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Abstract: An Auto-Encoder Neural Network for Time Series (AENNTS) was developed to detect 
outliers in environmental time series that are subject to difficult measurement conditions leading to data 
quality problems. The neural network aims at replicating a time series as closely as possible, but with 
an internal structure which enforces some data compression, and thus imprecise replication. To identify 
outliers an exponentially weighted moving average (EWMA) and a mean absolute deviation (MAD) are 
then calculated on the basis of the residuals between the original time series and its AENNTS 
replication. The method requires only seven parameters, which could all be fixed to their default value 
in this application. The ratio of outliers to accepted data ranged from 1% to 5% across the various time 
series tested, which was deemed acceptable and similar to other, more difficult to tune methods.  
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1 INTRODUCTION 
 
With the increasing presence of sensors to monitor environmental systems, that are often problematic 
in terms of fouling and other data quality issues, outlier detection procedures are necessary to tackle 
the huge amount of data generated. Furthermore, due to the increasingly large number of large time 
series to validate, manual validation of time series is no longer possible and automatic methods must 
be developed. Cleaned time series can afterwards be filtered, screened for fault detection and then 
used for process control, modelling or decision support.  
 
Outliers from time series exhibiting stable signals can easily be removed by tracking the local mean and 
standard deviation 𝜎 and accepting all data within, e.g., 3𝜎 from the mean (Montgomery, 2009). 
However, environmental time series often exhibit large discontinuities or highly unstable behaviour, 
which requires more advanced outlier detection methods. An earlier advanced method that involves 
forecasting an incoming data point and comparing the actual measure to the forecast has been used to 
accept data or reject it as an outlier (Alferes and Vanrolleghem, 2016). This method proved valuable on 
dynamic time series but required a relatively complex method tuning procedure that had to be repeated 
for each sensor and each measurement location.  
 
Automatic outlier detection is a challenge in all data-rich environments and innovative approaches have 
been pursued. Hawkins et al. (2002) applied a Replicator Neural Network to network intrusion detection 
and breast cancer diagnosis. In both cases, the objective was to have the RNN reproduce the original 
dataset as well as possible. By tracking the replication error, it was then possible to identify outliers. 
Chen et al. (2017) applied a similar methodology to various datasets collected from biology, network 
intrusion and geography. Furthermore, problems such as denoising or anomaly detection are similar to 
outlier detection and were solved by autoencoder (Martinelli et al., 2004; Sakurada and Yairi, 2014; 
Xiong and Zuo, 2016). However, it is worth noting that all these applications were performed on 
multivariate datasets and no example was found on a univariate time series.  
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In this work, an automatic outlier detection based on neural networks is presented for filtering univariate 
time series. This method is fast to compute, tuning-friendly and is applicable to a wide range of water 
quality sensors. 
 
 
2 MATERIAL AND METHODS 
 
The Auto-Encoder Neural Network for Time Series (AENNTS) builds a constrained neural network to 
reproduce a set of original data. The error of replication is then tracked to identify poorly reconstructed 
points and flag them as outliers. Outliers are flagged on the basis of a method that combines an 
exponentially weighted average (EWMA) that tracks the average residual and a mean absolute 
deviation (MAD) that tracks the variability of the residual. The EWMA + MAD method was taken from 
Montgomery (2009). 
 
 
2.1  The AENNTS method 
 
The autoencoder neural network for time series aims to reproduce its own inputs. A record, i.e. a vector 
of data points provided to the neural network for replication, consists of 𝑛 consecutives data points in 
time. A time series of 𝑁 data points therefore allows for 𝑁 − 𝑛 individual records for training the neural 

network. In this work, a value of 𝑛 = 5 was used, although other values could be used. Therefore, for a 
large number of datapoints (typically over 100 000), the number of records is approximately the number 
of individual datapoints. 
 
The neural network used is a feed forward NN containing three hidden layers and one output layer 
(Figure 1). In order to enforce the compression of information, the middle hidden layer should have less 
than 𝑛 neurons. Having 5 – 3 – 5 neurons in each hidden layer gave the results presented in this work. 
The output layer must have 𝑛 neurons.  
 

 
Figure 1. Layout of the neural network for outlier detection. 

 
The training set for the neural network was fixed at 95% of the available records while 3% were kept 
for validation of the network and 2% for testing. This choice is justified by the fact that the number of 
records is high (thousands of records) and that the only objective of the neural network is to reproduce 
its training set.  
 
A trained neural network provides 𝑛 estimations of each data point. The average of these estimations 
was taken as the replicated time series. Outliers are then identified by filtering the residual (observed 
value minus AENNTS-replicated value) through an exponentially weighted moving average (EWMA, 
equation 1). 
 

𝐸𝑊𝑀𝐴1 = 𝑥1 

𝐸𝑊𝑀𝐴𝑖 = (1 − 𝛼) × 𝐸𝑊𝑀𝐴𝑖−1 + 𝛼 × 𝑥𝑖  
(1) 

where 𝐸𝑊𝑀𝐴 is the exponentially weighted moving average at time 𝑖, 𝛼 is a parameter between 0 and 

1 and 𝑥𝑖 is the residual at time 𝑖. A large value of 𝛼 gives the most weight on the last residual while a 

small value of 𝛼 gives the most weight to the moving average. This will be a tuning parameter. 
  

Hidden layers Output layer 
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The mean absolute deviation (MAD) is computed with a similar equation (Eq. 2), but it tracks the mean 
absolute error rather than the last observed residual. 
 

𝑀𝐴𝐷1 = 0 

𝑀𝐴𝐷𝑖 = (1 − 𝛽) × 𝑀𝐴𝐷𝑖−1 + 𝛽 × (|𝐸𝑊𝑀𝐴𝑖−1 − 𝑥𝑖−1|) 
(2) 

where 𝑀𝐴𝐷𝑖 is the mean absolute deviation at time 𝑖 and 𝛽 is a parameter between 0 and 1 where a 
large value gives the most weight to the error between the mean and the last residual observed while 
a small value gives the most weight to the last computed MAD. This will be a tuning parameter. 
 
Based on the EWMA and the MAD, a data point is accepted if it complies with equation 3. 
 

𝐸𝑊𝑀𝐴𝑖 − 𝜎 × 𝑀𝐴𝐷𝑖 < 𝑥𝑖+1 < 𝐸𝑊𝑀𝐴𝑖 + 𝜎 × 𝑀𝐴𝐷𝑖 (3) 

where the 𝜎 parameter is the tolerance to the variation of noise level.  
 
 
2.2  Sample datasets 
 
Two datasets were used to assess the performances of the filter. The first dataset consists of 
conductivity (Hach D3725E2T) and turbidity measurements (Hach Solitax) at the inlet of a small water 
resource recovery facility (WRRF). The filtering of the dataset is challenging due to a fast pumping 
sequence that brings water from two distinct sectors with very different conductivities.  
 
The second dataset comes from the deployment of an ammonium probe (ammo::lyser from S::CAN) in 
a pilot WRRF. This dataset was also subject to regular cleaning with compressed air and maintenance 
by the operators.  
 
 
3  RESULTS 
 
 
3.1  Parameters of the AENNTS method 
 
The full procedure requires fixing seven parameters, as shown on Table 1. These values were found 
from experience and from manual tuning. Important to note is that all computations presented in this 
paper used the default values for all parameters in Table 1. 
 

Table 1. Parameters of the AENNTS method and proposed default values. All computations 
presented in the current paper used these default values. 

PARAMETER 
NAME 

PROPOSED DEFAULT 
VALUE 

DEFINITION 

𝒏 5 Number of datapoints per record 
𝑳𝟏 − 𝑳𝟐 − 𝑳𝟑 5 – 3 – 5 Number of neurons in the three hidden layers 

𝜶 0.2 Weight of the EWMA 

𝜷 0.2 Weight of the MAD 
𝝈 3 Accepted variance of the residuals 

 
Experience further suggested that the ratio of outliers was most sensitive to 𝜎. Changing its value from 
3 to 2 would identify up to twice as many outliers. In addition, it must be remembered that the parameter 
𝐿2 must be lower than 𝑛 to ensure the signal to be compressed. If 𝐿2 ≥ 𝑛, the neural network can, in 
theory, replicate the original signal with arbitrary precision. 
 
 
3.2 Performance of the AENNTS method 
 
The first WRRF dataset is particularly challenging due to a pumping sequence that changes the origin 
of the wastewater on a regular basis (around 20 minutes in the data series shown in Figure 2). The two 
sources of wastewater that arrive at the measurement location have different conductivities. The outlier 
detection must therefore not flag too many outliers when the water quality changes. Furthermore, 
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starting around noon, on Figure 2, an automatic cleaning with compressed air happened during 
measurement, pushing the conductivity down to 20-30 µS/cm. It can be observed that the outlier 
detection filter was able to remove most of these artifacts from the time series. In summary, the method 
identified 5.4% of the values in the time series as outlier, which is similar to what other, less practical 
methods would have detected. Therefore, despite an apparent large number of outliers on Figure 2, the 
cleaned signal did not loose significant information. 
 

 
 
Figure 2. Result of the outlier detection procedure on the conductivity of the wastewater influent of a 
WRRF. Datapoints that were identified as outliers are replaced by red “x” and break the continuous 

line of accepted data.  
 

When applied to the ammonium sensor of the pilot WRRF, the filter detected most of the outliers that 
are caused by the automatic air-based cleaning (from April 11th to April 13th, for example) and a manual 
maintenance operation on April 10th. Applied to a full year of data, 3.5% of the points were identified as 
outliers. 
 

 
 
Figure 3. Result of the outlier detection procedure on the ammonium concentration in a pilot WRRF. 

Datapoints that were detected as outliers are replaced by red “x” and break the continuous line of 
accepted data. 

 
The outlier detection method was also applied to time series not presented here (conductivity, 
temperature, chemical oxygen demand, turbidity). The method consistently identified between 1% and 
4% of individual outliers. A rapid rate of change in the signal was often identified as an outlier, but as 
soon as the signal stabilizes, no more outliers were identified.  
 
 
4  DISCUSSION AND CONCLUSIONS 
 
Applying an autoencoder neural network strategy to identify outliers in a time series proved to be an 
efficient and tuning-friendly method for a variety of signals. In our experience, methods such as the one 
proposed by Alferes and Vanrolleghem (2016) are efficient, but require significant parameter tuning for 
each new measurement task. For example, Alferes’ method is prone to missing a large variation in the 
signal (such as a pumping sequence), which leads to a loss of data until the auto-restart technique 
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embedded in the method is triggered. The AENNTS method is much less sensitive to such variation 
since only the replication error is used to identify outliers. Therefore, since that replication error average 
is expected to stay close to zero, chances that the signal will be completely out of control are significantly 
reduced. On the other hand, it must be remembered that only punctual outliers are identified with the 
method. If a water quality sensor is removed from water for a long time (i.e. for cleaning or as the result 
of an external problem), the AENNTS will probably identify the first few points as outliers, but will not 
detect the continued sensor fault. The outlier detection is therefore a pre-treatment to fault detection. 
 
Going forward, the AENNTS shows promises for various developments: First, the version presented 
here only works off-line, i.e. it cannot process a continuously incoming data stream. However, neural 
network training functions exist that can be used to continuously update the weights of the network to 
efficiently keep track of the signal and to perform reasonably frequent outlier detection. Second, the 
method proposed here is strictly univariate (a single signal at a time). When multiple sensors record 
different signals, neural networks are perfectly adapted to merge these different forms of information 
and extract non-linear correlations between them to improve their outlier detection capabilities. Third, 
due to their learning ability and their non-linear nature, neural networks have excellent potential for 
various data treatment objectives. Examples may include gap filling, fault detection, short-term 
forecasting, etc. 
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