performance of a data 

validation approach (providing an estimated fault status of the sensor) against the true (surrogate) 

fault status of the real sensor. Each data validation method is evaluated over the whole time series 
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giving as output the classification of every sample point to be faulty or not. Based on Corominas et 

al. (2010) the global index penalizes for:  

 

(1) The indication of a false acceptance:  to evaluate the speed at which the fault is detected, as 

shown in Figure 2a, the more time needed to detect a fault event the more penalization points 

are given to the data validation method. To calculate the penalty function for false acceptance 

𝑃FAC(𝑡) a timer is initialised and switched on at the beginning of a fault event and switched 

off when the fault event ends. 𝑃FAC(𝑡)  is then calculated as follows: 

 

𝑃FAC(𝑡) = 𝑃FAC,0 + (𝑃FAC,sat − 𝑃FAC,0). (1 − 𝑒
(

−𝑘(𝑡)

𝜏FAC
)
)                                                        (1) 

 

Where k(t) is the timer function, PFAC,sat a saturation value for the penalty function and τFAC 

the time at which the penalty function reaches its maximum value (to account for the urgency 

in the detection). 

 

(2) The intermittent detection of a fault: to evaluate the trustworthiness of the method, extra 

penalization points are given to indicate an intermittent detection of a fault within the duration 

of a longer fault. Based on equation (1) the time from the start of the fault is increased by 

kswitch whenever the alarm switches from correct detection to false acceptance: 

 

𝑃FAC(𝑡) = 𝑃FAC,0 + (𝑃FAC,sat − 𝑃FAC,0). (1 − 𝑒
(

−(𝑘(𝑡)+kswitch)

𝜏FAC
)
)                                                (2) 

 

(3) The indication of a false alarm. In this case (Figure 2b) a constant penalty value PFAL,0 is given 

and the penalty function for false alarm 𝑃FAL(𝑡) is calculated as 𝑃FAL(𝑡) = 𝑃FAL,0 
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Figure 2. Penalization examples within the global index. (a) False acceptance, (b) False alarm. 

As soon as the penalty functions are obtained, the penalty points are obtained by multiplying the 

difference 𝑑(𝑡) between the true state 𝑥(𝑡) and the estimated state �̂�(𝑡) with the penalty functions 

𝑃𝐹𝐴𝐶(𝑡) and  𝑃𝐹𝐴𝐿(𝑡) to obtain the accumulated penalties 𝐴𝐹𝐴𝐶  and 𝐴𝐹𝐴𝐿. The total penalization A is 

then obtained by adding such accumulated penalties as 𝐴 = 𝐴FAC + 𝐴FAL. 

 

With the objective of evaluating the reliability of each validation method, the maximum penalties for 

PFAC and PFAL (AFAC,max and AFAL,max respectively) are calculated by assuming 𝑑(𝑡) equal to 1 for all 

time instants. Then a measurement of the reliability R is calculated as: 
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𝑅 = (1 −
𝐴FAC+𝐴FAL

𝐴FAC,max+𝐴FAL,max
) ×100                                                                                          (3) 

 

According to equation (3) a perfect detection case will receive 100% reliability and a totally wrong 

detection 0% reliability. Reliability in detecting false alarms and false acceptance individually can 

also be calculated. Additionally, individual indices can be calculated to evaluate the number of 

detections of true faults, the number of not detected faults and the number of false detections. The 

global and individual monitoring indexes are then calculated for each evaluated method by using the 

surrogate true sensor state and the estimated state provided by the evaluated data validation method. 

 

Data validation methods 

Method 1. Based on univariate time series analysis for outlier handling and fault detection (Alferes 

et al., 2013).  Autoregressive models are used to forecast future expected time series data. Outliers 

are then identified by comparing the measured values with the forecast value with their dynamic 

prediction error interval. Once the outliers have been removed a smoothed time series is created and 

for fault detection purposes several statistical data features are calculated together with their 

acceptability limits. Figure 3 shows the results of applying the method to a conductivity time series 

collected at the inlet of the Eindhoven WWTP (the Netherlands). Blue and red lines represent the 

prediction interval within which normal data should fall and the green line represents the accepted 

smoothed data. Different kinds of faults are detected like a high percentage of outliers (period I), an 

excessive slope and residual standard deviation values (RSD) in period II and values with an abnormal 

constant value (period III). Once all data features have been assessed for each data point, data is 

validated according its degree of reliability (last subplot “Label”): 0 - valid (green colour, all data 

quality tests passed), 1 – doubtful (orange colour, some tests failed), and 2 – not valid (red colour). 

 

 

Figure 3. Application of a time series analysis method for data validation purposes 

Method 2. As part of Primodal Systems’ RSM30 PrecisionNow software,  a real-time step-wise 

analysis process (Copp et al., 2010) evaluates the existence of seven different fault types including: 
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(1) measurements outside acceptable limits, (2) difference between sequential points outside an

acceptable tolerance, (3) constant value or regular oscillations, (4) constant difference between points,

(5) standard deviation of the raw data below an acceptable tolerance, (6) residuals outside an

acceptable tolerance and (7) raw data outside the dry weather tolerance (if flow data is available).

Because of the real-time approach, the challenging part of the method is that it must detect not only

faulty data in real-time, but it also incorporates criteria to detect that new data that is no longer faulty

in real-time so that high quality data recording can resume after a period of time when faulty data has

been rejected. Figure 4 shows an example of the application of the method (last subplot: 0 – valid

data, 1 – invalid data) for a conductivity time series collected at the inlet of the Eindhoven WWTP.

In this case invalid data resulted mostly from constant values, abnormal difference between sequential

points and data outside acceptable standard deviation range.

Figure 4. Fault flags (method 2) for a conductivity time series 

Method 3. As part of the FEWS software (van Heeringen, 2015), the method evaluates different fault 

types providing quality flags to each single value accounting among others for missing data, values 

outside physical limits, values exceeding jumping limits and liveliness of the signal. Values can also 

be manually rejected. Figure 5 shows an example of the application of the method for time series of 

conductivity, temperature and dissolved oxygen. Validation results are shown with a color code at 

the bottom of each time series and different labels in the graph. In this case three periods where the 

sensor tubes were clogged were detected with measurements exceeding fixed jumping limits (Labeled 

ROR in the subplots) 

Figure 5. Quality flags (method 3) for conductivity, temperature and oxygen time series at the 

Dommel river 
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Method 4. The method (as part of internal preprocessing tools developed at CIRSEE) is focused on 

the evaluation of isolated peaks and low resolution data. A centered moving median is computed and 

then removed from the original signal at each time step. The absolute value of the residual is 

compared to the absolute value of the moving median at each corresponding time step. A coefficient 

is applied to the latter. If the residuals are higher than this value, they are considered as outlying i.e. 

having an isolated peak nature. To account for low resolution detection an indicator of the percentage 

of different values available among a sample of values is also calculated. This indicator is computed 

on a moving temporal window and then compared to a threshold. If the indicator is below the 

threshold, the value contained in the temporal window is considered as having low resolution. It is 

not necessarily to be removed, but there might be a sensor configuration problem. This also has the 

effect of removing the constant values after a certain amount of time steps. Figure 6 shows an example 

of the validation method (last subplot: 0 – valid data, 1 – invalid data) for a flow time series collected 

at the inlet of the Eindhoven WWTP. 

Figure 6. Validation output (method 4) for a flow time series 

Method 5. As part of the Aquadvanced Suez tool the solution encompasses three different methods: 

(1) dedicated analysis for detecting pulse points based on the gradient threshold; (2) outlier detection

based on the analysis of the absolute difference to the median absolute deviation (MAD) for a given

interval, a point being considered as an outlier if its current value is greater than the median of the

interval plus a certain fraction of the MAD; and (3) a dedicated method for detecting points indicating

a beginning of change in the trend of the time series by analysing the absolute values of gradients.

For all the methods, the threshold limits and coefficients are fixed by a learning process from

historical data. Figure 7 shows an example of the validation method (subplots: 0 – valid data, 1 –

invalid data) for the flow time series collected at the inlet of the Eindhoven WWTP. While the

dedicated method (1) detects abnormal points due to unusual gradient values (typical during the on-

off pumping dry weather strategy), the dedicated method 2 also detects outlier points associated to

wet weather conditions.

Figure 7. Validation outputs (method 5) for a flow time series 
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Ongoing work 

The comparison methodology is being applied to long time series considered relevant for the partners 

in their future applications and collected at different locations (ammonia, flow and conductivity 

collected at the inlet of a WWTP; level measurements in the sewer system, level, velocity, dissolved 

oxygen and conductivity in the receiving water body). The application of the methodology and some 

relevant results will be further discussed in the paper presentation. It is important to clarify that 

methods here evaluated are focused on univariate analysis. Methods considering cross validation 

through several signals will provide additional information about the nature of the fault and to discern 

between a change in the sensors’ properties or in the process variable itself. 
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