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a b s t r a c t 

In Torfs et al. (2017) a new unified framework to model settling tanks in water resource re- 

covery facilities was proposed providing a set of partial differential equations (PDEs) mod- 

elling different settling unit processes in wastewater treatment such as primary and sec- 

ondary settling tanks (PSTs and SSTs). The extension to a multi-class framework to deal 

with the distributed properties of the settling particles leads to a system of non-linear 

hyperbolic-parabolic PDEs whose solutions may contain very sharp transitions. This ne- 

cessitates the use of a consistent and robust numerical method to obtain well-resolved 

and reliable approximations to the PDE solutions. The use of implicit–explicit Runge–Kutta 

(IMEX-RK) schemes, along with the weighted essentially non-oscillatory (WENO) shock- 

capturing technology for the discretization of the set of equations, is advocated in this 

work. The versatility of the proposed unified framework is demonstrated through a set 

of numerical examples for batch settling occurring in both PSTs and SSTs, along with the 

efficiency and reliability of the numerical scheme. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

1.1. Scope 

Several unit processes in water resource recovery facilities (WRRFs), formerly known as wastewater treatment plants

(WWTPs), rely on settling as a separation method. These include primary and secondary settling tanks but also other pro-

cesses such as sequencing batch reactors and grit chambers. According to the current state of the art, each of these unit

processes is modelled in its own way and several models (ranging from very simplified to more fundamentally supported)

are available for the various unit processes [1–5] . The reason for the choice of a particular model for each unit process
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lies in the variability of the settling suspensions (ranging, for example, from wastewater with approximately 0 . 1 g / l total

suspended solids in PSTs to activated sludge with approximately 3 g/l total suspended solids in SSTs). Depending on the

concentration of the suspension and its composition, different settling regimes occur. Settling can be either discrete (at low

concentrations where particles settle individually), hindered (in more concentrated suspensions where particles influence 

each other’s settling and drag each other along) or compressive (at high concentrations where particles form a concentrated

network and the stress developed by the network hampers further thickening), see [6] . 

Because the settling behaviour is so clearly influenced by the concentration of the suspension, settling models often

describe the settling velocity as a function of concentration alone. However, the solid components in settling suspensions

show a number of distributed properties that will also influence the settling behaviour. Examples of such distributed prop-

erties are size, shape, density or porosity. These distributed properties lead to a distributed settling velocity and changes

in the distribution of these properties (for example due to different operational or environmental conditions) will lead to

changes in the settling behaviour. Experimental evidence and examples of the effect of changes in size, shape and density

distributions on the different settling regimes can be found in [7] . 

The influence of these distributed properties cannot be captured by a model that only considers the local concentration

of the suspension. Advances in this domain have been made by Bachis et al. [1] who developed a model that considers

distributions in settling velocity to describe discrete settling in PSTs. This concept was further extended to encompass also

hindered and compression settling by Torfs et al. in [7] leading to a unified framework that is able to capture variability in

distributed properties and their effect on all three settling regimes and that can thus model different settling unit processes.

Implementation of this new framework requires appropriate numerics to ensure reliable and robust solutions. This is the

focus of the current work. 

1.2. Related work 

From the mathematical point of view, the extension to a multi-class scenario leads us to a system of non-linear

convection–diffusion equations of the type 

∂ X 

∂t 
+ 

∂ f ( X ) 

∂z 
= 

∂ 

∂z 

(
B ( X ) 

∂ X 

∂z 

)
, (1.1) 

where X = (X 1 , . . . , X N ) 
T is the sought solution depending on the spatial position z and time t , X i = X i (z, t) the mass con-

centration of class i , i = 1 , . . . , N, where N is the number of classes considered, f ( X ) = ( f 1 ( X ) , . . . , f N ( X )) T is a vector of

convective flux density functions modelling the settling of the sludge and B ( X ) is a given N × N matrix expressing the dif-

fusive correction, in this case, due to the solids compressibility. Other possible phenomena arising in continuously operated

units such as advection (bulk movement of the suspension) and dispersion, are not considered in this work. Such effects

will, however, not change the principal mathematical structure of (1.1) . This system has to be supplied with initial and

boundary conditions. 

It is well known that under the typical assumptions of sedimentation with compression, (1.1) is a strongly degenerate

parabolic system. Roughly speaking, and considering one single species at the moment, it is assumed that sediment com-

pressibility becomes effective only when the local concentration X exceeds a critical value X crit ; for the multi-class case the

corresponding criterion depends on the local composition of the mixture. In both cases, B ( X ) = 0 at least for concentra-

tion vectors X that are fairly close to 0 . Settling effects are then dominant, and B ( X ) = 0 means that (1.1) is a first-order,

non-linear hyperbolic system of conservation laws. Due to the non-linearity of f as a function of X in combination with

the degenerate behaviour, discontinuities or sharp gradients are expected to develop. This property calls for specific tech-

niques for the numerical simulations. High resolution shock-capturing finite difference weighted essentially non-oscillatory 

(WENO) schemes have been extensively used for the numerical treatment of hyperbolic one-dimensional multi-species flow

models in recent years, especially in the area of polydisperse sedimentation of suspensions [8–11] and multi-class vehicular

traffic [12–14] . These schemes combine an explicit time discretization [15,16] with a high-order procedure for the spatial

discretization of the convective term ∂f ( X )/ ∂z , involving the use of the characteristic information of the system [17] and the

WENO reconstruction technique [18–20] . Such sophisticated techniques ensure obtaining precise numerical approximations, 

accurately resolving the shocks arising and avoiding the spurious oscillations that otherwise often appear. 

Assume that �t and �z denote the time step and spatial meshwidth of the numerical scheme. When diffusion terms

become nonzero and the system (1.1) becomes parabolic, the stability condition for an explicit scheme defined in the hyper-

bolic case, namely essentially the proportionality �t ∼ �z , changes into a restrictive condition �t ∼ �z 2 that diminishes

the time step size dramatically. This property makes the use of explicit schemes really inefficient, at least for the time dis-

cretization of the diffusive part. As the implicit treatment of the convective term is complicated, because of the non-linear

convective terms that yield discontinuous derivatives used for its spatial discretization, implicit-explicit (IMEX) schemes 

[21] emerge as an interesting alternative in this context. These schemes combine an explicit treatment for the time dis-

cretization of the convective terms with an implicit treatment of that of the diffusive ones, with the result that the resulting

IMEX scheme enjoys the less restrictive stability condition �t ∼ �z for the whole equation. See also [22] for a discussion

of this point. 

The IMEX framework has been applied to extend high-resolution shock capturing schemes for hyperbolic systems to

hyperbolic-parabolic systems in several areas: polydisperse sedimentation of suspensions [23,24] , multi-class vehicular
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traffic [23,25] , sedimentation in porous media [26,27] among others and has been proven to be more efficient than explicit

schemes in most of them. 

Note that it is only the stiffness of the discretization of the diffusive part of (1.1) that motivates the use of IMEX schemes

in the present context. That said, we mention that this model can be understood as a special case of a more general equation

that also features algebraic reaction terms accounting for flocculation and related processes. 

Flocculation and break-up processes constitute an open modelling problem. An example of a flocculation source term that

has already been successfully implemented in a settler model can be found in [28] . More sophisticated expressions can be

derived from Population Balance Models (PBMs), see [29] . Typical literature on flocculation models, either simple approaches

as in [28] or more elaborate kernels in PBMs, assumes that the flocculation rate depends on the velocity gradient, which

is considered negligible in batch settling. Another option is to assume that flocculation/break-up occurs in a continuously

stirred tank reactor (CSTR) prior to the actual settling tank, as it is stated in [7] . Flow-dependent flocculation and break-

up processes within the CSTR give rise to a certain particle class distribution that can subsequently be fed as input to the

proposed 1D settler model, removing the need to add reaction terms to each PDE for the settler model. 

In other contexts, reaction terms could form another source of stiffness calling for an implicit in time treatment. However,

the explicit discretization of such algebraic (non-differential) terms only limits �t , so as �z → 0 the stiffness coming from

the discretization of the diffusive term becomes the most important to handle. 

Several authors have addressed the problem of applying IMEX-Runge Kutta schemes to conservation laws with stiff source

terms, see [30–33] and the references herein. In future work, these studies should be taken into consideration to preserve

the stability of the scheme and maintain oscillation-free results if we need to add additional source terms to our model. 

1.3. Outline of the paper 

In Section 2 , we derive the model equations for the multi-class concentration-driven model for the treatment of wastew-

ater first introduced in [7] , detailing the simplifications and definitions for the constitutive functions considered in this

work. In Section 3, we briefly review the numerical technique that we apply, paying attention to the spatial and temporal

discretizations. In Section 4, we show numerically that the results obtained by the multi-class concentration-driven model

proposed in [7] are consistent with those obtained by the reference model, the Bürger–Diehl model [2] (“BD model” hence-

forth). Within the multi-class model the settling behaviour does not only depend on the total initial concentration but also

on the settling velocity distributions and the initial concentrations of the classes. It could be seen that the proposed numer-

ical technique provides a robust and efficient tool to numerically solve this system of PDEs when applied to different unit

processes. Finally, in Section 5 we present some conclusions. 

2. Mathematical model 

2.1. Balance equations 

In [7] , a unified description for the settling processes taking place in both PSTs and SSTs was proposed as an extension

of the existing BD framework for SSTs [2] . Building on the idea that the distributed properties of the sludge can be captured

by dividing the total sludge concentration into a number of particle classes, based on settling velocity distributions in this

case, a system of conservation PDEs modelling the changes in concentration for all classes is introduced in [7] . This system

is of the form 

∂X i 

∂t 
= − ∂ 

∂z 
F i 

(
X, 

∂X 

∂z 
, X i , z, t 

)
+ 

Q f (t) X f ,i (t) 

A 

δ(z) + r i (Q f , X i , X, C chem 

) , i = 1 , . . . , N, (2.1)

where X i = X i (z, t) is the concentration of particle class i , depending on depth z, z ∈ [0, L ], with L the height of the vessel,

and time t, X is the total sludge concentration defined as the sum of the concentrations of all classes, X = X 1 + · · · + X N ,

F i is the flux density function for class i , the source term with the delta function δ( z ) models the incoming feed flow at

the feed inlet, with Q f the incoming feed flow rate, X f, i the concentration of class i in the feed flow, and A the constant

cross-sectional area of the settling tank. The reaction terms r i ( Q f , X i , X, C chem 

) describe flocculation/break-up processes that

depend mainly on the incoming flow rate Q f ( t ) but can also be influenced by the presence of chemicals represented by

C chem 

. 

An important novelty of the model presented in [7] is a distributed flux function that describes distributed settling

behaviour over the entire concentration interval (going from discrete settling at very dilute conditions to hindered and

compression settling at more concentrated states). 

We consider here a batch sedimentation case where the focus is on the settling flux and neither bulk flows, incoming

feed flow nor reactions between classes are considered. Eq. (2.1) can then be simplified and rewritten as follows: 

∂X i 

∂t 
= − ∂ 

∂z 
F i 

(
X, 

∂X 

∂z 
, X i , z, t 

)
, i = 1 , . . . , N, (2.2)
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Fig. 1. Settling velocities in function of concentration for different classes computed using both Vesilind hindered settling function [34] (left) and the 

function by Diehl [35] (right). 

 

 

 

 

 

 

 

 

 

 

 

 

where the flux functions F i are defined by 

F i 

(
X, 

∂X 

∂z 
, X i , z, t 

)
= 

(
v dhs ,i (X ) − d comp ,i (X ) 

X 

∂X 

∂z 

)
X i , i = 1 , . . . , N, 

where v dhs, i ( X ) is a settling velocity function and the function d comp, i ( X ) models the sediment’s compressibility. Their de-

tailed definition can be found in the next subsection. 

The boundary conditions at the top ( z = 0 ) and bottom ( z = L ) of the closed vessel are zero flux ( F i = 0 , i = 1 , . . . , N) and

at t = 0 the suspension is assumed to be homogeneous, in particular the total concentration X(z, 0) = X 0 for 0 < z < L .

Experiment 2 in Section 4 contains a modified boundary condition at the bottom to allow the flux of particles through it. 

2.2. Constitutive functions 

The following “discrete-hindered settling” velocity function that models both the distributed dynamics for discrete set- 

tling and the decreasing distributed behaviour during hindered settling, was proposed in [7] : 

v dhs ,i (X ) = 

{
v 0 ,i for X < X trans , 

v 0 ,i v (X − X trans ) for X ≥ X trans , 
i = 1 , . . . , N. (2.3) 

The parameter X trans ≥ 0 represents the transition concentration between discrete and hindered settling, v 0, i is the maxi-

mum discrete settling velocity of phase i and the dimensionless quantity v ( X ) is given by a hindered settling function, for

example by the expression 

v (X ) = e −r V X , r V > 0 (2.4) 

due to Vesilind [34] . At concentrations X < X trans , the settling behaviour in each class i is governed by its discrete settling

velocity v 0, i while when the concentration increases and exceeds X trans , the settling velocity decreases as the particles start

to hinder each other’s settling behaviour. Discrete settling is modelled by hindered settling functions satisfying v ′ (0) =
0 , with v (0) = 1 to impose continuity on the function v dhs, i ( X ). Alternatively this can be satisfied by a proper choice of

dependency on X , e.g. by the function by Diehl [35] , given by 

v (X ) = 

1 

1 + (X/ ̂  X ) q 
, 

where ˆ X and q are data-dependent positive parameters. This function allows a numerically advantageous smooth transition

between discrete and hindered settling. 

An example of settling velocities computed using both Vesilind’s and Diehl’s hindered settling functions can be seen in

Fig. 1 . 

The effect of sediment compressibility is traditionally modelled by a function d comp depending on the total concentration

that satisfies 

d comp (X ) 

{
= 0 for 0 ≤ X ≤ X crit , 

> 0 for X > X crit , 
(2.5) 
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Fig. 2. Long-time steady state profile of X vs. z depending on the value of the initial concentration X 0 considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where X crit is a constant critical concentration, at which the solid particles touch each other and start to form a porous

network [36,37] . The functional form of d comp, i , for i = 1 , . . . , N can be defined by 

d comp , i (X ) = v dhs , i (X ) 
ρX σ

′ 
e (X ) 

g(ρX − ρl ) 
, (2.6)

where ρX and ρ l are the solid and liquid mass densities respectively, g is the acceleration of gravity, and σ ′ 
e (X ) := d σe (X ) / d X

is the derivative of the so-called effective solid stress function σe = σe (X ) . This function is assumed to satisfy 

σ ′ 
e (X ) 

{
= 0 for 0 ≤ X ≤ X crit , 

> 0 for X > X crit , 
(2.7)

which ensures that d comp, i indeed has the property (2.5) for each i = 1 , . . . , N. We can rewrite (2.2) as 

∂X i 

∂t 
+ 

∂ 

∂z 

(
v dhs ,i (X ) X i 

)
= 

∂ 

∂z 

(
d comp ,i (X ) 

X 

X i 

∂X 

∂z 

)
, i = 1 , . . . , N, (2.8)

obtaining a system of convection–diffusion equations written in the same fashion as (1.1) with the flux density functions

given by 

f i ( X ) = v dhs ,i (X ) X i , i = 1 , . . . , N, (2.9)

and the diffusion matrix B ( X ) = (B i j ( X )) i, j=1 , ... ,N , where 

B i j ( X ) = 

d comp ,i (X ) 

X 

X i , i, j = 1 , . . . , N, (2.10)

with the functions v dhs, i ( X ) and d comp, i ( X ) defined by (2.3) and (2.6) , respectively. 

The steady-state solution of X can be obtained by summing all the equations in (2.8) , imposing the zero-flux boundary

condition and assuming that X(z crit ) = X crit for some z crit ∈ (0, L ). Then it follows that 

g(ρX − ρl ) 

ρX σ ′ 
e (X ) 

X = 

d X 

d z 
for z crit < z < L . 

If the derivative of the effective solids stress function is a constant σ ′ 
e (X ) = ˜ α > 0 , then, the solution of this differential

equation is X(z) = Ce Kz , where K = g(ρX − ρl ) / (ρX ̃  α) and C = X crit e 
−Kz crit . By imposing X 0 L = 

∫ L 
0 X(ψ)d ψ , we can determine

the constant C and hence the profiles of X vs. z , depending on the initial total concentration X 0 considered. In Fig. 2 those

profiles are represented, using the same values for the parameters g, ρl , ρX , ˜ α, L and X crit as in Experiment 1. Note that this

deduction gets complicated if the derivative of the effective solids stress function is not constant. In this case, one alternative

could be to find the formula for z vs. X and obtain X vs. z implicitly. 

2.3. Mathematical properties of the governing model 

As the functions v dhs, i ( X ) depend only on X , applying the secular equation analysis performed in [17] , we can establish

the hyperbolicity of the system when B ( X ) = 0 , and that the eigenvalues of the Jacobian matrix of the system interlace with
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Fig. 3. (Left) Critical manifolds M crit for r = X crit , 1 /X crit , 2 = 0 , 1 / 6 , 1 / 3 , . . . , 1 calculated from (2.13) . In each case, the region enclosed by M crit and the X 1 - 

and X 2 -axes corresponds to J ( X ) ≤ 0, that is, to d comp = 0 , hence only discrete or hindered settling are present. (Right) Same information. Also in this case 

the region enclosed by M crit and the coordinate axes corresponds to the hyperbolic region satisfying J ( X ) ≤ 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the velocities v dhs, i [17] . This property is a key tool for the application of high resolution shock-capturing WENO schemes

to numerically solve those systems. With respect to the diffusion matrix, when B ( X ) 	 = 0 , it is a rank-one matrix, with N − 1

zero eigenvalues and a non-zero eigenvalue 	i d comp, i X i / X > 0, for X > X crit . 

The specific concentration above which the sludge forms a compressible network has been shown to depend on the

composition of the suspension [7,36] . Therefore, in [7] it is proposed to account for polydispersity in the definition of

X crit as follows: assume that each particle class i is associated with an individual critical density X crit, i , which may rep-

resent, for instance, the critical concentration in case a monodisperse sample of this class was settling. Then if X crit :=
(X crit , 1 , . . . , X crit ,N ) 

T , the total critical concentration can be defined as the following convex combination of the critical con-

centrations of the classes: 

X crit ( X ) := 

⎧ ⎪ ⎨ 

⎪ ⎩ 

X crit ,k , with v 0 ,k = min 

j=1 , ... ,M 

v 0 , j if X = 0 , 

N ∑ 

i =1 

X i 

X 

X crit ,i = 

1 

X 

X 

T X crit if X > 0 . 
(2.11) 

It is worth mentioning that the corresponding value of X crit ( X ) when X = 0 is the individual critical concentration of the

slowest settling class, reflecting the fact that the slowest settling particles are those that still remain suspended when all

the other classes have already settled out. 

Of particular interest is the critical manifold 

M crit := { X ∈ R 

N : X 1 , . . . , X N ≥ 0 , X = X crit ( X ) } , 
with X = X 1 + · · · + X N , which separates the phase space into two disjoint regions where the PDE system is hyperbolic and

parabolic, respectively. By (2.11) we have X ∈ M crit if and only if J( X ) = 0 and X 	 = 0 , where 

J( X ) := X 

2 − X 

T X crit . (2.12) 

Clearly, J ( X ) < 0 for small | X | > 0, X ≥ 0 , and J ( X ) ≤ 0 and J ( X ) > 0 correspond to the regions where d comp ,i (X ) = 0 and

d comp, i ( X ) > 0, respectively. 

To illustrate that M crit separates a subregion of { X ∈ R 

N : X 1 , . . . , X N ≥ 0 } , that is close to the origin from another region

that is farther away, let e = (1 , . . . , 1) T , so that (2.12) can be written as J( X ) = X 

T e e T X − X 

T X crit . This is a quadratic form

with the Hessian matrix 2 ee T , which is positive semidefinite. Hence J is a convex function and the set K := { X ∈ R 

N : X ≥
0 , J( X ) ≤ 0 } is convex by standard arguments. (A set is said to be convex if for each X , Y ∈ K , each point Z on the line

segment a X + (1 − a ) Y , 0 < a < 1, belongs to K . In our case it is clear that for each Z := a X + (1 − a ) Y it is satisfied that Z

≥ 0 and J( Z ) = J(a X + (1 − a ) Y ) ≤ aJ( X ) + (1 − a ) J( Y ) ≤ 0 ; hence Z ∈ K . See [38] for more information.) 

To visualize this manifold, we consider N = 2 . From J( X ) = 0 , we have that 

Y 1 = −Y 2 + 

r 

2 

+ 

√ 

Y 2 (1 − r) + 

r 2 

4 

, (2.13) 

where Y i := X i /X crit , 2 , i = 1 , 2 and r := X crit, 1 / X crit, 2 . Consequently, the only relevant parameter is 0 ≤ r ≤ 1. Fig. 3 shows

the corresponding critical manifolds, that is, solutions of (2.13) . 



R. Bürger et al. / Applied Mathematical Modelling 49 (2017) 415–436 421 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Numerical method 

In order to apply IMEX schemes to numerically compute accurate approximations to the solution of this convection–

diffusion system of equations, first of all we define a semi-spatial discretization of the system setting a computational mesh

on the interval [0, L ] by defining the grid points z j := ( j − 1 
2 )�z for j = 1 , . . . , M with �z := L / M the uniform grid spacing,

�z = z j+1 − z j for j = 1 , . . . , M. 

3.1. Spatial discretization 

Following the spatial discretization proposed in [25] , we can discretize (2.8) in space as 

d X i, j (t) 

d t 
= − 1 

�z 
�− f i, j+1 / 2 + 

1 

�z 
�−g i, j+1 / 2 , i = 1 , . . . , N, j = 1 , . . . , M, 

where �−g l,k := g l,k − g l,k −1 . 

The first term on the right-hand side of the equation is the discretization of the convective term ∂ f i ( X )/ ∂ z in (2.8) , with

the flux density functions f i ( X ) given by (2.9) , and the second term is the discretization of the diffusive term ∂ / ∂ z ( B ( X ) ∂ X / ∂ z ),
with the diffusion matrix B ( X ) defined by (2.10) . 

For the discretization of the convective term we utilize a component-wise fifth-order WENO (WENO5) approximation

[8,13] . Component-wise finite difference WENO5 schemes compute the numerical fluxes f i, j+1 / 2 ≈ f i (z j+1 / 2 , t) at the mesh

mid-points z j+1 / 2 as follows: 

f i, j+1 / 2 = R 

+ ( f + 
i 
(X j−2 ) , . . . , f 

+ 
i 
(X j+2 ) , z j+1 / 2 

)
+ R 

−(
f −
i 
(X j−1 ) , . . . , f 

−
i 
(X j+3 ) , z j+1 / 2 

)
, (3.1)

where X denotes the total solids concentration, R 

± denotes the upwind-biased WENO5 reconstruction procedure and the

functions f ±
i 

(X ) define a global Lax–Friedrichs flux splitting for each i = 1 , . . . , N. For more detailed information on those

schemes, see [15,16,18–20] and the references therein. 

For the discretization of the diffusive part we define an approximate diffusive flux at z j+1 / 2 , that is 

g j+1 / 2 ≈ B ( X ) 
∂ X 

∂z 

∣∣∣
z= z j+1 / 2 

, g j+1 / 2 = (g 1 , j+1 / 2 , . . . , g N, j+1 / 2 ) 
T , 

as follows: 

g j+1 / 2 := 

1 

2�z 

(
B ( X j+1 ) + B ( X j ) 

)
�−X j+1 , j = 1 , . . . , M, 

where X j = (X 1 , j , . . . , X N, j ) 
T , j = 1 , . . . , M. This gives a second-order approximation for the diffusive term of the form 

1 

�z 
�−g j+ 1 2 

:= 

1 

2�z 2 
(( B ( X j+1 ) + B ( X j )) X j+1 −

(
B ( X j+1 ) + 2 B ( X j ) + B ( X j−1 ) 

)
X j 

+ 

(
B ( X j ) + B ( X j−1 ) 

)
X j−1 ) , j = 2 , . . . , M − 1 . 

For j = 1 and j = M this formula has to be modified to take into account the boundary conditions. The zero-flux boundary

conditions can be easily discretized by setting 

f i,k +1 / 2 − g i,k +1 / 2 = 0 , i = 1 , . . . , N, k = 0 , M, 

and we get 

d X 1 (t) 

d t 
= − 1 

�z 
f 3 / 2 + 

1 

2�z 2 

(
B ( X 2 ) + B ( X 1 ) 

)
( X 2 − X 1 ) , (3.2)

d X M 

(t) 

d t 
= 

1 

�z 
f M−1 / 2 −

1 

2�z 2 

(
B ( X M−1 ) + B ( X M 

) 
)
( X M 

− X M−1 ) , (3.3)

with f j = ( f 1 , j ( X ) , . . . , f N, j ( X )) T , j = 3 / 2 , M − 1 / 2 . 

The numerical implementation of the boundary conditions for Experiment 2 in Section 4 will be detailed later in

Section 4 . 

Let X ∈ R 

NM be defined by X 

T := ( X 

T 
1 , . . . , X 

T 
M 

) T . One can rewrite this semi-discretization in a matrix/vector form as 

d X 

d t 
= − 1 

�z 
(�− f )( X ) + 

1 

�z 2 
B ( X ) X , (3.4)

where �− f ( X ) means applying the operator �− to each function f i ( X ), i = 1 , . . . , N. The matrix B ( X ) is an ( NM ) × ( NM )

block tridiagonal matrix whose blocks B i j are N by N matrices generally given by 

B i,i ( X ) = 

1 

2�z 2 

(
B ( X i +1 ) + 2 B ( X i ) + B ( X i −1 ) 

)
, i = 2 , . . . , M − 1 , 

B i,i −1 ( X ) = B i −1 ,i ( X ) = − 1 

2�z 2 

(
B ( X i ) + B ( X i −1 ) 

)
, i = 2 , . . . , M, 

and B ( X ) and B ( X ) are properly defined taking into account the boundary condition discretizations (3.2) and (3.3) . 
1 , 1 M,M 
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3.2. Time discretization 

For the time discretization we use the linearly implicit IMEX-RK scheme (LI-IMEX-RK) proposed in [23] . Linearly implicit

methods were developed as an alternative to non-linearly implicit IMEX-RK schemes (NI-IMEX-RK). In NI-IMEX-RK schemes

the whole diffusive term B ( X ) X is treated implicitly requiring the resolution of at least one non-linear system of N by M

scalar equations per time step. To solve those systems it is necessary to use a sophisticated solver for non-linear equations

which can be really expensive in terms of computational time. 

In LI-IMEX-RK schemes, the appearance of non-linear systems is avoided by considering the term B ( X ) in the product

B ( X ) X as non-stiff while X is considered stiff. The semi-discrete formulation (3.4) can then be written as 

d X 

d t 
= − 1 

�z 
(�− f )( X 

∗) + 

1 

�z 2 
B ( X 

∗) X , 

where X 

∗ is treated explicitly as an argument of f and B while X is implicit in the diffusive part. The resulting linear

system has a block tridiagonal matrix and it is solved using an efficient solver for block tridiagonal matrices based on

Gaussian elimination. 

The simplest first-order LI-IMEX-RK scheme for (3.4) is the one-step scheme that can be written as follows (this scheme

will, however, not be used herein): 

X 

n +1 = X 

n − �t 

�z 
(�− f )( X 

n ) + 

�t 

�z 2 
B ( X 

n ) X 

n +1 . 

As it can be seen, the numerical solution can be obtained by solving a convection–diffusion equation with a linear diffusion

term in which the matrix function B is given. 

4. Numerical examples 

In this section we assume that the transition concentration between discrete and hindered settling X trans in (2.3) is set

to a constant value X trans = 1 kg / m 

3 , except in Experiment 1 where we set X trans = 0 kg / m 

3 in order to compare the results

obtained with those obtained from the BD model since it was designed only for the treatment of SST scenarios and does

not acknowledge changes between discrete and hindered settling. 

The function v ( X ) is defined by (2.4) with r V = 0 . 45 m 

3 / kg [34] . The solid and liquid densities are ρX = 1050 kg / m 

3 and

ρl = 998 kg / m 

3 [2] , respectively, and the acceleration of gravity is g = 9 . 81 m / s 2 . When we consider the critical concen-

tration defined by the function X crit ( X ) , we replace the derivative of the effective solids stress in (2.6) by the following

function: 

h ( X ) = h (X 1 , . . . , X N ) := 

{
0 for 0 ≤ X ≤ X crit ( X ) , 
˜ α for X > X crit ( X ) , 

(4.1) 

where ˜ α = 0 . 5 m 

2 / s 2 . 

With respect to the definition of effective solids stress, to the best of our knowledge, suitable definitions of σ e as a

function of X 1 , . . . , X N instead of X for polydisperse mixtures with strongly heterogeneous material properties have not been

proposed yet in the literature. Limited discussions of this issue are provided in [24,39,40] . It can, however, be anticipated

that an assumption σe = σe (X 1 , . . . , X N ) will lead to a new model with an algebraically more complicated diffusion matrix

B ( X ) that would make the global properties of the resulting model, such as parabolicity, challenging to analyze. 

For the simulations we assume that the particle classes are ordered such that 

0 < v 0 , 1 < v 0 , 2 < · · · < v 0 ,N , 

and we assume that if v 0, i < v 0, j , then X crit, i < X crit, j , following the idea that faster settling particles would provide a

denser packing before being subjected to the force of compression. This idea stems from the assumption that faster settling

particles have a floc structure that is more regularly shaped (more spherical) creating better packing properties. On the

other hand, flocs with a less regular shape (i.e., more spatially extended) will settle more slowly and show more resistance

to compaction. 

Specifically, the individual critical concentrations are proposed to be 

X crit ,i = X crit , 1 + (i − 1) 
X crit ,N − X crit , 1 

N − 1 

, i = 2 , . . . , N − 1 , 

where X crit, 1 is the critical concentration of the slowest class and hence the one with the smaller critical concentration,

and X crit, N is the critical concentration of the fastest class, which has the largest critical concentration. Note that when

X crit , 1 = X crit ,N , then X crit ,i = X crit , 1 for i = 2 , . . . , N − 1 . 

4.1. Experiment 1 

To test the consistency of the multi-class model we compare the results obtained with the multi-class model with just

one class present with the results obtained with the BD model. In Fig. 4 we show the results obtained by both models
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Fig. 4. Experiment 1: simulated concentrations [kg/m 

3 ] as function of normalised vessel depth. BD model and multi-class approximate solutions (top) and 

enlarged views (bottom) for times t = 5 min (left) and t = 15 min (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

using a mesh with M = 100 nodes. The critical concentration is set to X crit = 6 kg / m 

3 . It can be seen how the solids move

downwards in the hindered settling zone and accumulate at the bottom, creating a networked bed region that becomes

thicker over time. The results obtained by both models are very similar, even near discontinuities and the compression area,

where the LI-IMEX-RK scheme results present smoother transitions, as can be seen in Fig. 4 . 

To further test the consistency of the multi-class model we consider two suspensions: one with only a single class with

initial concentration X 0 settling with velocity v and another one with the same total initial concentration as the first suspen-

sion but divided evenly between five classes, each one settling with velocity v (thus creating five identical classes). In this

case the individual critical concentrations are X crit ,i = 12 kg / m 

3 for i = 1 , . . . , N. As expected the sum of the concentrations of

each class in the second suspension has the same settling behavior as the solids in the first suspension, as shown in Fig. 5 ,

proving the consistency of the multi-class model. 

4.2. Experiment 2 

In this experiment we apply the multi-class model to simulate discrete settling behaviour in a raw wastewater sample

(as one would find in a PST). A batch experiment known as ViCAs [41] can be used to investigate this type of settling

behaviour. A ViCAs experiment consists of a hanging column open at the bottom, where settled particles are captured as

they exit the column. The mass of settled particles recovered at the bottom as a function of time provides a measure of

the settling velocity distribution of the particles provided the total concentration is kept so low that only discrete settling

occurs. 

To simulate this experiment, we consider a homogeneous suspension with total initial concentration X 0 = 0 . 1 kg / m 

3 <

X trans = 1 kg / m 

3 in a column of height L = 1 m , where z = 0 represents the top of the column and z = 1 represents its
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Fig. 5. Experiment 1: comparison of the approximated solutions for the multi-class model between one and five classes satisfying X 1class = 

∑ 5 
i =1 X 5classes ,i . 

Table 1 

Initial concentrations X 0, i and maximal velocities v 0, i , in m/d and m/s, for Experiments 2 and 3. 

i Experiment 2 Experiment 3 

v 0 ,i (m / d) v 0 ,i (m / s) X 0 ,i ( kg / m 

3 ) v 0 ,i (m / d) v 0 ,i (m / s) 

1 0.5 5 . 78 × 10 −6 0.021 5 5 . 78 × 10 −5 

2 2 2 . 31 × 10 −5 0.003 20 2 . 31 × 10 −4 

3 7 8 . 10 × 10 −5 0.005 70 8 . 10 × 10 −4 

4 15 1 . 73 × 10 −4 0.01 150 1 . 73 × 10 −3 

5 30 3 . 47 × 10 −4 0.011 300 3 . 47 × 10 −3 

6 50 5 . 78 × 10 −4 0.01 500 5 . 78 × 10 −3 

7 80 9 . 25 × 10 −4 0.0125 800 9 . 25 × 10 −3 

8 130 1 . 50 × 10 −3 0.0085 1300 1 . 50 × 10 −2 

9 200 2 . 31 × 10 −3 0.007 20 0 0 2 . 31 × 10 −2 

10 450 5 . 20 × 10 −3 0.012 4500 5 . 20 × 10 −2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bottom. The suspension consists of 10 classes of particles with initial concentrations and velocities given by Table 1 . Since

X 0 < X trans and the solids are not accumulating at the bottom of the vessel, the total concentration will remain below the

parameter X trans in all the domain. 

As we have stated in Section 2 , for this experiment we need to modify the boundary conditions to allow the flux of

particles through the bottom of the vessel. As X < X trans < X crit in all the domain, hence the diffusion effects are neglected

and the diffusion matrix B ( X ) = 0 . In this specific scenario, we can rewrite the spatial discretization of (2.8) at the bottom

boundary as: 

d X M 

(t) 

d t 
= − 1 

�z 

(
f M+1 / 2 − f M−1 / 2 

)
, 

where f M+1 / 2 is computed using the WENO approximation defined in (3.1) : 

f i,M+1 / 2 = R 

+ ( f + 
i 
(X M−2 ) , . . . , f 

+ 
i 
(X M+2 ) , z M+1 / 2 

)
+ R 

−(
f −
i 
(X M−1 ) , . . . , f 

−
i 
(X M+3 ) , z M+1 / 2 

)
, i = 1 , . . . , N. 

To compute the needed concentrations outside the computational mesh we use the fact that, in the experiment, the

column is hanging in the same water as inside the column, so the initial concentration X 0 outside the column is the same

as inside it. During time evolution, we suppose that concentrations outside the computational mesh are the same as in the

last node inside the mesh. 

In this regime, where X < X trans , the model is linear, and no interaction between classes takes place, so the structure

forming between the bulk suspension at its initial composition and the supernatant clear liquid is a fan of 10 contact

discontinuities, one per class, propagating downwards at speeds v 1 , 0 < v 2 , 0 < . . . < v 10 , 0 , where the discontinuity traveling

at speed v k , 0 separates a region that is void of class k from a region in which class k is present at its initial concentration,

as can be seen in the concentration profiles displayed in Fig. 6 . 

In this figure we can see the concentration profiles for times t = 15 min , 1 h and 5 h and the fraction of mass recov-

ered from the vessel per class and per time step. As can be seen the different classes are removed sequentially from the
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Fig. 6. Experiment 2: concentration of each class (left) and the fraction of initial mass per class that has left the vessel (right) at times t = 15 min (top), 

t = 1 h (middle) and t = 5 h (bottom). 
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column depending on their initial velocities and no hindrance is in effect. For example, while the tenth class, the fastest, has

completely left the column after one minute, only about 15% of the total mass of the slowest class has been removed from

the vessel after five hours of settling. Hence, this fraction will likely not be removed in full-scale PSTs where the typical

residence time is approximately two hours. 

In Fig. 7 , the simulated fraction of mass that is recovered from the vessel per time step is shown. It can be seen that a

large proportion of the particles present at the beginning of the experiment is recovered early in the experiment (consisting

of the faster settling classes and some slower settling particles present initially at the bottom of the column). Slower settling

particle classes take much longer to reach the bottom of the column. 

4.3. Experiment 3 

In sharp contrast to the above ViCAs experiment, settling conditions in SSTs are such that all three settling regimes may

occur simultaneously at different depths. This challenges the numerical method as transitions between different settling

regimes may create sharp changes in the concentration and settling velocity profile. Therefore, in this third experiment, we

simulate batch settling of activated sludge. The settling suspension is again divided into 10 classes with maximal velocities

given by Table 1 . 

Experiment 3a 

In a first example, the total initial homogeneous concentration ( X 0 = 4 kg / m 

3 ) is equally distributed over the different

classes, X 0 ,i = 0 . 4 kg / m 

3 , i = 1 , . . . , 10 , and the same critical concentration is considered for each class X crit ,i = 12 kg / m 

3 , i =
1 , . . . , 10 . 

Figs. 8 and 9 show the concentration and velocity profiles for all classes throughout the settling column at different

settling times. Faster particle classes can be seen to accumulate at the bottom early in the experiment, reaching the com-

pression regime within t = 1 min . The discrete settling region is made up of only the slower settling classes since their

settling velocities causes them to remain in the upper region where low concentrations prevail. In the hindered settling

region particles of several classes are settling together which corresponds to the situation in which particles will be influ-

encing each other’s settling velocity. However, a slow segregation of particles of different classes can be observed causing

the total concentration profile to decrease in a staircase fashion. This segregation is more pronounced as the total concentra-

tion decreases and particles become less hindered in their movement by surrounding particles. Moreover, upconcentration

of specific classes can be observed at certain heights in the settling column. For example, at t = 1 min , the concentration

of class 7 between z = 0 . 2 m and z = 0 . 3 m is increased compared to the concentration of this class below z = 0 . 3 m . This

phenomenon was first observed experimentally by Smith [42] and is therefore sometimes called the “Smith effect” and is

consistent with Corollary 3 of [43] that states that “when the fastest-settling species disappear, the concentration of each

of the remaining species increases”, see [44] . As class 8 is no longer present above z = 0 . 3 m , the total concentration de-

creases causing the remaining classes to be less hindered resulting in higher local settling velocities and an increase in

concentration. 

The same behavior is also reflected in the velocity distributions in Fig. 9 , where it can be seen that velocities are constant

in the discrete area while they diminish and span a smaller range as particles start to hinder each other in the hindered
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Fig. 8. Experiment 3: temporal evolution of the concentration of each class using constant critical concentrations. The different settling regions are marked 

using black dashed lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

regime. Finally, the settling velocities drop considerably when compression starts. The changes between settling regions are

marked using dark dashed lines through all figures. 

Regarding Fig. 9 , it is worth mentioning that, if we normalise each class velocity by the unhindered velocity correspond-

ing to each class, then all the curves on each figure collapse together. This behaviour can be deduced from the definition of

the function v dhs, i ( X ) in (2.3) , which satisfies v dhs ,i (X ) / v 0 ,i = v dhs , j (X ) / v 0 , j , ∀ i, j = 1 , . . . , N. 

Experiment 3b 

If we redefine the individual critical concentrations to vary linearly on a range between X crit , 1 = 8 kg / m 

3 and X crit , 10 =
14 kg / m 

3 (based on observations made in [36] ), then some changes in the settling behavior of the system can be seen,

especially in the compression area. In Fig. 10 we show the concentration profiles for times t = 1 , 5 , 10 , 15 min . It can be

seen how the function X crit changes depending on the total concentration. In this case the compression region spans a

wider concentration region and the sludge blanket shows a more gradual build-up than when using constant individual

critical concentrations. Such more gradual build-up of the sludge blanket corresponds to experimental observations of De

Clercq et al. [45] . 

It is worth mentioning that at the top of the compression zone there is a region where X crit follows X . In Fig. 11 we can

see some enlarged views showing this behaviour. Here X crit is slightly less or equal to X , so this region corresponds to a

compression zone. Moreover, X follows X crit due to a constantly changing bed packing during the compression phase. 

Experiment 3c 

Although the uniform initial distribution of total concentrations over the different classes allows us to test the behaviour

of the model, it is not a distribution present in more realistic contexts. A normal or slightly skewed distribution would better

represent typical wastewater or activated sludge samples. Changes in the initial homogeneous concentration distribution

may produce different settling scenarios. We will therefore consider three different initial configurations with the same
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Fig. 9. Experiment 3: temporal evolution of the velocity distribution for each class using constant critical concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

total initial concentration as before, X 0 = 4 kg / m 

3 : a normally distributed initial concentration and a left- and a right-skewed

initial distributions, see Fig. 12 . The velocity and individual critical concentration for each class are considered as before. The

fact that the presented model is able to simulate differences in settling behaviour caused by changes in distribution and not

solely by changes in concentration is one of the main features of the new framework. The corresponding numerical method

should thus be able to adequately handle such changes in initial particle distribution. 

In Fig. 13 we can see the concentration profiles obtained for times t = 5 and 15 min when considering the different initial

concentrations. Left-skewed and right-skewed distributions lead to different behaviours. In the right-skewed distribution 

results, a stronger variation of X crit can be seen in the networked bed zone, including a region where X is close to X crit , as

it happened in Experiment 3b, due to the stronger layering present in the bed. Further research should evaluate whether

these findings can be generalized. On the other hand, in the left-skewed case we can see much less variation, as the classes

with the largest values of X crit, i are present in the sludge bed in just very small amounts. As expected, the compression

region develops faster when using a right-skewed initial concentration distribution as the faster classes have higher initial

concentrations, while in the left-skewed distribution the settling is much slower. As a consequence, significant differences

are observed in the predictions of sludge blanket height and bottom concentration. This is further illustrated in Fig. 14 where

the distribution of the particles through height and time is displayed for the left- and right-skewed distributions. Note that

the line interpolating the nodes has only been drawn to better visualize the distribution of the particles. It is interesting to

remark that since the “Smith effect” concerns slow settling particles in the hindered zone, it can be clearly appreciated in

the left-skewed distribution results while for the right-skewed distribution it can only be seen for early times. 

Experiment 3d 

To test the capabilities of the multi-class model for more extreme distributions, we consider a right-skewed distribution

for the concentrations with a peak in the first class, the one with the slowest particles, with a total initial concentration of

X = 4 kg / m 

3 . The initial velocities and individual critical concentrations are considered as in Experiment 3b. The definition
0 
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Fig. 10. Experiment 3: temporal evolution of the concentration of each class using linearly distributed critical concentrations. 
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of the concentration for each class can be seen in Fig. 15 together with the temporal evolution of the concentrations. As

is shown, we have a large amount of small particles moving really slow and thus remaining in the supernatant, while the

fastest classes settle really fast and form a compact bed long before the small particles had settled significantly. 

For a better visualization of the behaviour of the individual concentrations X i while settling, Fig. 16 show some enlarged

views for times t = 5 and 15 min. 

Experiment 3e 

As there are some important effects on Experiment 3d that can not be fully appreciated because of the large amount

of classes considered, we define here a bidisperse suspension composed by a slow class of particles ( v 0 , 1 = 20 m / d ) settling

along with a fastest class ( v 0 , 2 = 20 0 0 m / d ), both with initial concentration X 0 ,i = 1 kg / m 

3 , i = 1 , 2 . 

In Fig. 17 we can clearly appreciate that, at t = 1 min , the fastest class has moved to the bottom and formed a networked

bed while the small particles barely have started to settle. As they start to settle, they accumulate on top of the bed of

big particles, as can be seen for t = 15 min , and only relatively few small particles manage to enter the networked bed.

In Fig. 18 we have represented the velocities for both classes for time t = 5 min . As can be seen in the zoomed area the

velocity of the particles in the slowest class is nearly zero inside the compression zone, causing their accumulation on top

of the bed of large particles. 

5. Conclusions and discussion 

This article is part of an ongoing work to develop a consistent unified framework for the simulation of settling tanks in

water resource recovery facilities. 

We have shown the derivation of the model paying special attention to the application of polydispersity to the definition

of the critical concentration, giving an explicit representation of the critical manifold where a change of the character of the

PDE system occurs, illustrated when two classes are considered. We have described in detail the numerical scheme applied

to numerically solve the system of PDEs. Finally, in Section 4 we displayed a number of experiments that allow us to

conclude that the proposed numerical technique is a reliable and robust tool for numerically solving our model. The results

obtained with the multi-class model are comparable to those obtained by the state-of-the-art single class BD model and the

results for both PST and SST simulation experiments seem physically correct and compatible with the results obtained for

batch settling in laboratory experiments [1,7,46] . 

While the numerical results essentially reconfirm that the model exhibits the expected solution behaviour, let us com-

ment that the well-posedness and numerical analysis of strongly degenerate parabolic systems of PDEs such as (1.1) is a

topic of current mathematical research. 

While (2.11) is a starting assumption to define the relation between the critical concentration and the distributed particle

properties, there are some situations where alternative formulations may be necessary, for example a bidisperse mix of small

and large particles where small particles can reside in the interstices between large ones [47,48] . Other effects that are not

included are resistances to compression by repulsions between charged particles. 

Future work could consider alternative definitions of having larger X values at criticality in mixtures, compared to pure

systems of a single class only. One possibility would be, for a two-component system, to have X 2 
1 
/X 2 

crit , 1 
+ X 2 

2 
/X 2 

crit , 2 
= 1 . In

this case the critical curve is an ellipse, and the sum of X 1 and X 2 at criticality would be at least as big as min ( X crit, 1 , X crit, 2 ).
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Fig. 13. Experiment 3: temporal evolution of the concentration of each class from an initially left-skewed distribution of the concentrations (top), normal 

distribution (middle) and right-skewed distribution (bottom). 
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Fig. 14. Experiment 3: particle distribution through time and height for the left- (left) and right- (right) biased normally distributed concentrations. 
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Fig. 15. Experiment 3: temporal evolution of the concentration of each class using a right-skewed distribution for the initial concentrations except for a 

peak in the first class. 
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Fig. 16. Experiment 3: enlarged views of the concentration of each class for the distribution considered in Experiment 3d. 
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Fig. 17. Experiment 3: temporal evolution of the concentration of each class for the bidisperse suspension with slow and fast particle classes. 

 

 

 

 

For the definition of the functions v dhs, i ( X ) and v ( X ) in Eq. (2.3) , the most simple way to define a polydisperse model

consistent with Vesilind’s model [34] has been chosen. We are aware that there exist more complex models involving more

terms in the definition of those functions. An example is the MLB model, in which those functions are dependent not

only on the total density but on a combination of several terms including the individual densities, see [23,24,39] for more

information. 
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