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Abstract 

The choice of the spatial submodel of a WRRF model should be one of the primary 

concerns in WRRF modelling. However, currently used mechanistic models are too often 

limited by a too simplified representation of local conditions. This is illustrated by the 

general difficulties in calibrating the latest N2O models and the large variability in 

parameter values reported in the literature. The use of CM developed on the basis of 

accurate hydrodynamic studies using CFD can much better take into account local 

conditions and recirculation patterns in the AS tanks that are important with respect to the 

modelling objective. The conventional TIS configuration does not allow this. The aim of 

the present work is to compare the capabilities of two model layouts (CM and TIS) in 

defining a realistic domain of parameter values representing the same full-scale plant. A 

model performance evaluation method is proposed to identify the good operational domain 

of each parameter in the two layouts. Already at the steady state phase, the CM was found 

to provide better defined parameter ranges than TIS. Dynamic simulations further 

confirmed the CM capability to work in a more realistic parameter domain, avoiding 

unnecessary calibration to compensate for flaws in the spatial submodel.  
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INTRODUCTION 

N2O emissions are of great concern in WRRFs and modelling tools have been largely used to 

date in order to understand its production and define possible reduction strategies. The 

heterotrophic denitrification pathway model from Hiatt and Grady (2008) is currently the only 

generally accepted model. However, the pathways responsible for N2O production are 

different and contributing to different extents to the emission depending on wastewater 

characteristics, plant dynamics and environmental conditions (Ahn et al., 2010; Daelman et 

al., 2015). Especially in full-scale applications, modelling is a fundamental tool for 

understanding N2O production and emission dynamics. Mechanistic models have been 

applied to define general operational recommendations aimed at N2O reduction (Ni and Yuan, 

2015) but still case-specific recommendations are necessary and more in depth process 

understanding is needed for an effective minimization of emissions.  
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A number of kinetic N2O models describing very detailed biological processes have recently 

been developed (Mannina et al., 2016; Ni and Yuan, 2015; Pocquet et al., 2015). In particular, 

models describing both AOB pathways (i.e. AOB denitrification and incomplete NH2OH 

oxidation) have shown important advances in unfolding the contribution to N2O production of 

the different consortia in laboratory controlled conditions (Ni et al., 2014; Pocquet et al., 

2015; Spérandio et al., 2016). These mechanistic models are highly descriptive of the known 

biological processes responsible for N2O production and have been calibrated and validated in 

laboratory controlled conditions. However, despite the suggestion of Ni et al. (2013b) for 

using the dual pathway AOB models, Ni et al. (2013a) discouraged this implementation due 

to the risk of over-parametrization of the model and the possible creation of strong parameter 

correlations. In addition to this, the application of both dual pathway and single pathway 

models in full-scale is still troublesome due to recognized difficulties in identifying proper 

parameter sets (Ni et al., 2013b; Spérandio et al., 2016). In particular, Spérandio et al. (2016) 

observed high variability of different parameters, among the different case studies and the 

different models applied, with related high influence on N2O and NO emission results. In one 

case, the ƞAOB has been set to a high value making KFNA poorly identifiable, while the 

opposite has been observed for another full-scale application. These large variations of 

parameters from one system to another are likely the result of concurring reasons e.g. micro- 

organisms history and adaptation, defaults in the structure of the models, undescribed local 

heterogeneities in reactor (Spérandio et al., 2016). 

The large variations of parameters values among different full-scale case studies considerably 

limit the predictive power of the models, as parameters cannot be extrapolated to other plants, 

and probably not even for different periods in the same plant. This reduced predictive power 

will also hamper the usage of such models in search for mitigation strategies. Given the 

detailed structure of available models with regards to the conversion processes involved, the 

considerable differences in parameters values among different (full-scale) applications are 

likely due to an unrealistic representation of local conditions in AS tanks, to which these 

conversion processes are highly sensitive (much more than the traditional ASM processes).  

The design of proper WRRF layouts (with respect to spatial submodel) is an important step in 

plant-wide modelling and for understanding complex process dynamics such as the ones 

responsible for N2O production (Rehman et al., 2014a). In current TIS configurations, 

recirculation and more detailed local concentrations were assumed to be negligible, and the 

use of plug-flow-CSTR configurations was preferred to reduce overall model complexity and 

computational demand. In view of the latest issues in N2O modelling in WRRFs, it is to date 

necessary to analyze the possibility and effect of the inclusion of more detailed descriptions of 

local concentrations in AS tanks by means of more detailed spatial submodels. The 

development of layouts designed for resembling more accurately hydrodynamic behavior of 

the internal volume layout, is currently bringing an additional level of detail that can reflect in 

improved predictive power of available mechanistic models, which is key in optimization and 

control. Currently, the use of CMs developed upon detailed CFD studies is gaining interest 

from the modelling community (Le Moullec et al., 2010; Rehman et al., 2017, 2015, 2014b). 

In this work, a comparison of the performance of a CM and a TIS spatial submodel of the 

same full-scale WRRF on identifying a domain of good parameters values for the most 

sensitive parameters using the ASMG2d model (Guo, 2014; Guo and Vanrolleghem, 2014) is 

provided. Based on literature, each model parameter was sampled in a specific range for 

generating a number of simulation scenarios. Each simulation scenario was ranked for its 

performance in predicting measured variables based on different criteria suggested by Van 

Hoey (2016). The latter returns the good performing scenarios in the form of a distribution of 

parameter values for both the CM and TIS. 
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MATERIALS AND METHODS 

Model layouts 

Two model layouts of the WRRF of Eindhoven were used, differing in terms of spatial 

submodel (Figure 1). The TIS layout of the Eindhoven WRRF (Figure 1, top) is a well 

consolidated model obtained after years of research of the facility (Amerlinck, 2015; Cierkens 

et al., 2012; De Keyser et al., 2014). On the other hand, the CM version (Figure 1, bottom) is 

a recent development of the WRRF model layout resulting from a thorough hydrodynamic 

study based on CFD simulations in a three-phase (i.e. gas, solid, liquid) model integrated with 

an ASM for resembling the biological activity (Rehman, 2016). In particular, the volumes in 

which the biological tank was initially divided for the case of the TIS, were further partitioned 

by means of the cumulative species distribution concept that led to the development of the 

compartmental network currently in use. 

 

Figure 1 – Schematic representation of the partitioning of the AS tank volume according to 

the TIS (top) and CM (bottom) layouts. The planar representation of the AS tank (top left) is 

divided for the TIS (top right) in pre-winter (PW), winter package (WP), pre-summer (PS), 

summer package (SP), effluent (E1 and E2) zones. The CM follows the same concept of TIS 

in the general division of the volumes, but includes a and b recirculation zones according to 

Rehman (2016). 

 

For comparing the two model layouts, a common mechanistic model was chosen with which 

comparison of the results was performed. Seen the efforts on calibrating the ASMG1 and 

ASMG2d on the same plant, the biokinetic model chosen for this work was the ASMG2d 

(Guo, 2014). This model is one of the most popular in full-scale applications and is also 

implemented in the WEST® platform. In addition to this, the ASMG2d has been considered in 

other studies in literature, representing an added value for further comparison of the results 

(Spérandio et al., 2016). It must be specified that, as other N2O mechanistic models, the 

ASMG2d is far from being widely applicable to full-scale WRRFs due to the discussed 

difficulties that these models show in the calibration step. However, for the purpose of this 

study and for the application to this plant, the ASMG2d represents the most suitable choice. 

As input to both the TIS and CM models, a dataset of validated SCADA data from May 2016 

was used during which also N2O measurements in the liquid (Unisense Environment, 

Denmark) were available. For the steady state simulations a period of 100 days was simulated 

and the last 30 days were used for averaging output variables. For the dynamic simulations, a 

24h dataset of validated input data was used. In order to compare simulation output with 

measured values, dissolved N2O measurements and SCADA data from the sensors present on 
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the AS tank were used. The output data of the simulations were taken from the (CSTR) model 

block resembling most closely the location of the relative sensor in the reality. 

For the comparison of the two model layouts, three fundamental steps were followed: I) 

parameter selection and definition of parameters ranges, and ranking; II) steady state 

simulation of n-sampled parameters sets to confirm or redefine current parameter ranges; III) 

dynamic simulations of n-sampled parameters sets to evaluate whether CM can better define 

the parameter domain than TIS. Throughout steady state and dynamic simulations, 12 model 

fit metrics were assessed to evaluate the quality of the model output. 
 

Parameter selection and sensitivity ranking (Step I) 

A literature selection of the most influencing parameters for N2O production contained in 

ASMG2d was performed. Screening the literature, a first set of 25 most uncertain parameters 

was selected (Gernaey and Jørgensen, 2004; Guo, 2014; Hiatt, 2006; Mampaey et al., 2013; 

Ni et al., 2013b; Spérandio et al., 2016; Van Hulle et al., 2012) and is reported in Table 1. 

Some of the parameters show up to 140% deviation from different calibration exercises 

(Spérandio et al., 2016).  

Table 1 – Initial parameter selection showing extreme values of the domain used in literature. 

Parameter Description Minimum value Maximum value 

KO_A1Lysis 
Sat/inhibition coefficient for O2 in lysis, 

AOB 
0.2 1.6 

KO_A2Lysis 
Sat/inhibition coefficient for O2 in lysis, 

NOB 
0.2 0.69 

bA1 Rate constant for lysis of X_BA1 0.028 0.28 

bA2 Rate constant for lysis of X_BA2 0.028 0.28 

nNOx_A1_d Anoxic reduction factor for decay, AOB 0.006 0.72 

KFA Half-saturation index for Free Ammonia 0.001 0.005 

KFNA Half-saturation index for FNA 5.00E-07 5.00E-06 

KI10FA 
FA inhibition coefficient, NO2 oxidation 

by NOB 
0.5 1 

KI10FNA 
FNA inhibition coefficient, NO2 

oxidation by NOB 
0.036 0.1 

KI9FA 
FA inhibition coefficient, NH4 oxidation 

by AOB 
0.1 1 

KI9FNA 
FNA inhibition coefficient, NH4 

oxidation by AOB 
0.001 0.1 

KOA1 O2 half-saturation index for AOB 0.4 0.6 

KOA2 O2 half-saturation index for NOB 1 1.2 

YA1 Yield for AOB 0.15 0.24 

YA2 Yield for NOB 0.06 0.24 

KFA_AOBden NH half-saturation for AOB denit 0.001 1 
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KFNA_AOBden FNA half-saturation for AOB denit 1.00E-06 0.002 

KIO_AOBden 
Inhibition coefficient for O2 in AOB 

denit 
0 10 

KSNO_AOBden NO saturation coefficient for AOB denit 0.1 3.91 

KSO_AOBden O2 sat coefficient for AOB denit 0.13 12 

n1AOB Growth factor for AOB in denitr step 1 0.08 0.63 

n2AOB Growth factor for AOB in denitr step 2 0.08 0.63 

KA1 
SA sat coefficient for heterotrophs 

aerobic growth 
4 20 

KF1 
SF sat coefficient for heterotrophs 

aerobic growth 
4 20 

KO1_BH 
Sat/inhibition coefficient for heterotroph 

growth 
0.2 1 

 

In order to ensure a sampling of the entire domain without excluding the maximum and 

minimum limits of each parameter, the domains reported in Table 1 were enlarged by 10% of 

the difference between the relative maximum and minimum values. 

A GSA was performed on this set of parameters using the LH-OAT approach (van Griensven 

et al., 2006) with different perturbation factors. As the choice of the perturbation factor can 

have an important effect on the numerical stability and thus on the sensitivity results, different 

magnitudes were investigated (De Pauw and Vanrolleghem, 2006). Also, the impact of the 

number of samples was observed in order to check whether the increase of one or two orders 

of magnitude impacted the final ranking. These tests resulted in consistent ranking of the 

outputs, with the only exception of the tests with the perturbation factors smaller than 10-5, 

which resulted in numerical instabilities. 
 

Simulations process 

By means of a LH-OAT sampling approach on the most sensitive parameters resulting from 

Step I, the scenarios for the analysis in Step II and III were created. For each case 2k points on 

the domain of each parameter were uniformly sampled. 
 

Step II 

Steady state simulations were used to compare the model output concentrations with known 

normal operation conditions in the biological tank. This allowed to make a first ranking of the 

scenarios based on the proximity of the model output and the known measured values of NH4, 

DO and TSS. As a result, this allowed to evaluate the domain of each parameter considered 

and eventually provide adjustments repeating the steady state simulations. This iterative 

approach allowed to define a domain for each parameter with “good” parameter values, so 

that no possibly good parameters values were left out and, at the same time, excluding zones 

of undoubtedly bad parameter values in order to proceed with Step III. 
 

Step III 

Once the last parameter domains after the steady state were defined, the LH-OAT sampling 

on 2k points was repeated for creating the scenarios for the dynamic simulations. Parameters 

were uniformly sampled on the eventually reduced domain after the steady state analysis. In 

this case, the outputs of the model were compared with a day of measured SCADA data (i.e. 

DO, NO3, NH4) and liquid N2O measurements. 
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Scenario ranking using 12 different metrics 

Different metrics can be used to score a model fit according to a variety of methods to 

describe the similarity between a modelled and an objective function, therefore, different are 

the criterion with which scores are assigned. Dissimilarity between metrics depends not only 

on their mathematical structure but also on the system behavior and objective. Hence, the 

need of an assortment of criteria to evaluate the performance of a model from different 

perspectives. For instance, RMSE is a commonly chosen metric to evaluate a model fit, 

however, it gives emphasis to the fit of peaks and high values. Therefore, its combination with 

RVE, from the total relative error category, is advisable when variables with a wide range of 

values are compared (Hauduc et al., 2015).  

In this view, for both the steady state and the dynamic simulation step, the outputs were 

evaluated by means of 12 metrics (Table 2). These metrics were selected based on the 

classification of Hauduc et al. (2015) as the combination of different metrics from different 

classes have been observed to be more effective than choosing metrics from one class only 

(Van Hoey, 2016a). All metrics were chosen also based on their response range of values, all 

metrics (including RVE) indicate the best fit possible with 0. The metrics were selected based 

on their input requirements so that only values of observed and modelled results could be 

used as input. In this way, the response value of each metric chosen, can be rescaled based on 

its output from a minimum of 0 (best fit) to a maximum of 1 (worst fit). 

 

Table 2 – Summary table of the metrics considered for scenario ranking (Hauduc et al., 2015; 

Van Hoey, 2016a). 

Metric Category 
Output 

range 
Main feature 

MAE Absolute [0, inf] 
Indicates the average magnitude of the 

model error 

RMSE Absolute [0, inf] Emphasizes large errors 

MSE Absolute [0, inf] Emphasizes high errors 

MSLE Absolute [0, inf] Emphasizes low magnitude errors 

RRMSE Absolute [0, inf] Low values suggest good agreement 

SSE Absolute [0, inf] Low values suggest good agreement 

AMRE Relative [0, inf] Low values suggest good agreement 

MARE Relative [0, inf] Low values suggest good agreement 

SARE Relative [0, inf] Low values suggest good agreement 

MeAPE Relative [0, inf] 
Less affected by outliers and errors 

distribution 

MSRE Relative [0, inf] Emphasizes larger relative errors 

RVE Total Relative error [-inf, inf] Measures an overall adequacy 
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Finally, the different scenarios were ranked based on the 0 to 1 value of each metric 

separately. Subsequently, an overall ranking can be derived based on the score that each 

scenario has in each of the metrics. In this way, each metric is scalable within its own domain 

to a 0 to 1 domain, and addressing to each scenario a value from 0 to 1 allows the ranking of 

the scenarios according to the single metric (Figure 2, left). The value that each scenario 

collects from each metric, can then be summed up with the rest of the scores obtained from 

the rest of the metrics to obtain a final overall score used for the final ranking of a given 

scenario (Figure 2, right). The scenarios performing the best for all metrics, i.e. scoring nearly 

0 for each different metric, result in the lowest overall score. The best one third of all the 

scenarios was selected as the good scenarios. 

 

Figure 2 – Schematic representation of the scenario ranking method used in Step II and Step 

III. The initial ranking according to the single metric (left) allows to sum the scores of all 

metrics for each scenario and have a final score that is used for the overall ranking (right). 

For the steady state case, the average output of the last part of the 100 days simulation (about 

100 data points), were compared against an objective value. Therefore, for the evaluation of 

the steady state simulation outputs, the metric evaluation is only based on the proximity of 

two single values, i.e. the modelled mean and the relative reference value for NH4, DO and 

TSS. 

For the case of dynamic simulations, the model output of NH4, NO3, N2O, and DO, were 

compared against measured values. In this case, the metric evaluation becomes more complex 

due to the different nature of the metrics involved. Each metric will return an estimation of the 

performance of the model output giving more emphasis to different aspects of a model fit. 

Hence, the necessity of using a ranking strategy summarizing the different aspects of the 

evaluation of a fit. 
 

 

RESULTS AND DISCUSSION 

Parameter ranking (Step I) 

After the selection of the parameters and the definition of the respective range from the 

literature, a ranking exercise was done. A GSA was performed on this set of parameters using 

the LH-OAT approach with different perturbation factors. Different magnitudes were 

investigated (De Pauw and Vanrolleghem, 2006) resulting in a good performance of a 

perturbation factor of 10-3 for all the parameters. The suggested minimum sample size in the 

parameter space is in the range of 10k samples which makes the experiment highly time 

demanding (Van Hoey, 2016b). 
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For the case of the TIS layout, the GSA results provided a ranking of the most influential 

parameters for N2O, O2, NO3, NH4, TSS, XBA1, XBA2 and XH. The influential parameters 

seemed to be the same among the different variables tested overall showing very comparable 

importance with few variations in the ranking. 

The GSA exercise was repeated in the same fashion for the case of the CM layout. 

Interestingly, the relevant parameters were very similar to the case of the TIS showing very 

few variations and negligible differences from the previous ranking exercise.  

In order to define an overall set of parameters suitable for both the TIS and the CM cases, it 

was decided to give a score to each parameter according to its position in the tornado plot of 

each variable (i.e. position 1 scores 1, position 2 scores 2, etc.). Initially, 10 parameters were 

selected according to the score and visual analysis of the tornado plots (i.e. bA1, bA2, KOA1, 

KFA, KFNA, KF1, KOA2, KO1_BH, YA1, nNOx_A1_d). Given the presence of YA1, the proximity in 

the ranking of YA2, and the attention that this parameter received in literature, it was chosen to 

include also YA2. In a similar fashion, KO_A1Lysis and the respective KO_A2Lysis were included 

given the importance in the literature and their proximity to the cut-off threshold. Finally, 

given that KI9FA was not the worst positioned in this new GSA ranking, it was also included. 

This selection resulted in a total of 14 parameters to be passed to step II and III. 

In general, it is interesting that decay parameters for autotrophs are the most sensitive, and 

that a relevant quantity of half-saturation indexes (K-values) are present in relevant positions 

of the ranking. This highlights the importance of the correct definition of half-saturation 

indexes (Arnaldos et al., 2015). 
 

Steady state simulations (Step II) 

The aim of Step II was to define the best scenario (i.e. set of parameters) for initializing the 

model for dynamic simulation (Step III) and verify that the domain chosen for the different 

parameters was still valid, i.e. not indicating clear clues of a need for a modification of the 

domain.  

Steady state simulations of 100 days were run. The output of the simulations was compared 

against average typical concentrations of NH4, DO and TSS at the end of the summer package 

aeration compartment (1.01 mg N/L, 1.02 mg/L and 3200 g/m3 respectively) obtained from 

averaging measured data of known good plant operation in dry conditions during summer 

2012. Model outputs were scored from 0 (best) to 1 (worst) using the 12 metrics described 

and ranked accordingly in order to isolate the best performing scenarios. Each metric returns 

an internal ranking according to the score given to each scenario. An overall ranking among 

the scenarios is possible summing up the contribution of all metrics for each scenario. 
 

TIS 

The steady state simulations performed with the TIS model were ranked for the average 

output of NH4, DO and TSS against an objective value. The ranking strategy used places the 

scenario with the lowest score overall (best performing) at the bottom of the graph (near value 

0) in Figure 3, while the worst performing are ranked towards the top (near value 1). In 

particular, Figure 3 indicates that, for the scenario tested, the variation of the output TSS 

(Figure 3, right) as compared to the objective value is more pronounced than for DO or NH4 

(Figure 3, center and left respectively), the latter showing the smallest variations. Therefore, 

TSS seems particularly sensitive to variations in the selected parameters values as compared 

to DO and at last to NH4, i.e. a deviation in color to the darker tones is visible already close to 

the bottom of Figure 3 (right). It must be also pointed out that, among the scenarios, the 

magnitude of variation between NH4, DO and TSS values is largely different due to the 

different units. Therefore, the transition in color must be considered only as an indication of 

how fast the outputs of the different scenarios go far from the objective values and what is the 

contribution of each metric chosen. As an example, from the ranking graph relative to NH4 

(Figure 3, left), given the small absolute differences between the model output and the 
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objective value, it can be noticed that the most sensitive metric is MSLE. MSLE is very 

sensitive to smaller differences as compared to the rest of the metrics due to the fact that it 

treats both modelled and objective values with a logarithm, thus emphasizing small 

differences and particularly values smaller than 1. On the other hand, the rest of the metrics 

need bigger absolute differences between modelled and objective values. Hence, the need of a 

variety of metrics evaluating a model fit from different points of view. In particular, for the 

case of NH4, MSLE provides most of the input for the final ranking as the rest of the metrics 

are showing very little variation.  

 

Figure 3 – Ranking of the scenarios (rows) according to the 12 metrics (columns) from the 

best performing (bottom) to the worst (top) (for NH4, DO and TSS respectively from left to 

right). Each metric is colored according to its internal ranking from 0 (bright) to 1 (dark). 

At this point the best performing scenarios (Figure 3, light colors) were selected from each of 

the cases, i.e. NH4, DO and TSS. Here, only the most relevant results are summarized and 

discussed. 

Distribution plots of the parameter values relative to the best performing scenarios, selected 

according to NH4 ranking, showed that bA1 and KFA appear to perform the best in the higher 

range of the respective domains (Figure 4). The rest of the parameters did not return a 

particular shape suggesting that there is not a preferred subrange in the tested range. This is an 

indication for possible reduction or modification to the conservative parameter ranges adopted 

for these simulations before moving to Step III. 
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Figure 4 – Distribution of the parameter values resulting from the selection of the best 

performing scenarios for NH4 in the TIS layout. 

For the case of DO there is a confirmation of the good performance returning from the use of 

the higher range of bA1, once again suggesting that for Step III a reconsideration of the 

sampling range for this parameter is useful (Figure 5, upper left). Interestingly, the range of 

bA1 is also corroborating with the one observed for NH4. Also bA2 shows a defined tendency 

in its distribution, showing a relevant preference for values in the lowest range of its domain 

(Figure 5, upper right). In addition to this, KF1 and KFNA show a higher density of good 

performing scenarios close to zero (Figure 5, bottom left and right graphs). This reflects the 

general tendency of abating KFNA to very low values (normally in the order of 10-6) and 

confirms the reported difficulties in the calibration of this parameter (Spérandio et al., 2016). 

Similarly, KFA shows a perceivable preference towards lower values in its range, although less 

pronounced than for the previous cases (Figure 5, bottom center) and with opposite tendency. 

 

 

 
Figure 5 – Distribution of the parameter values resulting from the selection of the best 

performing scenarios for DO in the TIS layout. 

 

From the isolation of the best performing scenarios according to the analysis of the modeled 

TSS, in contrast to the previous results, parameter bA1 shows the highest frequency peak in the 
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lowest range of its domain (data not shown). However, this distribution appears to be 

approaching a bimodal case as a noticeable peak in frequency is also visible in the highest 

part of the bA1 domain. This is particularly interesting as the peak on the right occurs very 

similar to the cases observed for NH4 and DO. This confirms the necessity of shifting the 

parameter range towards bigger values for bA1 for the model to both comply for DO and NH4. 

By merging the three groups of best performing scenarios (i.e. for NH4, DO, and TSS) it was 

possible to obtain an overall group containing all selected best performing scenarios. This 

overall group was used as ultimate check as including the parameter domains isolated for 

NH4, DO, and TSS, helps in defining whether the information gathered from the singular 

cases still holds when considering multiple parameters simultaneously. 
 

CM 

The visual ranking of the scenarios for the steady state simulations with the CM layout 

resembles very closely the one observed for the case of the TIS layout (Figure 3). This means 

that the absolute variation of the model output for the different scenarios from the objective 

value, are similar for the two layouts for NH4, DO and TSS.  

Similarly to what was observed in the results of the TIS layout, distribution plots of the 

parameter values relative to the best performing scenarios for NH4 ranking, showed that bA1 

and KFA perform the best in the higher range of their domains (Figure 6). This is an important 

aspect in view of identifying which parameter’s domain needs adjustment before passing to 

the dynamic simulations (Step III).  

 

 
Figure 6 – Distribution of the parameter values resulting from the selection of the best 

performing scenarios for NH4 in the CM layout. 

 

Plotting the best performing scenarios relative to DO ranking (Figure 7), there is again full 

agreement with what already observed in the case of the TIS layout. The frequency of the best 

performing scenarios is highest in the higher range of bA1’s domain, while bA2, KF1 and KFNA, 

show a clear preference for their lowest limit. A similar pattern can be observed for KFNA 

(Figure 7, bottom center) although with less definite shape than for the other parameters, and 

very similar to what observed in the TIS results. In the same way, KFA shows a perceivable 

preference towards lower values in its range, although opposite and less definite than was 

observed for NH4, matching the results of the TIS layout. 

Again these are important clues for the modification of the domain of certain parameters 

before passing to Step III. At the moment all results between TIS and CM seem to corroborate 

rather closely and no clear difference can be noticed.  
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Figure 7 – Distribution of the parameter values resulting from the selection of the best 

performing scenarios for DO in the CM layout. 

 

The best performing scenarios ranked according to TSS returned a well-defined shape of the 

bA1 distribution with high frequency value at the highest edge of its domain (data not shown). 

In the case of the TIS layout, i.e. where two peaks were observed in correspondence of both 

the highest and the lowest edges of the domain, this was less clear than for the CM. This is an 

important point in the evaluation of the performances of the two layouts as the case of bA1 for 

the TSS ranking is the first clue of the gain in definition of the CM as compared to the TIS 

layout. 

In the overall view, merging the three groups of best performing scenarios resulting from the 

ranking for NH4, DO, and TSS, a clear tendency of bA1 to show higher frequency in the 

highest part of its domain was noticed. This was a clear indication of the need for a redefined 

domain for bA1 before passing to Step III. 

Similarly, bA2, KF1, and KFNA, returned a clear preference of the highest frequency of their 

distribution plot for the lower edge of their domain.  
 

Redefinition of parameter domains 

According to the results of Step II for the cases of the TIS and CM layouts, some of the 

parameters show a clear potential for the modification of their sampling domain before 

passing to Step III. For those parameters showing truncated distributions and high frequency 

of best performing values close to an edge of their domain, the modification was considered. 

This reduces the number of experiments that likely result in a less good prediction and are not 

very useful in the analysis anyway. The domains of bA1, YA1, KFA, and KF1, were modified as 

indicated in Table 3. 
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Table 3 – New domains for the selected parameters derived from the results of both the TIS 

and CM layouts results. 

Parameter Minimum value Maximum value 

bA1 0.15 0.40 

YA1 0.04 0.20 

KFA 0.001 0.005 

KF1 2.4 21.6 

 

Given the known tendency reported in literature for abating KFNA values close to zero in order 

to accomplish a model fit, and given that those values are recognized to be unrealistic, the 

domain of KFNA was not modified. In addition to this, the modification of four parameters 

domains could already have a positive effect on KFNA. 

 

Dynamic simulations (Step III) 

The model was initialized with a steady state simulation of 100 days for performing the 

dynamic simulations. For doing this, the choice of a scenario for initialization was needed. 

Using the intersection of the three groups of best performing scenarios, i.e. the scenarios 

considered the best at the same time for NH4, DO, and TSS cases, the best scenario according 

to all three cases could be identified. 

Step III was targeted at defining the best performing scenarios analyzing the dynamic 

simulations output against measured data in specific locations on the bioreactor. The aim of 

this phase was to compare the capabilities of the TIS and CM layouts in defining a good set of 

scenarios best resembling the full-scale measured data. In this view, the scenarios were ranked 

according to the 12 metrics and compared, as in Step II, in terms of the capability of providing 

a realistic and observable parameters range of best performing values. Therefore, the ranking 

used the same method as for Step II, but using online measured data as objective functions of 

the metric comparison (i.e. NH4, DO, N2O and NO3). 

It must be pointed out that for the case of N2O it was not possible to use all 12 metrics due to 

the fact that some metrics use the value of the objective function at the denominator of a 

fraction returning an infinite solution if a variable reaches zero. AMRE, MARE, MSLE, 

MSRE, and SSE were not considered for ranking the scenarios according to the N2O output. 

For the TIS layout, the ranking according to the measured NH4 (Figure 8) showed an 

interesting behavior of the MSLE metric which at first sight seems to rank the scenarios 

inversely to the rest of the metrics. This is true for some of the worst performing scenarios for 

MSLE (darker color), which are not considered as bad by the rest of the metrics. The reason 

lays in the high sensitivity of the MSLE to small differences between modelled and measured 

values. In particular, when both measured and modelled variables are smaller than 1, the 

discrepancy is enhanced by the effect of the logarithm and the quadratic term in the MSLE. 

Thus, the importance of using multiple metrics is illustrated once more. Using multiple 

metrics of different nature allows to analyze and rank the scenarios from different points of 

view, but also to compensate for particular behavior of a single metric. Nonetheless, the 

visualization proposed in this work highlights the contribution of the single metric and 

relative potential limits. 

Concerning the ranking according to DO, all metrics resulted behaving similarly and overall 

agreeing in a common final ranking. 

Although the ranking according to N2O was forced to have fewer metrics, those metrics used 

were still coming from different categories, thus ensuring a ranking according to different 

approaches. All metrics appear to rank accordingly, although the fast transition towards the 
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darkest colors suggests the presence of few scenarios performing significantly better than the 

rest. In a similar picture the ranking according to NO3 can be observed, where, for most of the 

metrics, a fast transition to darker colors indicates a fast deviation of the modelled results 

away from the objective measured dataset. 

 

 

 
Figure 8 - Ranking of the scenarios (rows) according to the metrics (columns) from the best 

performing (bottom) to the worst (top). Each metric is colored according to its relative 

ranking from 0 to 1. Results of the TIS layout. 

 

Figure 9 shows the ranking for the scenarios of the CM layout. Small differences can be 

observed among the metrics for the ranking according to NH4 in which MSLE seems to 

behave slightly different from the rest of the metrics, although generally agreeing with the rest 

of the metrics for the best performing scenarios (lighter colors). 

For the case of DO there is faster transition to the darker tones of the ranking for all metrics, 

indicating probably that few scenarios are providing an output close to the measured dataset 

while the rest is quickly deviating away of it. 
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Figure 9 – Ranking of the scenarios (rows) according to the metrics (columns) from the best 

performing (bottom) to the worst (top). Each metric is colored according to its relative 

ranking from 0 to 1. Results of the CM layout. 

 

Differently from the case of DO, the case of N2O and NO3 present a very gradual shift away 

from the objective function making all metrics generally providing the same ranking (for N2O 

fewer metrics are considered). 
 

Comparison between TIS and CM 

The overall distributions of the parameter values for the best performing scenarios derived 

from the ranking for NH4, DO, N2O, and NO3 are reported to make a global comparison of the 

performances of both model layouts in defining ranges of parameter values that are best 

performing. 

For the case of YA1 (Figure 10), the CM configuration (right) returned a clearly defined range 

of acceptable parameter values as compared to the case of the TIS layout. The YA1 

distribution of the CM appears to define a normally shaped curve which encounters a 

maximum frequency around the value of 0.1 g COD/g N. The TIS model (Figure 10, left) 

identifies the best performing scenarios in the lowest range of YA1, which are less realistic 

values as compared to the case of the CM.  

 
Figure 10 – Distributions of overall best performing scenarios for the case of the parameter 

values of YA1 in the dynamic simulations with the TIS (left) and CM (left) layouts. 

 

KFNA (Figure 11), is a known difficult parameter to calibrate which is often abated to values 

very close to zero to force calibration fit (Spérandio et al., 2016). The CM results (Figure 11, 

right) show a more pronounced shape of a distribution as compared to the TIS, peaking in 

frequency around the value of 3E-4 g/m3. This is an important indication finally proposing 

more realistic values for this parameter and to revert the general tendency of abating this 

parameter down to 1E-6. On the other hand, the TIS layout does not show a definite 
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distribution having almost everywhere the same frequency. However, it must be pointed out 

how the far right edge of the distribution for the TIS is slightly increasing in frequency 

suggesting the possibility of a need for a modification of the KFNA domain.  

In this view, it is interesting to consider that, despite the literature studies generally reporting 

very low values of KFNA, the TIS layout reverts this tendency showing this time a propensity 

for more realistic values. Furthermore, it is interesting to point out how the CM model 

confirms the same tendency but with a more pronounced shape of the distribution. This is 

another confirmation that the higher hydrodynamic accuracy of the CM significantly increases 

the identifiability of some parameters. 

 

 
Figure 11 – Distributions of overall best performing scenarios for the case of the parameter 

values of KFNA in the dynamic simulations with the TIS (left) and CM (left) layouts 

 

Finally, looking at KF1, it is interesting how both distributions have a similar shape (Figure 

12), though more pronounced for the case of the CM layout. The distribution of KF1 returned 

by the TIS layout is noticeably flatter than the one returned by the CM. This can be 

considered another indication of the increased identifiability of the KF1 by means of the CM 

layout. 

 
Figure 12 – Distributions of overall best performing scenarios for the case of the parameter 

values of KF1 in the dynamic simulations with the TIS (left) and CM (left) layouts 
 

Model fits 

The fitting of a model against measured values is the primary target of every calibration and 

modelling exercise. However, before that, the modeler should consider to be working as close 

as possible to an accurate representation of the reality, regarding both physical and biological 

aspects. Thus, firstly aiming to working with realistic parameter values. 

It must be pointed out that the present work does not represent a calibration exercise and 

model fits against measured data were not shown with the purpose of focusing the reader’s 
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attention in evaluating the ability of a model layout to select its suitable parameter domains. 

However, for completeness, model fits using the best performing scenario are shown in this 

section for a qualitative assessment of the model performances. 

The best performing scenario was chosen according to all variables considered in Step III 

(NH4, DO, N2O, and NO3) using the intersection of the four groups of best performing 

scenarios. In the end, the scenario selected for a layout is not the best fitting according to the 

single variable, but the best performing overall.  

For the case of TIS, the intersection group resulted empty, and NO3 had to be excluded from 

the intersection of the four groups. The best scenario of this selection, was used to show the 

results of the TIS (Figure 13, left). 

For the case of CM, the selection of an overall best performing scenario was less problematic. 

The different groups of best performing scenarios from for NH4, DO, N2O and NO3, were in 

accordance for 39 scenarios. 

Table 4 reports the parameter values for the scenario selected for the TIS and CM layouts 

respectively. It is interesting to notice that the difference in YA1 corroborating with what 

observed earlier in the parameter distribution. The same seems to be shown for the KFNA 

parameter. 

 

Table 4 – Parameter values for the scenario performing the best according to all variables of 

comparison for the TIS and for the CM layout. 

Parameter TIS CM 

KO_A1Lysis 0.116767 0.103970 

KO_A2Lysis 0.319499 0.623322 

bA1 0.254775 0.177371 

bA2 0.211606 0.031296 

YA1 0.06097 0.103379 

YA2 0.2377 0.126444 

nNOx_A1_d 0.498316 0.565986 

KFA 0.005617 0.003866 

KFNA 0.000292 0.000206 

KI9FA 0.660808 0.703306 

KOA1 0.394944 0.550270 

KOA2 1.217972 1.145907 

KF1 2.230151 6.928328 

KO1_BH 0.758667 0.505318 

 

In Figure 13 are reported the model results of the TIS (left) and CM (right) in comparison 

with the measured time series. The TIS model initially accumulates NH4 until DO reaches a 

reasonably high concentration, not matching the measured values. On the other hand, 

although the CM over predicts DO while the TIS gives its best fit with it, the CM maintains 

NH4 levels closer to what are the measured values. 

In terms of N2O, the CM misses the first peak but maintains a concentration that seems to 

resemble the measured one with reasonable accuracy. The TIS model layout gives the worst 

performance in terms of NO3, where modelled concentrations remain at very low values as 

compared to the measured profile. The CM layout appears to provide modelled NO3 results 

closer to the reality. Despite the fact that NO3 levels are resulting pretty constant from the CM 
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and the peak in the measured NO3 is not detected, the NO3 concentration appears closer to the 

measured NO3 than for the case of the TIS layout. 

 

Figure 13 – Model outputs of the TIS (left) and CM (right) layouts in comparison with the 

full-scale measurements. 

As specified earlier, this work does not want to be a calibration exercise, and model fits are 

reported for a more complete view. However, the benefits of the use of the CM layout have 

been evidenced once more. 

Considering that the CM is a recent development of the more exploited TIS layout, the 

performances of the CM are showing an important potential and the advantage of increasing 

the level of accuracy of local recirculation and concentrations with respect to the reality. 
 

 

CONCLUSIONS 

In the present work, a ranking method and a visualization were proposed for selecting the best 

performing scenarios and providing a qualitative indication of the performance and 

contribution of each metric used. 

The visual representation of the ranking of the different scenarios in both steady state and 

dynamic simulations, returned interesting clues on the necessity of considering multiple 

metrics of different nature. Also, the performance of each metric was highlighted in its 

ranking and the relative effect on the overall arrangement of the scenarios providing 

information on the contribution of the single metric and as a whole. 

Plotting the parameter values obtained through the selection of the best performing scenarios, 

it was possible to directly compare the performance of the CM and TIS layouts in terms of 

parameter identification.  

The use of the CM increases the level of detail in the representation of local concentrations. 

The volume containing the sensors (and therefore providing local concentrations) is much 

better represented in the case of the CM. This improves results significantly. This implies a 

relevant gain in accuracy that allowed to redefine some of the key parameters to acceptable 

values and obtain more defined distributions. 
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The CM generally returned a more narrow parameter domain of good values with respect to 

the TIS layout. This indicates that the more detailed description of local concentrations helps 

in defining a narrower domain of key parameters, which will, upon calibration, improve the 

model predictive power. 

Further developments of the CM will consider the possibility of varying the volumes of the 

different compartments according to the influent flow. 
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