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Abstract. In recent years, there has been a growing awareness of the ill-de�nedness of environmental
processes. To provide a frame of reference for discussions regarding ill-de�ned systems, a taxonomy and
terminology of the modelling and simulation of systems will be presented. Due to the complexity of
ill-de�ned systems, it is not only necessary to describe the nature of models, but also to describe some
procedures according to which the modelling will proceed. This will enable the modeller to obtain the
model which best �ts his goals (optimal model). For meaningful description of models, di�erent model
formalisms will be presented. Furthermore, modelling procedures will be described at a generic level and
di�erent model formalisms will be presented. Throughout this presentation, Waste-Water Treatment
Plants and processes occurring within these plants will serve as illustrations of the de�nitions given.

Introduction

In recent years, mathematical models have gained importance in environmental studies. Environmental
processes, such as those occurring in Waste-Water Treatment Plants (WWTP's), are often referred to as
examples of ill-de�ned systems. Compared to the modelling of well-de�ned (e.g., electrical, mechanical)
systems, ill-de�ned systems modelling is more complex. In particular, the di�culty in choosing the
\right" model is very apparent.

In the sequel a rigorous approach to modelling of ill-de�ned systems is presented. Illustrations are
given for the case of WWTP's.

In order to develop a framework for the modelling of ill-de�ned systems, some de�nitions concerning
modelling and simulation enterprise are given. Thereafter, a modelling procedure which may guide
the modeller to �nd the \right" model, is presented. This modelling procedure consists of interactions
between information sources and activities. These information sources and activities will be discussed.
Models, the subset of the modelling enterprise, may be described in di�erent formalisms. A common
formalism classi�cation will be presented.

Modelling and Simulation Concepts

One of the most important de�nitions in modelling and simulation is the de�nition of a system. A system
is de�ned as a potential source of behaviour. It is observable when its behaviour can be transformed into
data (information). Knowledge about given systems can be acquired through experiments. An experi-
ment is de�ned as the process of causing (by known stimuli) and observing the behaviour of a system.
In other words, given the inputs, the system outputs will be observed. In order to perform experiments
on a system, its experimental frame has to be de�ned. The concept of experimental frame refers to a
limited set of circumstances under which a system is to be observed or subjected to experimentation.
As such, the experimental frame re
ects the objectives of the experimenter who performs experiments
on a system.

A way to organise collected knowledge about a system, given its experimental frame, is by means
of modelling and models. In a very broad sense, a model is anything which is capable of generating
behaviour resembling the behaviour of a system (given its experimental frame). In this paper only
parametric models will be discussed. A parametric model, is a model consisting of parameters, where
parameters are de�ned as constants or an experiment.

All systems may roughly be divided into two subclasses: well-de�ned systems and ill-de�ned systems.
However, there is a fundamental problem in classifying systems. All information of a system can only be
given by means of a model. Therefore, in order to classify, one has to de�ne the properties of a model
describing the system. Klir [1] solves this problem by de�ning epistemological levels at which the system
may be observed and Zeigler [5] postulates a Base Model, a hypothetical model capable of describing
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Figure 1: model formalisms in WWTP's

all possible behaviours of the system. Here, a well-de�ned system is a system of which it is possible to
build, within an experimental frame and given the current formalisms and techniques, a structurally and
behaviourally completely speci�ed and, within a certain accuracy, valid model1. An ill-de�ned system
can be de�ned as every system which is not a well-de�ned system.

The advantage of using a model to describe a system together with its experimental frame is that
models are easier to experiment with. Experiments performed upon models are called simulations. Using
simulations on a model instead of experiments on the system (and the experimental frame) it describes,
has the advantage of all inputs and outputs being accessible. Hence, inputs or outputs can be applied
to the model which lie outside the experimental frame of the system.

Despite the ease of use and general applicability of models and simulation, one has to be cautious in
using these to describe ill-de�ned systems. Being ill-de�ned implies that there will always exist a chance
that the behaviour (or structure) of the model describing the system will be di�erent from the system
itself, i.e., that the model will not be valid.

Model Formalisms

Before describing the process of model building �rst model formalisms [4] will be discussed. During the
whole process of model building model formalisms play an important role. In order to get an overview
of the existing model formalisms, they are often being classi�ed. However, the de�ned classes will never
contain all formalisms. A well known classi�cation is a classi�cation given by [5]:

� Di�erential Equation System Speci�cation (DESS): Assumes continuous independent variables.
The models are speci�ed in di�erential equations which express the rate of change in the state
variables.

� Discrete Time System Speci�cation (DTSS): Assumes discrete independent variables. The models
are speci�ed in di�erence equations which express the state transition from one time (and space)
instant to the next.

� Discrete Event System Speci�cation (DEVS): Assumes a constant time base (the only independent
variable) but the trajectories are piecewise constant, i.e., the dependent variables remain constant
for a variable period of time.

An example of the use of these three model formalisms in wastewater treatment is given in Figure 1.
At the highest level, a system of WWTP's and storm-water tanks (bu�er tanks) can be modelled using
the DEVS formalism. Taking events (rain events, toxic discharges) into account, one must schedule the
distribution of the wastewater loads between the WWTP and the tanks. In this case, a WWTP will be
modeled as a \black box" with a given time delay and a given capacity. However, the WWTP can be
seen as a system consisting of components such as aeration tanks and settling tanks. It may be modelled
using the DESS formalism (PDE's or ODE's), or the DTSS formalism. Thus, within one system di�erent
formalisms may be used to describe its components and interactions.

1The concepts, formalisms and valid, will be explained in a later stage.
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Figure 2: the process of model building

Another classi�cation exists of (i) deterministic, (ii) stochastic and (iii) probabilistic classes. Whereas
deterministic models originate from deductive modelling, probabilistic models originate from inductive
modelling. Stochastic models can be seen as a combination of both. They assume one or more deter-
ministic model attributes to have a statistical distribution.

The Process of Model Building

Roughly de�ned, the process of model building consists of constant interactions between information
sources and modelling activities. A schematic representation of the process of model building is given in
Figure 2.

From Figure 2 may be concluded that all activities have to be performed top down. However, a
previously performed activity can be repeated depending on the outcome of the current activity. During
the whole process of model building there exist constant interactions between activities and information
sources. To ensure an equal importance of each information source, the modeller must justify each
activity by using all information sources.

It has to be mentioned that since Figure 2 is a schematic representation (model) of a very complex
and sometimes intuitive process (ill-de�ned system), it must not be taken for granted. Its only use lies
in the rough guidelines it gives.

The next sections describe the informations sources and activities.

Information Sources

Three major information sources can be identi�ed:

� Goals and purposes

� A priori knowledge

� Experimental data

The goals and purposes of the model user will orient the modelling process. The goals will, for ex-
ample, determine the complexity of the model. The a priori knowledge available re
ects the knowledge
already gathered. This a priori knowledge often consists of (physical) \laws", such as the mass conser-
vation law. A priori knowledge not always has to be developed within the (scienti�c) �eld in which the
system to be described lies. Especially in environmental sciences, which is a rather new science, some
of the \laws" used have been developed in other sciences and subsequently been adopted to model envi-
ronmental systems. The experimental data are the observations of the systems behaviour. Experimental
data may be collected to guide the modelling process or to validate the developed model.
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Depending on the importance given to a priori knowledge and experimental data, two di�erent mod-
elling methodologies have been developed: deductive modelling and inductive modelling. Deductive
modelling assumes a priori knowledge as the most important information source. Starting from the a
priori knowledge, a deductive modeller will develop a model by using mathematical and logical deduc-
tions. Experimental data is only used to accept or reject the model or the hypotheses made during
the modelling process. Inductive modelling assumes the observed behaviour to be the most important
information source. Using the available data of a system, an inductive modeller will try to �nd a model
describing the data. Often a part of the available data will be used to accept or reject the model or the
hypotheses made during the modelling process.

Both deductive modelling and inductive modelling have a fundamental problem with the lack of a
priori knowledge and data, respectively. Therefore, pure forms of both modelling approaches will seldom
yield acceptable results in modelling ill-de�ned systems. This implies that a good mix between the two
approaches is needed.

A good mix may only be obtained by (i) letting both the a priori knowledge and the experimental data
in
uence the whole process of model building, and (ii) de�ne a model formalism which can be used during
both modelling approaches. A step towards a more general formalism is the concept of uncertainty [2].
Experience with the use of deductive modelling methodologies to model ill-de�ned systems has led to
the conclusion that the systems behaviour (experimental data) could never be duplicated by the model
output. Uncertainty was introduced as a measure for modelling errors such as errors in the model
structure or in the parameter values. This implies that uncertainty can also be seen as a measure of the
probability that a model output is a plausible system output. This probability is completely de�ned by
the probability density function (pdf) of the model output. In order to obtain the model output pdf one
must assume that the modelling errors in the model obtained by deductive modelling have an a priori
statistical distribution. This distribution may be obtained using inductive techniques.

Modelling Activities

As mentioned before, �ve main modelling activities exist. All these activities will shortly be discussed
below.

Experimental Frame De�nition

As a model describes a system together with its experimental frame, the experimental frame de�nition
must be the �rst modelling activity.

Referring to a limited set of circumstances under which a system is to be observed or subjected to
experimentation, the experimental frame re
ects the goals of the experimenter [5] (see Figure 3).

In its most basic form, an experimental frame consists of two sets of variables, the frame input
variables and the frame output variables, matching the systems inputs and outputs, and a set of frame
conditions, matching the conditions under which the systems behaviour is to be observed. On the input
variable side, a generator describes the inputs or stimuli applied to the system or model during an
experiment. On the output variable side, a transducer describes the transformations to be applied to
the system outputs for meaningful interpretation. The acceptor will complete the experimental frame.
It determines whether the system's output \�ts" the conditions given.

For WWTP's inputs and outputs may, for example, respectively be de�ned as the incoming and out-
going wastewater 
ow, their substrate concentration and their dissolved oxygen concentration. However,
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the biomass within the aeration basin or the reaeration constant of the basin (in current models de�ned
as a state variable and a parameter, respectively) may also be outputs. The conditions, which will be
checked by the acceptor, may for example be de�ned as aerobic conditions. For example, consider the
conditions being de�ned as aerobic and, during experimentation, it is measured that the oxygen concen-
tration is zero. The acceptor will now conclude that the conditions do not hold at that particular time
instant and the outputs measured in that time instant must not be taken into account during further
analysis. In the observation of the behaviour of WWTP's often no generators are used; the inputs are not
generated with known stimuli. An example in which transducers can be used is risk analysis. Here, the
observer is, for example, only interested in all dissolved oxygen concentration below a certain threshold.

Structure Characterisation

Structure characterisation addresses the question of �nding an adequate model structure.
Its aim is to reduce the class of models which are able to model the given system and experimental

frame. The output class of structure characterisation may consist of more than one model structures, in
which case each modelling activities (after structure characterisation) will be performed simultaneously
for all model structures. In [3] some guiding principles for structure characterisation are given:

� physicality: A model must bare close resemblance to reality.

� �t: The experimental data available should be explained by the model as well as possible.

� identi�ability: After structure characterisation, it must be possible to estimate the parameters.

� parsimony: The most simple explanation for phenomena must be found.

� balanced accuracy: The most useful model is often a balanced compromise of the previous princi-
ples.

Functions exist which, in order to reduce the class of models, will balance all or some of these principles.
Such functions may, for example, be information criteria such as the AIC and BIC criteria. These criteria
balance the �t and parsimony principles.

Furthermore, it has to be mentioned that structure characterisation issues cannot strictly be separated
from other modelling activities, such as parameter estimation and validation.

Parameter Estimation

Parameter estimation will provide parameter values (and values for initial conditions) for a chosen model
structure. Parameter estimation aims to reduce the class of parameters, using the �t principle de�ned
previously. It is based on the optimisation of some criterion de�ning the goodness-of-�t such as Least
Squares, Maximum Likelihood, etc.. Estimating parameters of ill-de�ned systems often results in a set
of parameter values which have an (almost) equal goodness-of-�t criterion. A measure for the quantity
of the set is parameter uncertainty. If the obtained set is very large one speaks of the parameters being
unidenti�able. The identi�ability may be theoretical or practical. Theoretical identi�ability gives an
answer whether, given the model structure, the parameters are identi�able, whereas practical identi�a-
bility gives an answer whether, given the available experimental data, the parameters are identi�able.
Practical identi�ability can be increased by increasing the information contained in experimental data
using optimal experimental design.

Simulation

As de�ned earlier, simulation is an experiment performed on a model. In most sciences simulation
consist of, given the inputs, determining the output trajectory of a model. However, it may also consist
of obtaining information about the model. For example, the number of state variables. Simulation
is performed by a simulator. A simulator consists of an internal representation and a solver. The
internal representation is a representation of the model which can be understood by the solver. The
solver \solves" the model, i.e., generates data. Both the internal representation and solver depend on
the model formalism [4]. Although these terms originate from computer science, they are generally
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applicable. For example, if one is able to solve a model analytically, the internal representation will be
the model itself and the solver will be the person who solves the model.

Simulation is often said to be optimal if it can be done within a certain accuracy and time instant.
Thus, within a given time instant, the simulator must provide output which resembles the \real" model
output within a given accuracy. Both the accuracy and time instant depend on the goals and purposes
of the modeller and user, the formalism and the current techniques.

Validation

Validation refers to the capability of the model to, up to a certain level and within a certain accuracy,
replicate the system. Three di�erent levels of model validity may be identi�ed [3]

� replicative: the model is able to reproduce the input/output behaviour of the system (given an
experimental frame).

� predictive: the model is able to be synchronised with the system into a state, from which unique
prediction of future behaviour (thus outside the experimental frame) is possible.

� structural: the model can be shown to uniquely represent the internal workings of the system.

With each ascending level, the validity of the model becomes stronger causing a growth in the need for
information and justi�cation. This implies that, with each ascending level validation becomes harder.

As de�ned previously a model describing an ill-de�ned system will never be valid. One may only
falsify the model. Therefore, from a practical point of view one should better use the term falsi�cation
when referring to the \validation" of ill-de�ned systems. A common error among scientists it that, when
they could not falsify the model at the replicative level, resulting in a high con�dence level, start to use
it at the predictive level. However, at predictive level the con�dence level may well be very low.

Conclusions

In recent years more and more di�erent scienti�c �elds have been involved in the modelling and simulation
of systems. Moreover, the complexity of ill-de�ned systems has made it necessary to describe a procedure
according to which the modelling will proceed.

By presenting both a taxonomy of modelling and simulation of systems and a modelling procedure,
the above has provided a frame of reference for further discussions and research.
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