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• P recovery should be preferred to re-
moval in wastewater systems, for sus-
tainability.

• Various valuable P formsmay be precip-
itated fromaWWTP, depending on con-
ditions.

• Experimental and statistical analyses
were applied to assess recovery optimi-
zation.

• Optimized values of process variables
will lead to more efficient P recovery.
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Phosphorus recovery has drawn much attention during recent years, due to estimated limited available quanti-
ties, and to the harmful environmental impact that it may have when freely released into aquatic environments.
Struvite precipitation fromwastewater or biological sludge is among the preferred approaches applied for phos-
phorus recovery, as it results in the availability of valuable fertilizer materials. This process is mostly affected by
pHand presence of competitive ions in solution.Modeling and optimization of theprecipitation processmay help
understanding the optimal conditions underwhich themost efficient recovery could be achieved. In this study, a
combination of chemical equilibriummodeling and response surfacemethodology (RSM)was applied to this aim
to aerobic sludge from a plant in Italy. The results identify optimum chemical parameters values for best phos-
phorus precipitation recovery and removal efficiencies, respectively. Identification of optimal conditions for pro-
cess control is of great importance for implementing pilot scale struvite precipitation and achieve efficient
phosphorus recovery.
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1. Introduction

Phosphorus is perhaps the most essential nutrient for all living or-
ganisms on Earth, widely found in nature mostly in phosphate form,
odaglio).
due to the high reactivity of its elemental form. In spite of its biological
importance (i.e. as element allowing crop and plant growth), it can also
generate serious environmental problems when freely released into
water bodies (Bendoricchio et al., 1993; Capodaglio et al., 2003). Phos-
phorous also generates important sustainability concerns as it is a finite
and nonrenewable resource (Cordell et al., 2009; Daneshgar et al.,
2018a), making its recovery a desirable goal, whenever possible.
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Nowadays, combining its removal and recovery from wastewater
streams seems an appropriate and often feasible strategy.

Phosphorus recovery technologies have been studied for many
years, and different approaches for achieving that have been proposed
(Desmidt et al., 2015; Peng et al., 2018). The most common method is
the (non-metal) precipitation process (Daneshgar et al., 2018b), the
product of which could be in the formof calciumphosphate compounds
or most notably magnesium ammonium phosphate hexahydrate
(MgNH4PO4∙6H2O), also called “Struvite”. This is an invaluable mineral
that, due to its low solubility, slow release, lowmetal and high nutrient
(P and also N) contents could be considered a suitable fertilizer. Differ-
ent parameters impact the efficiency of struvite precipitation, such as
pH and concentration of constituent ions. Many studies have investi-
gated the process of struvite precipitation and its modeling and optimi-
zation in order to achieve high levels of phosphorus recovery. Wang
et al. (2005) studied the theoretical optimum values for pH that may
lead to higher process efficiency (finding them within the range
8.5–9.5). Le Corre et al. (2007) investigated the kinetics of struvite crys-
tallization reactions, showing that they are affected by the initial con-
centration of magnesium in the solution. Bhuiyan et al. (2007) studied
with great detail struvite thermodynamics, and in particular its solubil-
ity at different temperatures and pH. There have been studies on the use
of fluidized-bed reactors for struvite crystallization, and investigations
on related reaction parameters (Bhuiyan et al., 2008). Morse et al.
(1998) conducted a comprehensive review on struvite formation and
its different recovery methods.

In addition, studies have been conducted onmodeling and optimiza-
tion of the struvite precipitation process using chemical speciation
modeling tools, such as PHREEQC (US Geological Survey, 2013) and
MINTEQA2 (US EPA, 1991). Such models are capable of calculating ion
speciation, saturation index, equilibrium conditions, ionic strength,
etc. based on the initial conditions of a solution or mixture of solutions.
Possible solid phases and related occurring reactions in the systemmay
also be simulated. Lee et al. (2013) developed an equilibriummodel for
struvite formation and precipitation with calcium co-precipitation.
Türker and Çelen (2007) used chemical equilibrium to predict ammonia
removal in the form of struvite from anaerobic digester effluent. Harada
et al. (2006) predicted struvite formation from urine using a new equi-
librium model and considering co-precipitation of calcium phosphate
compounds and carbonates.

Struvite precipitation can also be modeled and optimized using sta-
tistical approaches. Statistical modeling is a powerful class of tools to in-
vestigate possible relationships between variables affecting a process
and those describing its efficiency. Establishing such relationships
helps process engineers to implement future process designs in more
efficient and possibly cost-effective ways. Statistical modeling ap-
proaches are basically a way to detect significant effects of process in-
puts onto process outputs. Further steps in such approaches could
lead to finding an optimum range of the operating parameters, fitting
a model in the form of y = f(x) where y is the process output or re-
sponse variable and x is a set of process parameters or predictor vari-
ables. Response surface methodology (RSM) is a well-known
statistical approach to this aim object of a few interesting works were
conducted during the past decade (Capdevielle et al., 2013; de Luna
et al., 2015; Shalaby, 2015; Ye et al., 2016; Munir et al., 2017). RSM
was introduced in 1951 by George E.P. Box and K.B. Wilson (Box and
Wilson, 1951), based on using a set of designed experiments to optimize
a response variable. An advantage of using RSM is that it allows to un-
derstand the impact of changes in the degrees of freedom on the opti-
mum result, and can help investigate the direction of changing
predictor variables needed to move towards, in order to maximize or
minimize response variables. Shalaby (2015) investigated optimization
of phosphorus removal from industrial and synthetic wastewater
streams using pH, temperature, reaction time and ion molar ratios as
predictor variables. de Luna et al. (2015) used pH, initial phosphorus
concentration and magnesium-to‑phosphorus molar ratio in order to
optimize a multi-response system, considering total and dissolved
phosphate, magnesium and ammonium removal percentages as re-
sponse variables. Capdevielle et al. (2013) considered also the reaction
stirring rate, and the presence of calcium among predictor variables,
and studied the optimization of phosphorus removal, particle size and
struvite to calcium phosphate ratio.

This study investigates simulation and subsequent optimization of
struvite precipitation from a municipal wastewater stream by combin-
ing chemical equilibrium modeling with RSM's statistical approach.
Chemical equilibrium models were used to complement previous ex-
perimental work by calculating ion speciation and saturation index
(SI) values for struvite. Results were then further used as input data
for an RSM approach, to optimize both phosphorus removal percentage
and struvite's SI, helping determine optimum response values for new
sets of conditions without previously calculating them through chemi-
cal equilibrium calculations. Although many studies are available on
struvite chemical equilibriummodeling, few valuable studies on the ap-
plication of RSM for process optimization exist, and there is a general
lack of those in which advantage is taken by combining both methods
for an overall better understanding of struvite precipitation, and its op-
timization in terms of simultaneous maximum phosphorus removal
and struvite crystallization.

2. Struvite chemistry, kinetics and thermodynamics

Struvite precipitation occurs according to the following reaction:

Mg2þ þ NHþ
4 þ PO3−

4 þ 6H2O⟶MgNH4PO4:6H2O↓ ð1Þ

However, phosphate in solution may also be present in HPO4
2− and

H2PO4
− forms, contributing to struvite formation according to

Eqs. (2) and (3):

Mg2þ þ NHþ
4 þ HPO2−

4 þ 6H2O⟶MgNH4PO4:6H2O↓þ Hþ ð2Þ

Mg2þ þ NHþ
4 þ H2PO

−
4 þ 6H2O⟶MgNH4PO4:6H2O↓þ 2Hþ ð3Þ

In reality, Eq. (2) is dominant compared to the others for the pH
range in which struvite formation is favorable (7–11) (Doyle and
Parsons, 2002). Therefore, it is important to take all reactions, and par-
ticularly the reaction of HPO4

2− into account in the study of struvite
precipitation.

Important factors affecting this process are pH, concentrations of
constituent ions and presence of competitive ions, most notably Ca2+

(Hao et al., 2008). Struvite precipitationmight take place spontaneously
at different locations of a wastewater treatment facility and conse-
quently could lead to specific unwanted problems such as pumps,
pipes and valves clogging (Borgerding, 1972). However, controlled oc-
currence of the reaction could be a very effective method for recovering
phosphorus.

Themechanismof struvite crystallization can be categorized in three
steps: nucleation, crystal growth and aggregation (Galbraith et al.,
2014; Le Corre et al., 2007). Nucleation is the formation of small crystals
of struvite followed by crystal growth, which is the development of the
small sized crystal into larger ones. Aggregation occurs when several
crystals come together and form some sort of clusters. Such mecha-
nisms are affected by many factors such as pH, thermodynamics of the
system, kinetics of the reaction, initial ionic concentration, temperature,
etc. (Le Corre, 2006). Studies on struvite precipitation kinetics suggest
that these three reaction steps could all be empirically formulated as a
function of the struvite supersaturation ratio (Galbraith and Schneider,
2014; Vaneeckhaute et al., 2018). The latter is basically the ion activity
product (IAP) of constituent ions in solution over its equilibrium solubil-
ity product (Ksp). A solution is supersaturated when ionic concentra-
tions are above their equilibrium levels, and consequently
precipitation may occur to return the system into equilibrium
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conditions. Similarly, when ion concentrations are below equilibrium
level, the system is called undersaturated, and precipitation will not
occur. Eq. (4) formulates the “Saturation Index” concept, which is the
logarithm of the supersaturation ratio (Parkhurst and Appelo, 2013):

IAP ¼ Mg2þ
n o

NHþ
4

� �
PO3−

4

n o
ð4Þ

SI ¼ log
IAP
Ksp

� �
ð5Þ

Basically, when SI N 0 the system is supersaturated and when SI b 0,
it will be in undersaturated condition. SI=0means that the system is at
equilibrium.

Investigations on thermodynamics and kinetics of struvite precipita-
tion may be carried out experimentally (Bhuiyan et al., 2007; Galbraith
et al., 2014). However, chemical equilibrium modeling tools (e.g. the
previously mentioned PHREEQC and MINTEQA2) may also be used to
that end, with the advantage of faster achievement of results, while
predicting accurate equilibrium conditions and ion speciation based
on initial solution conditions.

3. Materials and methods

3.1. Sludge characteristics

Sludge samples from a municipal wastewater treatment facility in
Milan (Italy), one of the largest in northern Italy, were collected for
this study. The facility, serving over 1million P.E. and producing approx-
imately 50,000 t/yr of biological sludge, containing an estimated
1400 t/yr of phosphorus, has a considerable potential for P recovery
due to its specific setup and operational conditions (Daneshgar et al.,
2018b). Mixed liquor samples were taken from the inlet zone of the
main oxidation tank, where the highest concentration of phosphorus
is observed due to its release in the preceding anaerobic stage, and
therefore where the highest potential of struvite precipitation may
occur. Table 1 shows the main (average) characteristics of collected
samples.

3.2. Analytical methods

Phosphorus concentrations were measured according to colorimet-
ric method EPA 365.3 (US EPA, 1978) using UV–Vis spectroscopy (HP
8452A Diode Array Spectrophotometer). The samples were first filtered
using 2.5 μm filters and P determinations were made on the solution
phase. The precipitates obtained in each experiment were washed
with deionized water and dried at room temperature. Analysis of the
precipitates was conducted using Fourier Transform Infrared (FTIR)
spectroscopy (Perkin Elmer 1600 series), Thermal Gravimetric Analysis
(TGA) (Mettler Toledo TGA 1 STARe System), Mass Spectroscopy (MS),
Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)
and Elemental Analysis to identify different solid phases in the final
precipitates.
Table 1
Mixed liquor characteristics.

Ions Concentrations⁎ (mg/l)

Ca2+ 101
Mg2+ 26.4
P⁎ 40.3
NH4

+ 32.6

⁎ Solution-phase.
3.3. Experimental setup

Initial experiments were performed in laboratory on the filtered so-
lution using 200ml beakers. A solution of NaOHwas used to adjust pH,
whileMgCl2 and NH4Cl were used as sources of magnesium and ammo-
nium, respectively, when adjusting ionic ratios in the tested solution.
Moderate aerationwas used to provide some liquormixing in all exper-
iments. Final precipitates were collected after 20 h in order to allow the
process to reach equilibrium. The solutions were then filtered with 0.45
μm filters to separate the precipitate, dried at room temperature prior to
FTIR analysis. P measurements were conducted on the final filtrate.

3.4. Chemical equilibrium modeling using PHREEQC

The PHREEQC model, a widely used geochemical software tool de-
signed by the US Geological Survey (USGS), is capable of performing a
wide variety of aqueous calculations such as ion speciation batch reac-
tions and calculating saturation index (SI) values based on the solution
characteristics (ion concentrations, pH, etc.) as input. In this study,
PHREEQC version 3.0 was used to model chemical equilibria.

3.4.1. PHREEQC database modification
PHREEQC includes different databases describing different species

with their corresponding reactions and solid phases precipitated in
the final product. The default PHREEQC.DAT database, was selected in
this study; however, as it is not optimized for the specific case of struvite
precipitation, it needed to be modified. The Ksp of struvite used in
PHREEQC modeling was taken from Taylor et al. (1963) (Ksp = 13.26).
As there are several solid phases that could theoretically precipitate in
such a system, however, with precipitation highly dependent on pro-
cess operating conditions, some missing solid phases and their equilib-
rium equations were added to the model database, and some
unnecessary phases deemed highly unlikely to precipitate were re-
moved from it (Daneshgar et al., 2018c). Table 2 shows the list of solid
phases that were included in the database of PHREEQC for this study.

3.4.2. Model operation
Concentrations of all available ions were fed to the PHREEQC model

as input for calculations. pH levels, and the amount of NaOH added to
the system to adjust its value were also included. The output of the
model consists of ion speciation and saturation index (SI) values for
each of the solid phases defined in the database. Ion speciation data
were separately used to calculate phosphorus removal percentage for
each of the experiments.

3.5. Statistical modeling

3.5.1. Response surface methodology (RSM)
Statistical testing was conducted according to the Box-Behnken De-

sign (BBD). BBD is a specific type of experimental design introduced in
1960 (Box and Behnken, 1960), used for Response SurfaceMethodology
(RSM) analysis applications. It uses factors with at least three levels
(maximum,minimum and center point) for each experimental variable
and fits a second order polynomial model to the data. Fig. 1 shows the
schematics of the Box-Behnken Design for 3 factors, and the points at
which the experiments need be performed. BBD methodology needs
15 experiments for obtaining three predictor variables, as was the case
for our study. The levels of pH, calcium to magnesium molar ratio (Ca2
+/Mg2+) and ammonium to phosphorus molar ratio (NH4

+/P) have
been chosen as the three predictor variables to optimize struvite satura-
tion index (SI) and phosphorus removal percentage as response vari-
ables. Table 3 shows the 15 runs of numerical experiments with their
associated levels for each factor, chosen based on prior precipitation ex-
periments. The initial values of the Ca/Mg and NH4/P molar ratios were
2.33 and 1.5 respectively: the former is already quite high, and will
make calcium very competitive for phosphate precipitation in the



Table 2
List of solid phases included in the database of PHREEQC software with their corresponding Ksp values.

Solid phase Reaction pKsp at 25 °C Reference

Struvite Mg2+ + NH4
+ + PO4

3− + 6H2O ↔ MgNH4PO4.6H2O 13.26 (Taylor et al., 1963)
Monetite (DCP) Ca2+ + HPO4

2− ↔ CaHPO4 6.81 (Johnsson and Nancollas, 1992)
Amorphous calcium phosphate (ACP) 3Ca2+ + 2PO4

3− + xH2O ↔ Ca3(PO4)2.xH2O 25.46 (Musvoto et al., 2000)
Calcite Ca2+ + CO3

2– ↔ CaCO3 8.42–8.22–8.48 (Musvoto et al., 2000, Stumm and Morgan, 1981)
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system. Therefore, this valuewas chosen as the highest level considered,
and two lower values were identified (each by a −0.8 step: 1.53 and
0.73) to end testing with molar ratio lower than 1. On the other hand,
a NH4/Pmolar ratio lower than the initial onedoes notmakemuchprac-
tical sense, since such an amount of ammonium in solution would be
too low to allow struvite precipitation. In this case, the observed ratio
initial value was maintained as the lowest level, and two other higher
levels were chosen (each with step of +1: 2.5, 3.5) to test the effect of
ammonium to P ratio in solution. As far as pH, the lowest test level
was chosen as 8.5, since thiswas thepoint atwhichprecipitation started
to be significant enough to be observed and generate filterable precipi-
tate. The highest level was set as 9.5 because after this point it was ob-
served that most of the precipitate consisted of carbonates. The
second order responses for the chosen predictors are formulated ac-
cording to Eq. (6):

Y ¼ β0 þ
X3
i¼1

βiXi þ
X
ib j

βijXiX j þ
X3
i¼1

βiiX
2
i ð6Þ

The R programming language has been used to perform RSM and
statistical analysis of process data (available online as The Comprehen-
sive R ArchiveNetwork, CRAN, https://cran.r-project.org/). R is a power-
ful free software environment developed specifically for statistical
modeling, computing and graphics. It supports the use of different pack-
ageswith built-in functions designed for particular purposes. The “RSM”
package (Lenth, 2012) was used in this work, as it contains valuable
functions for BBD and RSM applications.

4. Results and discussion

4.1. Chemical equilibrium modeling

The results of PHREEQC modeling are summarized in Table 3. The
model calculated ion speciation and struvite SI values for all runs. It
Fig. 1. Box-Behnken test design scheme for 3 factors.
can be seen that all calculated SI values are positive, which suggests
that struvite precipitation could, in theory, occur in the system. How-
ever, some of these SI values are very low (e.g. Table 3, 9th run), mean-
ing that in those cases there is just a slight possibility of struvite
formation, will probable predominance of calcium phosphate and
other P-compounds in the final precipitate. Furthermore, the range of
SI values obtained during the entire set of tests is not notably high (b1
for all of them), in contrastwithmost literature results that generally re-
port higher values (specifically, N1) for struvite SI. This may be due to
the fact that most literature studies have worked with wastewater hav-
ing considerably higher phosphorus concentrations than the one used
herein (300–500 mg/l compared to around 40 mg/l in our case) due
to the fact that theseworks usually dealtwith anaerobic digesterfiltrate,
much higher in P content. Fang et al. (2016) suggested that as the initial
concentration of phosphorus increases, the value of SI will also increase.
This can be true at least up to concentrations of around 1000 mg/l at
which the SI will start to decrease.

The phosphorus removal percentage and amount of total phospho-
rus precipitated, both calculated based on the result of PHREEQCmodel-
ing, have been compared to measured values in tests, and the result is
shown in Fig. 2. Although some inaccuracies and errors are unavoidable
in a comparison between numerically calculated and experimentally
measured values, it can be concluded that the PHREEQC software had
an adequate performance on simulating the experiments. Notwith-
standing sample triplicate repetition, some part of the errors can in
fact be attributed to measurement errors in the lab (e.g. experiment 5
showing as an outlier in Fig. 2).

4.2. Analysis of final precipitates

Analysis of final precipitates using Fourier Transform Infrared (FTIR)
spectroscopy shows a very similar pattern for all experiments. The re-
sults for experiment 8 (the one with the highest amount of precipitate
obtained) are presented in Fig. 3. These confirm the presence of phos-
phate groups (PO4

3−) and water molecules within, by showing these
molecules' associated peaks at around 1000–1100 and
3500–3600 cm−1 respectively (Soptrajanov et al., 2004) (Fig. 3a, prior
to TGA). The FTIR spectrum in the range 1200–2000 cm−1 has a more
Table 3
Values of predictor variables with their coded values in the Box-Behnken design and re-
sults of PHREEQC modeling for response variables.

Run Ca/Mg NH4/P pH X1 X2 X3 SI P rem. %

1 0.73 1.5 9.0 −1 −1 0 0.48 82.46
2 2.33 1.5 9.0 1 −1 0 0.17 72.76
3 0.73 3.5 9.0 −1 1 0 0.84 82.15
4 2.33 3.5 9.0 1 1 0 0.54 72.20
5 0.73 2.5 8.5 −1 0 −1 0.54 70.28
6 2.33 2.5 8.5 1 0 −1 0.21 58.03
7 0.73 2.5 9.5 -1 0 1 0.60 92.08
8 2.33 2.5 9.5 1 0 1 0.32 86.33
9 1.53 1.5 8.5 0 -1 -1 0.13 62.40
10 1.53 3.5 8.5 0 1 -1 0.49 61.60
11 1.53 1.5 9.5 0 -1 1 0.22 88.59
12 1.53 3.5 9.5 0 1 1 0.58 88.29
13 1.53 2.5 9.0 0 0 0 0.52 75.86
14 1.53 2.5 9.0 0 0 0 0.52 75.89
15 1.53 2.5 9.0 0 0 0 0.52 75.89

https://cran.r-project.org/


Fig. 2. Comparison of predicted results (PHREEQC) with measured values, left: P removal %, right: mg of P precipitated in the system.

Fig. 3. FTIR spectra (a), TGA (b) and MS (c) of precipitates from aerobic sludge sample.
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Table 4
ICP-AES and elemental analysis of the final
precipitates.

Ions mole/kg

Ca 4.48
Mg 0.59
P 3.82
N 0.33
C 3.02

Table 5
ANOVA analysis for the saturation index (SI).

Estimate Std. Err t value Pr(N|t|)

Intercept 5.2e-01 1.2910e-03 402.7903 1.790e-12 ***
X1 −1.525e-01 7.9057e-04 −192.8989 7.104e-11 ***
X2 1.812e-01 7.9057e-04 229.2651 2.996e-11 ***
X3 4.375e-02 7.9057e-04 55.3399 3.644e-08 ***
X1.X2 2.500e-03 1.1180e-03 2.2361 0.07559
X1.X3 1.250e-02 1.1180e-03 11.1803 9.989e-05 ***
X2.X3 −2.095e-17 1.1180e-03 0.0000 1.00000
X1^2 2.500e-02 1.1637e-03 21.4834 4.053e-06 ***
X2^2 −3.750e-02 1.1637e-03 −32.2252 5.406e-07 ***
X3^2 −1.275e-01 1.1637e-03 −109.5656 1.201e-09 ***
Adjusted R-squared 0.9999
F-statistic 1.184e+04
p-value 2.809e-10
Lack of fit Pr(N|t|) 2.2e-16
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complicated explanation. Visible peaks in this range appear at 1440 and
1550 cm−1 and could be associated to the presence of H-N-H bonds.
Nonetheless, carbonate groups (CO3

2−) also show similar peaks in this
range (Berzina-Cimdina and Borodajenko, 2012). The small peak showing
at 1650 cm−1 could be related to the H-bonds of the amorphous phases,
therefore, peaks in this range seem to be the results of individual peaks
convolution, related to each group. This could suggest the contemporary
presence of struvite, ACP and calcite at the same time in the final precipi-
tate. A TGA/DTGA (Derivative TGA) analysis of precipitates (Fig. 3b)
highlighted a weight loss within their mass at around 150 °C, which
could be related to the loss of both ammonia andwater. Other twoweight
losses are identified at around650and800 °C, and these are typicalweight
losses of carbon dioxide, related to the presence of calcite (Dubberke and
Marks, 1992). Fig. 3c shows the MS analysis of the precipitate. The results
of TGA can therefore be confirmed byMS, due to the presence of a peak in
the graphwithmass-to-charge ratio of 17m/z (NH3+H2O) and two very
small peaks for the mass-to-charge ratio of 44m/z (CO2).

The ICP-AES and elemental analysis of the final precipitates (Table 4,
also referred to the outcome of experiment 8) shows the presence of P,
Mg and N that are related to the presence of struvite, although a high
amount of Ca is also detected. The higher molar ratio of Ca correspond-
ing to P could be due to calcite precipitation, in addition to ACP, justified
by the higher P content in comparison to Mg and N.
Fig. 4. Residuals versus fitted values for res
Very similar results have been obtained for practically all tests, with
themain difference laying in the intensity of the peaks in FTIR results. As
pH increases from 8.5 to 9.5, the peaks corresponding to carbonate and
phosphate groups intensify. This suggests a higher phosphorus content
in final precipitates, leading to higher P removal percentage. However, it
should be kept in mind that intensified peaks of carbonate also indicate
high calcite precipitation.

4.3. Statistical modeling and analysis

4.3.1. RSM analysis
Results of the RSM analysis were obtained for each one of the re-

sponse variables in this study. Analysis of variance (ANOVA) of the
RSMmodels shows significant tests for all parameters, the main effects
of predictors, two-way interactions and quadratic terms. Results for SI
show (Table 5) that all terms, except for two of the interactions (Ca/
Mg.NH4/P and NH4/P.pH), are significant, and should be taken into ac-
count in the model. The adjusted R-squared value is quite good (0.99),
but the ANOVA analysis shows a lack of fit, which may be attributed
to the center points of the scheme. All three center points have the
same value for the SI since they are calculated under the same condi-
tions by PHREEQC. The plot of the residuals vsfitted values (Fig. 4a) con-
firms the good fit of themodel, as there is no specific pattern in the plot.
The same analysis for the second response (phosphorus removal per-
centage) indicates that the only parameters significantly affecting it
are pH and its quadratic term (Table 6). This was an unexpected result,
especially in comparison to other literature studies. The authors believe
two reasons might be involved. One, as mentioned before, concerns the
concentrations of constituent ions, relatively low compared to similar
studies, which could lead to magnification of the pH effect, compared
to others. On the other hand, the values of the second response are ob-
tained experimentally, unlike those of the first response, which were
predicted by PHREEQC. Measurement errors and lower accuracy due
to experimental conditions for second response values, compared to
the first ones, could lead to such observed differences between fitted
models. Nevertheless, the insignificant lack of fit suggested by ANOVA,
and the residual-vs-fitted plot for the second response confirm the
goodness of the final model (Fig. 4b).

The fitted response for SI and P removal percentage is presented
with the following RSM equations:

SI ¼ 0:52−0:1525X1 þ 0:1812 X2 þ 0:04375X3 þ 0:0125X1X3

þ 0:025 X2
1−0:0375 X2

2−0:1275X2
3 ð7Þ

Prem ¼ 84:06þ 14:25X3−7:475X2
3 ð8Þ

RSM shows that for both responses, the stationary point of the fitted
response surface is a saddle point, i.e. is a type of stationary point that is
neither amaximumnor aminimum. Therefore, depending on the direc-
tion towards which one moves from that point, the response variable
can either increase or decrease (Fig. 5). Stationary points for saturation
index and phosphorus removal percentage response variables are Ca/
ponse variables, a) SI, b) P removal %.



Table 6
ANOVA analysis for P removal percentage.

Estimate Std. Err t value Pr(N|t|)

Intercept 84.0600 1.8078 46.4986 8.689e-08 ***
X1 0.3675 1.1070 0.3320 0.753379
X2 −1.7050 1.1070 −1.5401 0.184154
X3 14.2500 1.1070 12.8721 5.039e-05 ***
X1.X2 0.3600 1.5656 0.2299 0.827246
X1.X3 −2.3400 1.5656 −1.4946 0.195243
X2.X3 0.3950 1.5656 0.2523 0.810852
X1^2 −2.2450 1.6295 −1.3777 0.226765
X2^2 1.0650 1.6295 0.6536 0.542251
X3^2 −7.4750 1.6295 −4.5872 0.005908 **
Adjusted R-squared 0.9296
F-statistic 21.53
p-value 0.001754
Lack of fit Pr(N|t|) 0.1746929

Fig. 5. Saddle point obtained for the response variables.

Fig. 6.Top: Predictor variables coded values versus their distance from the stationary point, left:
point, left: SI, right: P removal %.

674 S. Daneshgar et al. / Science of the Total Environment 668 (2019) 668–677
Mg: 3.8, NH4/P: 5, pH: 9.15 and Ca/Mg:1.2, NH4/P:3.17, pH: 9.5 respec-
tively. It should be understood that for some of the predictors, the cor-
responding stationary point may lay outside the region of experiments
design. Based on these stationary points, the ridge analysis method
was then used to search for the optimum values of the response vari-
ables within the experimental design region, as described hereafter.

4.3.2. Ridge analysis
Ridge analysis is a powerfulmethod for exploring optimumvalues of

a fitted response surface, which has a stationary point outside of the ex-
perimental design region. Results of the ridge analysis for both SI and P
removal efficiency indicate the directions towards which optimum
values of the response variables may be sought and found. Fig. 6 (top)
plots coded values of predictors vs. distance from the stationary point.
It can be seen that the further one moves from the stationary point,
the only predictor variables affecting response variables are Ca/Mg
and NH4/P for SI and P removal efficiency, respectively. On the other
hand, this suggests that to optimize the SI value one needs to move
away from the stationary point towards the direction in which Ca/Mg
is decreasing. A similar pattern is true for the P removal efficiency, ex-
cept for the search direction that in this case is towards decreasing
NH4/P values. Fig. 6 (bottom) illustrates plots of estimated values of re-
sponse variables at increasing distance from the stationary point. Red
lines represent standard error values, very limited in the case of SI, con-
trary to that for P removal, for which error first decreases, and increases
afterwards as the distance from stationary point keeps increasing. This,
therefore, limits the maximum distance one may choose to consider
moving away from the stationary point. To avoid high error values for
estimated response variables, such distance needs to be kept in a spe-
cific range (between 1 and 1.5, in coded value units, to the center of
the BBD design).

Figs. 7 and 8 illustrate the perspective response surfaces for SI and P
removal efficiency, respectively. Locations of the stationary points and
the directions towards which optimum values will be obtained are
also indicated. Each surface represents the plot of a response variable,
based on two of the predictor variables intersected, where the remain-
ing third variable is at its stationary point. Fig. 7, as an example, shows
SI, right: P removal %. Bottom: Estimated response variables vs distance from the stationary



Fig. 7. Response surface perspectives for SI based on predictor variables.

675S. Daneshgar et al. / Science of the Total Environment 668 (2019) 668–677
that P removal efficiency as response variable is highly affected by pH,
and not much by the other two predictors.

Table 7 shows the optimum values (ranges) of the predictor vari-
ables obtained by RSMand ridge analysis. It can be concluded that by in-
creasing the pH value to 9 both responses are increasing. However, their
response changes past that value: above pH = 9; P removal efficiency
will still increase, but the value of struvite SI will decrease. This means
that after this point, the possibility of struvite precipitation will de-
crease, and calcium phosphate compounds will be mostly responsible
for the increase of P removal percentage. The optimum Ca/Mg ratio for
SI is 0.8, aligned with other literature findings, usually suggesting a
value of b1 (Crutchik and Garrido, 2011).

Obviously, higher P removal efficiency will need at this point higher
Ca/Mg ratios, as such conditions will promote calcium phosphate pre-
cipitation. Optimum values for the NH4/P ratio were determined as 2
and N3.5 for P removal efficiency and SI, respectively. Although the op-
timal value of NH4/P for SI is off the design region of the experiments
performed, results suggest that to achieve higher struvite precipitation
possibility, ammonium content of the solution needs to be sufficiently
higher than phosphorus content. This can be explained by the fact that
phosphorus also gets involved in other competitive reactions, mostly
for calcium phosphate compounds formation. The RSM model, how-
ever, suggests that a lower value of NH4/P ratio should be targeted to in-
crease P removal efficiency, as lower values favor precipitation of
calcium compounds other than struvite (Capdevielle et al., 2013). The
optimum SI calculated for Ca/Mg = 0.8, NH4/P = 3.5 and pH = 9 is
0.82, with an associated P removal efficiency of 84.06%. On the other
hand, Ca/Mg=1.2, NH4/P=2 and pH=9.5 will increase P removal ef-
ficiency to 90.83%, but at the same time will lead to a lower SI of 0.39.
In conclusion, keeping the Ca/Mg ratio lower than 1, NH4/P higher
than 3 and pH at 9 will achieve better struvite precipitation, although
that will occur at the cost of a lower total phosphorus removal. The
model therefore indicates that in the examined conditions, an ideal
struvite precipitation process is not sufficient alone, to maximize P re-
moval for the purpose of meeting or exceeding its removal limits, as
obtaining a purer struvite productwould necessarily lead to lower over-
all P removal efficiencies.

5. Conclusions

In this study, chemicalmodeling and Response SurfaceMethodology
were combined to investigate the optimum conditions under which
high phosphorus recovery in the form of struvite (or other compounds)
can be achieved in the wastewater treatment facility under study. A
Box-Behnken Design testing was applied with pH, Ca/Mg and NH4/P
as the 3 predictor variables. Values of the struvite saturation index cal-
culated by chemical equilibrium modeling (PHREECC) and phosphorus
removal percentage were chosen as system response variables. Ridge
analysis was used in order to investigate the ultimate optimum values
for the predictor variables when the stationary point is a saddle point.
The results showed the direction towards which one needs to move
from the obtained stationary point in order to further improve the opti-
mumvalues. BBD results showoptimumvalues of pH=9, Ca/Mg=0.8,
NH4/P N 3.5 and pH=9.5, Ca/Mg= 1.2, NH4/P=2 for SI and P removal
efficiency, respectively. It can be therefore concluded that in order to
achieve higher phosphorus recovery in the form of pure struvite, the
Ca/Mg ratio needs to be kept lower than 1 and the pH at closely around
9. For pH levels greater than this value, very high phosphorus removal



Fig. 8. Response surface perspectives for P removal percentage based on predictor variables.
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(N90%) can still be achieved, butwith a lowprobability of obtainingpure
struvite precipitation.

Combined results of RSM and chemical modeling of P compounds
precipitation could be very helpful for the design and optimization of
phosphorous removal and recovery processes, especially when the lat-
ter is actively pursued. Optimized values/ranges of significant process
variables will lead to a more efficient and productive process design
for recovering phosphorus in the form of struvite or other compounds
as valuable products.
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