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Abstract: A metabolic network model is one of the cor-
nerstones of the emerging Metabolic Engineering meth-
odology. In this article, special attention is therefore,
given to the phase of model building. A five-stage struc-
tured approach to metabolic network modeling is intro-
duced. The basic steps are: (1) to collect a priori knowl-
edge on the reaction network and to build candidate net-
work models, (2) to perform an a priori check of the
model, (3) to estimate the unknown parameters in the
model, (4) to check the identified model for acceptability
from a biological and thermodynamic point of view, and
(5) to validate the model with new data. The approach is
illustrated with a growth system involving baker’s yeast
growing on mixtures of substrates. Special attention is
given to the central uncertainties in metabolic network
modeling, i.e., estimation of energetic parameters in the
network and the choice of the source of anabolic reduc-
ing equivalents NADPH. © 1998 John Wiley & Sons, Inc. Bio-
technol Bioeng 58: 133-138, 1998.
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INTRODUCTION

During a study that aims to maximize the profits of a fer-

However, let us first formalize the above optimization
goals in variables that are more closely related to the
production process. To increase the volumetric productivity
of a fermentation process (the amount of product formed
per unit time and volume), one must increase the rate
of product formed per amount of biomass grown (the spe-
cific productivity g,) and/or the biomass concentration
in the bioreactor,). On the other hand, if maximum prod-
uct selectivity is pursued, i.e., the amount of product formed
per amount of substrate(s) addedj is to be maximized,
then the specific product formatiom) should be maxi-
mized while minimizing specific substrate consumption
(9.

Key to the understanding of the introduced methodology
is the general description of the distribution of substrate
consumption over the processes of growth, product forma-
tion and maintenance.

g<(C — mol substraté&C — mol biomass h) =
1 1

Ymax u/ + Ymax
SX sp
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mentation process, one is often confronted with the question

whether (a) one should optimize the rate of product forma<Considering this relationship, one observes for the first op-
tion or the concentration of product in the fermentationtimization goal (maximizingy, - C,) that the specific prod-
broth, or (b) one should try to maximize the product yield uct formation rateg,, is function of the growth rate. Indeed,
(i.e., the amount of product per amount of supplied subsolving the above equation fay, yields:

strates/precursors).

The conclusion will depend on the chosen production

process (including the necessary downstream processing),
and a key role in the overall evaluation procedure will be

playeo! by the assessment of bloprocess_performancg: Qoreover, it is well known that the biomass concentration
modeling methodology that can be helpful in this quantifi- . . . .
attained in a bioreactor also depends on the implemented

cation is the subject of this article. Moreover, the method- : )
. - o growth rate (e.g., in a continuous- or fed-batch fermenta-
ology also provides quantitative tools that may help in iden-

tifying possibilities for process intensification tion). Hence, a rather complex optimization problem may
gp P ' result that has been the subject of important research efforts

(Van Impe et al., 1993).
Correspondence tcP. A. Vanrolleghem For the second optimization goal (maximizing the prod-
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1
Qp(M) = Y;npax (qs(M) - Yﬁxlk - rns) (2
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Collection of A Priori Knowledge and

Construction of the Metabolic Network Model

that product selectivity is also growth rate dependent, but in

a different way. Here too, the optimization of the growth All available a priori knowledge on the biochemistry of the

rate (profile) becomes a complex study. studied cell system is collected and stored in a database of
At this stage, it is important to realize that optimization of M components considered relevant for the description to-

the growth pattern requires the knowledge of tpp.)- gether withn relevant biochemical reactions between these

relationship and the parameters involved in the relationship§omponents. Among the components, a nunbere ex-

deduced aboveY{l™ YT m). These parameters are the changed over the cell membrane (substrates,)Cihile

result of a complex intracellular metabolic network. Onethe remainingn-p chemicals are intracellular intermediates

way to obtain their values is to perform a range of well (€-9., ATP, NADH). Reactions to be considered are the

designed labor-intensive experiments. transport of thep solutes over the cell membrane, anabolic
However, an analysis of the stoichiometry of the networkreactions (involved in biosynthesis), and catabolic reactions

reactions can provide their values as well. Moreover, itinvolved in energy metabolism). The resulting network

makes better use of the available biochemical knowledge. If@y be summarized as partially done in Figure 1 for the

recent years, metabolic network stoichiometry analysis hagentral metabolism ofaccharomyces cerevisiadlriting

become a basic tool to understand how these parameters afftg Stoichiometry of the reactions is a central task of this

the Y1) functions may be manipulated by revealing meta-first step. For the first reaction of the pentose phosphate

bolic bottlenecks (Bailey, 1991; van Gulik and Heijnen, ¢ycle (e in Fig. 1), stoichiometry is as follows:

1995; Vallino and Stephanopoulos, _1993; Va_rma efc al., Reaction 26: 1 Glucose-B-+ 2 NADP" + 1 H,0 XZ_ﬁ

1_993). These can be overcome by_ r_atpnal strain manipula- 1 Ribulose-5P + 2 NADFH + 1 CO, + 2 H*

tion, e.g., mutation/selection, amplification of key enzymes 4)

using genetic manipulation, or by directed improvement of

cultivation conditions, e.g., specific substrates or particulaiFor each of the components involved in the reaction net-

precursors. This rational approach of process intensificatiowork a mass balance can be constructed next. This mass

has been termed Metabolic Engineering (Bailey, 1991). balance consists of all reaction ratgsin which the com-
The metabolic model is the cornerstone of the presentegonent,i is consumed or produced (e.g,¢ is one of the

methodology and its expected results. It is therefore, worthreaction rates to be considered for NADP), its stoichiometry

while to pay special attention to the phase of model building(s;), and a net conversion rate (for NADP:ryapp). For

preceding the metabolic network application for process opNADP, the (constant volume) mass balance looks like:

timization. In this contribution, a structured approach to

metabolic network modeling is introduced and illustrated 'NaDP = Snappa* Vit ...+ Syappize® Vae

experimentally with a growth system involving yeast grow- + ..+ Svappn Vi ()

ing on mixtures of substrates. Special attention will be fo'Combining the mass balances for ailcomponents, a ma-

cused on the following central problems in the stoichiomet+ix formulation of the metabolic network is obtained:
ric model building process:

1. The stoichiometric coefficierk for the maintenance de- S S s S0 710 - 0
mands of the cell’'s metabolism; S S o S 01 o 0
2. The stoichiometric coefficierO describing the effec- i i Stoichiometry : : : -Identity
tive amount of ATP produced per oxygen reduced in \ S;u S .S 0 0 I
aerobic respiration;
3. The reaction(s) that are the source of anabolic reducing A
equivalents NADPH. :
n
STRUCTURED APPROACH TO METABOLIC ry = Son =) Ryem =0 ©)
NETWORK MODELING :
The structured modeling approach involves five stages. Fm
1. Collection of a priori knowledge on the metabolism andNote, that in case the pseudo-steady state assumption is
construction of candidate models. accepted for then-pintracellular intermediates, no net con-
2. A priori check of the proposed metabolic network model.version takes place so that the correspondiage zero. The
3. Estimation of unknown parameters in the model. net conversion rates of the components transported over the
4. A posteriori check of the identified model. cell membrane are either measured (e.g.,, @olution
5. Validation of the model with a new dataset. rate), or can be calculated from the metabolic network. Re-
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Figure 1. Central metabolic pathways Baccharomyces cerevisigeowing on mixtures of glucose and ethanol (optionally acetic acid).

action ratesy; can be calculated as well. However, it is the among the models lie in the choice of the source of reducing
rank of the S matrix that determines the minimum numberequivalents (Table I). They are glucose-6-P-dehydrogenase,
of rates that must be specified to provide unique values tacetaldehyde dehydrogenase, and isocitrate dehydrogenase.
the other rates. In totad = (n + p — Rank § rates must be

defined. Then the reduced row echelon form (RREF, a stanStep 2

dard linear algebra matrix operation) of the matrix (S

) provides the solution of the metabolic network: A Priori Check of the Proposed Metabolic

Network Model
T _ . . : o
ViV VnTyToee T = Once the metabolic network is built, an a priori check of the
RREF (M 1T s 2o e Tr)T @) metabolic network is performed. First, it is ascertained that

the model is non-singular for the system chosen, i.e., the

i.e., each unknown rate (left hand side) is a function ofmetabolic network and the defined rates. If singularity is
measured rates only (right hand side). found, it means that the solution cannot be obtained without

Eight candidate metabolic network models were built forintroduction of new information. Hence, in its current form,
the aerobic growth oSaccharomyces cerevisiam mix-  this model can be discarded from the candidate model set.
tures of glucose and ethanol consisting of a set of 88 or 8%or the system under study, it was found that solution of the
reactions (depending on the candidate model) between 8dight networks requires the measurement of only two net
components (Vanrolleghem et al., 1996). The differencegonversion rates. In the present work, these were fluxes for
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Table I. Sources of reducing equivalents in the set of eight candidate models evaluated for the
description ofSaccharomyces cerevisigeown aerobically on mixtures of glucose and ethanol.

Candidate  Glucose-6-P-DH Acetaldehyde-DH Isocitrate-DH
Model NADPH (r,) NADH (r, NADPH (r,)  NADH (r;)  NADPH (0

1 + + +

2 + + +
3 + + +

4 + + +
5 + + + +
6 + + + +

7 + + + +
8 + + + +

Reaction numbers given between brackets refer to Figure 1.

glucose and ethanol. However, for the candidate models 5-8vailable biochemical knowledge. The task to be fulfilled in

(see Table I) it was necessary to assume that the flustep 3 of the network modeling is to attribute values to these
through the pentose phosphate pathway was only deteparameters by fitting model predictions to experimental
mined by the required production of carbon skeletons sucllata. Data that can be used are, for instance:

as erythrose-4-P (i.e., reaction n Figure 1 was not pres- ;- i of an organism on a number of single substrates;

ent in these four candidate networks). : . .
: o : 2. Growth/product formation of an organism at different
At this stage of the model-building process, the singular- growth rates:

ity evaluation step requires the use of symbolic manipula- . .
. . 3. Growth of an organism on a number of mixtures of two
tion software because some parameters in the metabolic Substrates

model may still remain without actual numerical value. '
Among these unknown coefficients one always finds theW
energetic parameters of the cell’s metabolism. One is relate ; - . .
to the maintenance energy demands and another is, in the ca¥ .Gu"k gnd Heijnen (1995), the latter optlpn was u.sed n
of respiratory growth, the P/O-ratio, i.e., the effective amountN€ illustrative case study presented here. Biomass yields on
of ATP produced in the electron transport chain per oxyger??Y9€" and carbon source (expressed as C-mol of two-
reduced. In the network developed Br cerevisaghese two substrate mixtures) were used as measurements. Carbon

parameters are callddand PO (Vanrolleghem et al., 1996) source-limited chemostat experiments (de Jong-Gubbels et

After non-singularity is ascertained, a check is made ori"‘l" 1995) were performed at a dilution rate of 0T bver

whether all reactions are consistent with thermodynamicﬁ”‘I range o_lf_hmn:jt.l;fres 0{ thgttwo carbon shource;s gthgng) ! ?ﬁ d
constraints: Irreversible reactions should have a flux direc9UC0S€. The different mixiures were characterized by the

tion consistent with the thermodynamic laws for all Condi_quFcosehfra?tion @Lué.g] the fe%d.l Table D). th f
tions prevailing. This check can be performed by evaIuatinqN or the first candidate model (Table 1), the sum o

the sign of all reaction rates calculated as the (symbolic) so- eighted-squared errors (J) is plotted n Figure 2 as a func-
tion of the two parameters to be estimated. Errors were

lution of the metabolic network. For the illustrative case study, _ s
onsidered between measurements and model predictions of

the rate of the irreversible reaction 3 of Figure 1 is obtained a%_ ield b d Fig. 3). V
a function of the ethanol and glucose conversion rates: lomass yield on carbongyand oxygen ¥, (Fig. 3). Van-

hile examples of the former two options were given in

vz -0.1196PO-1) . .
37 4.22P0+ 2k +4.221 0.028 \ : .
(023P0+0.33K+0460 jcpry (o [owoaes || [ [ ke0.a45
4.22P0+ 2k +4.221 0.026 \ \‘ I !
r ‘ i
PO andk are the only two (positive) parameters remaining 0.024 F \ \ /
as unknown in the network. It can be seen that this reactior— | \\ J
rate is not consistently negative and, therefore, no decisior 0.022 - \ /
can be made at this stage whether this model is acceptabl \‘\ /
or not. Only after values are given RO andk, i.e., in step 0.020 | S \/
4, are such decisions are allowed. - k=0.415
0.018 ‘ - :
Step 3 1.000 1.050 1.100 1.150 1.200
Estimation of Unknown Parameters in the Model PO

As mentioned above, some stoichiometric coefficients inrigure 2. Evolution of the sum of squared errors objective function for
the network remain unknown after consideration of alldifferent values ofPO andk for candidate network model 1.
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rolleghem et al. (1996) performed a thorough analysis of thehermodynamically acceptable. The relations obtained in
(theoretical and practical) identifiability problems associ-step 2 can be used, but at this stage the parameters can be
ated with this estimation problem and concluded that uniqueeplaced by the estimated values. Now clear regions of ac-
values could be given to the parameters with rather smalteptability as function of the conversion rates can be made
confidence regions (1 to 4% coefficient of variation). as illustrated next for th&. cerevisiaesystem.

While all eight candidate networks originally proposed in
the illustrative case study passed the a priori check of step
2, seven of them could be discarded in the thermodynamic
check performed here. First, if the flux through glucose-6-
A Posteriori Check of the Identified Model P-dehydrogenase (reaction 26 in Fig.1) in the pentose phos-

hate pathway was considered, three reaction networks (net-

In the foyrth phase, an a posteriori ChECk. of the metapqliglorks 2, 3, and 4, see Fig. 4) showed reversed fluxes (nega-
network is performed. First, the biochemical acceptablllt)_/tive sign) for part of the range of glucose/ethanol ratios

of the estimated coefficients is evaluated. For instance, it IStudied. Hence. these three networks violated the thermo-
unacceptable that one obtains negative P/O-ratios or malrHynamic irreversibility of this reaction. On the basis of this

tenance valuek. Although differentPO andk values were ..~ . : : )
obtained for the eight different candidate models of thisﬁndmg’ they could be discarded as possible network mod

tud f th biologicall tabl (fls. Additional evidence was given by determinations of the
study, hone of them were biologically unacceptable anq, ., activity (a measure of the level of expression of a

hence, no candidate model was discarded on the basis of ttB%

criterion. . . . )

Second, the non-violation of thermodynamic constraint%seltnﬁglgggﬁg r? ;wgiz”{ ;V: (;l \évltg the fluxes predicted by
is ascert_ai_ned agair_L However, now the model is complete, Candidate networks 5 to 8 have two NADPH-mediated
anq exphqt_calculatmn; can be made on the range of m?tadehydrogenase reactions of which one is always combined
bolic conditions for which the metabolic network model is with a NADH-dependent dehydrogenase reaction in a single

oxidation step (in other words, isozymes which can either
0.650 use NADH or NADPH are assumed to exist for that reac-
tion). At certain glucose/ethanol mixtures, these reaction
networks always resulted in conversions between NADH
and NADPH caused by simultaneous oxidation and reduc-
tion reactions (acetate <—> acetaldehydexdeetoglutarate
<—> isocitrate). As the reduction reactions are thermody-
namically impossible, it could be concluded that only one
proposed network was acceptable for the system under
study, i.e., the network whose only source of anabolic-
reducing equivalents NADPH is the glucose-6-P-dehydro-

Step 4

rticular enzyme in the cell) of glucose-6-P-dehydrogenase
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Figure 3. Yield measurements and model predictions for growth of Figure 4. Comparison between the measured activity of the enzyme
S. cerevisiaeon mixtures of glucose and ethanol for candidate network catalyzing reaction 26 (Fig. 1) and predictions by eight different metabolic
model 1. networks.
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genase-catalyzed reaction and in which acetaldehyde and First, a new substrate (in casu acetic acid) was adminis-
isocitrate oxidation are catalyzed by NADH-dependent detered to the continuous culture, and the biomass yield pre-
hydrogenases. dicted by the metabolic model (Y = 0.34 C-mol/C-mol)
corresponded very well with the measured yield (Vanrol-
leghem et al., 1996)

Second, activities of key enzymes in the central pathways
were measured and could be confronted with predicted re-
Validation of the Model with a New Dataset action rates. These gave excellent agreement as exemplified

in Figure 5. Vanrolleghem et al. (1996) deduced from these
In the last model-building step, the metabolic network has tazomparisons that certain pathways were regulated at the
be validated by confronting model predictions with experi-enzyme expression level, whereas the in vivo activity of
mental data not used during parameter estimation (step 3pthers was apparently mediated by allosteric modification.
For the case study, additional data were available that al-
lowed for a thorough validation of the model. CONCLUSION

Step 5

A structured modeling methodology for metabolic network
0.40 analysis was proposed. It was applied to the metabolic de-
Malate scription of aerobic growth o8. cerevisiasmn mixtures of

Synthase

" glucose and ethanol. Ample experimental evidence was col-
lected and used to obtain reliable and biologically accept-
able estimates of the energetic parameters. A number of
candidate network models were discarded because they vi-
olated thermodynamic constraints. However, this check
could only be performed after the energetic parameters were
estimated. A priori evaluation of thermodynamic consis-
tency of the network models remained inconclusive. Hence,
a fully calibrated description of the yeast’s metabolism over
the whole range of mixtures of both carbon sources was
obtained. Additional data allowed for the thorough valida-
tion of the model.

It may be concluded that the given modeling methodol-
ogy supports metabolic modeling and is therefore, a useful
ingredient of process intensification studies.
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