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A B S T R A C T

Water quality data in the sewer system are indispensable for modelling, but rarely available, as measurements in
sewers are challenging to conduct. Optimal experimental design (OED) is a powerful tool to identify and
maximize the information content of measurement data. This paper adopts a model-based OED methodology to
efficiently plan a measurement campaign for final model calibration and validation of a new sewer water quality
model. To do so, a preliminary calibrated model of the case study is used to evaluate the information content of
different potential measurement locations and scenarios for suspended solids as measured variable. The case
study first demonstrates how OED can identify the best measurement location within a complex sewer network.
It secondly demonstrates that measuring the beginning of a big rain event results in the most information-rich
data among all scenarios evaluated. Thirdly, it analyses in detail the information content of dry weather flow
(DWF) data. In comparison to previous studies the methodology is improved by considering the actual mea-
surement error characteristics when calculating the information content of measurement data.

1. Introduction

Tackling the question of total suspended solids (TSS) in sewer sys-
tems goes beyond simply understanding the fate of particulates
throughout the sewer system itself. TSS is known as a carrier of nu-
trients, but also as a carrier of heavy metals, pesticides and pathogens
among others; moreover, it is the cause of organic and inorganic pol-
lution. TSS can thus be considered an indicator substance
(Vanrolleghem et al., 2018). Developing models for the prediction of
the TSS flux for the control of overflow structures or the optimal
management of the wastewater resource recovery facility (WRRF) has
therefore far-reaching benefits.

Water quality modelling for particulates remains challenging in the
sewer. A main reason are the complex processes involved when it comes
to TSS, as they greatly transcend mere advective transport. Particles can
settle and resuspend; depending on the condition, they can flocculate,
aggregate or break; and once settled, they can be consolidated on the
bottom of the sewer pipes. In addition, different physical, chemical and
biological processes take place both in the water phase and the sewer
sediments (Ashley et al., 2004). Modelling developments are on-going,
focusing on one or several processes to improve the understanding of

those specific processes (e.g. for gross solids, Penn et al., 2018, or for
bed load, Mohtar et al., 2018). But even if models are currently not able
to incorporate all the processes involved, they help to understand the
behaviour of TSS in sewer systems.

Independent of the TSS process modelled, data are indispensable for
model calibration and validation. In particular, calibrating dynamic
models benefits from high-resolution data as provided by online sen-
sors. Unfortunately, these data are rarely available, as measuring in the
sewer system is not very widespread and ambitious to conduct.
Furthermore, they are distributed systems that may require measure-
ments at multiple locations (Vanrolleghem et al., 1999). Measurements
in sewers not only require a considerable investment in the equipment
and the set-up of the measurement site, but also require a tight and
intensive maintenance schedule to ensure measurements of reliable
quality. The sensors need to be manually cleaned, calibrated and vali-
dated, which includes labour-intensive laboratory experiments
(Ledergerber et al., 2017).

Moreover, not all data have the same information content for model
calibration and validation. In order to calibrate a parameter, the
parameter has to be influential during the time period when the data
are collected (Dochain and Vanrolleghem, 2001). If a data set is
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available for calibration and validation of a complex model where
overparameterization might be an issue, identifiability analysis is a
method to assess the parameters that can be estimated from the given
measurement data set (Freni et al., 2011). If, however, a new data set is
to be collected, model-based optimal experimental design (OED) can
evaluate prior to the measurement campaign which potential experi-
ment of a set of proposed experiments contains the most information for
model calibration (Vanrolleghem et al., 1995). OED has mostly been
applied in laboratory scale experiments and therefore in a controlled
environment (see for example Vanrolleghem and Coen, 1995). OED
utilizes a preliminary model that has been calibrated on an initial set of
data: first, different experiments are proposed and simulated with the
preliminary model; then simulation results are evaluated in terms of
their information content (De Pauw and Vanrolleghem, 2006a). The
information content of an experiment can be calculated from the Fisher
Information Matrix (FIM), indicated in Eq. (1):
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The FIM links the information content of an experiment to the
sensitivity of the model output corresponding to the measurements yi
with respect to the parameters studied θj for the timesteps tk during the
period of the experiment (time step 1 to N ) and a square matrix Q t( )k

with user-supplied weighting coefficients (De Pauw and Vanrolleghem,
2006a). Q t( )k is typically chosen as the inverse of the measurement
error covariance or as the identity matrix (Vanrolleghem et al., 1995).
An important characteristic of the FIM is the fact that the inverse of the
FIM corresponds to the parameter estimation error covariance matrix V
(Dochain and Vanrolleghem, 2001), thus allowing the direct assessment
of the confidence region of the calibrated parameters. Different criteria
exist to evaluate the information content of the proposed experiments,
see for example Mehra (1974).

This paper transcends the laboratory scale use of OED by applying it
to design a measurement campaign in a full-scale sewer environment. It
studies how the potential information content of a new measurement
data set can be optimized. It starts from the point that a first mea-
surement campaign has already been conducted without OED. This
allows calibrating and validating a preliminary model and approx-
imating the measurement error. A preliminary model is required for
planning the second measurement campaign with OED in the most ef-
ficient way, making optimal use of the investments, such as measure-
ment equipment and working hours for maintenance. In addition, the
results of the first measurement campaign permit approximating the
measurement error for the weighting coefficients of the square matrix
Q t( )k , rather than working with the identity matrix assumption as
previous studies (Vanrolleghem et al., 1995; Freni and Mannina, 2012).

This paper illustrates how OED can be adopted considering an ap-
proximation of the measurement error to select the best location for
measurements and to the best timing of the measurement scenarios. In
the end a more detailed analysis of the experiments performed under
dry weather flow (DWF) conditions highlight the importance of con-
sidering the measurement error.

2. Material and methods

2.1. Case study

2.1.1. Description
The studied sewer system of the WRRF “Clos de Hilde” (CdH) is

located in the southern parts of Bordeaux, France. The WRRF has a
treatment capacity of approximately 400 000 PE and the catchment
covers about 8 000 ha. The catchment is shown in Fig. 1 and is located
on both sides of the river Garonne, which is the main receiving water.
The sewer system consists of both combined and separate sewers. For
more details, see Ledergerber et al. (2017). Local regulations for the

WRRF include TSS, COD and BOD5 concentrations thresholds at the
effluent (JORF, 2015). And importantly, this recent decree (JORF,
2015) sets for the first time combined sewer overflow (CSO) water
quality standards that cities will have to apply in the near future.

2.1.2. Available data and models
Data regarding water quantity (flow) are available throughout the

sewer system and provided by the local utility. Several continuous flow
measurements exist, mainly at pumping stations. In addition, a cali-
brated hydraulic model, implemented in Mike Urban (DHI, Denmark),
is available for the studied catchment.

Water quality data is generally collected by the utility only at the
WRRF. In the framework of this project, a first measurement campaign
to obtain an initial data set for water quality in the sewer system was
conducted in 2017.

2.1.3. Measurement equipment and installation
Two Automatic Measurement Stations (AMS; RSM30, Primodal

Systems, Hamilton ON, Canada) are available on site (Rieger and
Vanrolleghem, 2008). Both are equipped with two TSS sensors based on
different measurement principles. One sensor is a turbidity meter (Vi-
soTurb 700 IQ, WTW, Weilheim, Germany), which measures the in-
tensity of light scattered at 90 degrees as a beam of light passes through
a water sample. The second sensor is a spectrometer (spectro::lyser,
s::can Messtechnik, Vienna, Austria), measuring absorption spectra in
the UV/vis range. The sensors are calibrated and validated with la-
boratory TSS samples. To collect the data for the preliminary model
during the first measurement campaign, one AMS was installed at the
inlet of the WRRF CdH, while the other AMS was installed at the major
pumping chamber Noutary (NT). The location of the sensors is in-
dicated in Fig. 1. For more details on the installation at the measure-
ment sites, see Ledergerber et al. (2017). The data quality of the mea-
surements was assured by applying a univariate data quality assessment
method (Alferes et al., 2013) resulting in validated high frequency data
(minimum one value per three minutes).

2.2. Preliminary model

2.2.1. Modelling approach and software
The preliminary model, with which the OED is applied, includes the

catchments and the sewer network of the WRRF CdH.
The catchment model used is the KOSIM-WEST model with the

extensions proposed by Pieper (2017). It includes sub-models for flow
and pollution generation during wet weather flow (WWF) on the one
hand and DWF on the other hand. The two main extensions regard
firstly the possibility of routing DWF with linear reservoirs in series and
secondly the splitting of the WWF in two parallel sets of linear re-
servoirs, which allows the user to capture the varying dynamics,
especially in the context of larger, aggregated models (Pieper, 2017).

The sewer model uses the so-called particle settling velocity dis-
tribution (PSVD) linear reservoirs in series model (Maruéjouls et al.,
2015). From a hydraulic perspective, it is a comparably simple mod-
elling approach, but allows considering advective transport, settling
and resuspension of ten different particle classes keeping the compu-
tational time very competitive. The distribution of settling character-
istics of a TSS sample can be measured with the ViCAs experiment,
resulting in the PSVD curve of a sample (Chebbo and Gromaire, 2009).
Based on these measurements the total TSS is fractionated into the ten
classes of the sewer model. The particles of a certain class settle with
the settling velocity characteristic of their class. The resuspension rate
rresusp (d−1) is calculated using sigmoidal Eq. (2), where QIn (m3/d) is
the inflow of the linear reservoir; rresusp,max (d−1) corresponds to the
maximum resuspension rate reached for big inflows; Qhalf (m3/d) re-
presents the inflow at which half of the resuspension rate is reached and
n (−) is the exponent defining steepness of the sigmoidal curve. The
parameters rresusp,max, Qhalf and n have to be calibrated for each sewer
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stretch. The model is implemented in the software WEST by DHI
(Horsholm, DK).
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2.2.2. Calibration and validation of preliminary model
The preliminary model for OED was calibrated for water quantity

(flow) and water quality (TSS). The water quantity model for WWF was
calibrated and validated (RMSE=0.058m3/s) on the existing cali-
brated Mike Urban by DHI model. Only the DWF parameters had to be
recalibrated on actual flow measurements, as the Mike Urban model
focused on WWF. The validation period on actual flow measurements
during a 4-day period, including WWF, is indicated in Fig. 2 (left-hand
side) and resulted in a RMSE of 0.064m3/s.

The preliminary water quality calibration and validation was con-
ducted using validated TSS data obtained during the first measurement
campaign. The time series were chosen based on an analysis of quality
of the available data. A coherent measurement set was selected in
which high quality data from both AMS were available at the same
time. The model was calibrated on a 10-day period including two rain
events and was validated for the same 4-day period as the data set used
for water quantity model validation, also indicated in Fig. 2. Validation

resulted in a RMSE of 58mg TSS/l.

2.3. OED methodology

2.3.1. Overview of methodology
As mentioned in the previous Section 1, the core of OED is the

calculation of the FIM and the evaluation of the experiments for a
specific criterion. However, OED has to be viewed in a broader context.
Fig. 3 shows the OED methodology applied for this case study. It was
inspired by many previous studies (e.g. De Pauw and Vanrolleghem,
2006a; Vanrolleghem and Coen, 1995; Vanrolleghem et al., 1995). The
methodology is divided into two phases: the preparation phase (left)
and the actual experimental design phase (right).

2.3.2. Preparation phase
The intended outcome of the preparation phase is a preliminary

model, with which (a) future planned experiments can be evaluated, (b)
the measurement error can be characterized, and (c) initial values can
be assigned to the set of parameters for which the OED and, ultimately,
the measurement campaign is conducted. The preparation phase con-
sists of three steps, the first of which is inherent to all modelling tasks
(Dochain and Vanrolleghem, 2001): identifying the purpose of the
model and with it the modelling objectives as well as the choice of

Fig. 1. Catchment and Sensor Installation. Catchment of the WRRF Clos de Hilde (left side) with an illustration of the installation of the AMS at the measurement site
Noutary (right side).

Fig. 2. Model Validation. Validation of preliminary model for water quantity (left-hand side) and water quality (right-hand side).
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corresponding model structure. The second step is to evaluate the data
requirements for model calibration and validation. The data for the
preliminary model have to be collected, which can include either ob-
taining available data or conducting a first measurement campaign if
not sufficient data are available. An important aspect of this step is to
analyse the measurement data and characterize the measurement error.
The third step of the preparatory phase is to build, calibrate and vali-
date the preliminary model and identify the parameter set for OED.
Manifold references to calibration and validation criteria exist (see for
example Hauduc et al., 2015).

2.3.3. Experimental design phase
The output of the second phase, the actual experimental design

phase, is the optimally designed measurement campaign in view of
recalibration of the identified parameters. This phase consists of three
different steps. The first step is to propose experiments that could po-
tentially be conducted. In the context of a sewer system, this step is
better described as the identification of the measurement scenarios, as,
unlike in laboratory conditions, the measurement conditions as such
cannot be influenced, but the timing and location of the measurements
can be chosen. The proposed scenarios have to be realistic with respect
to the available measurement equipment, the duration of the campaign
and the work required for implementation of the experiment. The
second step is then to evaluate the proposed scenarios in terms of ex-
pected information content, taking the proper measurement error into
account. Given the results of the OED evaluation criteria for the dif-
ferent scenarios proposed, the accordingly optimized measurement
campaign can be implemented.

2.4. Additional information calculation

2.4.1. Considered parameters for OED
The overall aim of the OED for this model is to improve TSS pre-

dictions at the WRRF and, during WWF, also at CSOs. As water quantity
parameters are constrained by the water balance and were felt to be
already well calibrated on the basis of the Mike Urban model, only the
parameters for water quality were considered for OED. The 29 para-
meters affecting water quality are present both in the catchment and
the sewer sub-model. The parameters to be recalibrated are the fol-
lowing parameters: (i) in the catchment sub-model, the mean con-
centrations under DWF, WWF and infiltration flow, and (ii) in the sewer
sub-model, the re-suspension parameters in each of the series of linear
reservoirs (rresusp,max, Qhalf and n). As the particle setting velocity

distributions were obtained from good quality laboratory ViCAs ex-
periments, they were not considered as parameters to be included in the
design of the second measurement campaign. Also, in contrast to other
OED studies, e.g. Vanrolleghem et al. (1995), the initial conditions of all
state variables of the model were not part of the OED. Indeed, they were
not relevant for the simulation results as several days of warm-up were
used in the simulations before the actual scenarios were simulated.

2.4.2. Calculation of parameter sensitivity
To complete the Fisher Information Matrix elements, the local

sensitivity was calculated at each anticipated measurement point for
the second measurement campaign as the central difference, according
to Eq. (3) (De Pauw and Vanrolleghem, 2006b). The perturbation factor

θΔ j to calculate the sensitivity was +/− 1% of the parameter value for
each of the parameters θj.
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2.4.3. Definition of measurement error of TSS
As indicated in Section 2.1.3 the data obtained in the first mea-

surement campaign of 2017 was filtered using the method developed by
Alferes et al. (2013). The comparison of the raw and the filtered data
allows characterizing the measurement error ε| |meas,TSS, which is defined
as the absolute difference of the filtered (datafiltered) and the raw data
(dataraw), as in Eq. (4):

= −ε t| | (t) |data (t) data ( )|meas,TSS filtered raw (4)

2.4.4. Evaluation criterion for OED
For this study the D-optimal design criterion in Eq. (5) is chosen

among the available scalars that can be calculated from the FIM
(Mehra, 1974). As the FIM is the inverse of the parameter estimation
error covariance matrix, maximising the determinant of the FIM results
in minimizing the volume of the covariance matrix, thus minimizing the
parameter estimation error (Dochain and Vanrolleghem, 2001).

max[det(FIM)] (5)

3. Results

First, some general information about the results is presented in
Section 3.1. In the following Section 3.2 the optimal location of the

Fig. 3. OED Methodology. Proposed schema for the OED methodology.
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AMS is evaluated and then in Section 3.3 different scenarios for the
chosen optimal location are studied. In the final Section 3.4 DWF
measurements are studied in more detail.

3.1. General results

3.1.1. Measurement error estimation of TSS
Based on the assumption that the relative measurement error α does

not depend on the TSS concentration (ConcTSS), the absolute measure-
ment error ( ε| |meas,TSS), as defined in Section 2.4.3, depends linearly on
ConcTSS:

= ∗ε α| | Concmeas,TSS TSS (6)

This relationship can be observed in Fig. 4 for the TSS measure-
ments at the pumping station NT.

The coefficient α was obtained by fitting the above equation using
least squares regression for both measurement locations: 0.09 for the
inlet of the WRRF CdH and 0.18 for the pumping station NT. This
difference between locations confirms the experience of the far more
challenging measurement conditions in the sewer than at the WRRF.

3.1.2. Degrees of freedom and constraints for OED
In order to be able to identify the best possible experiments, here-

after named scenarios for the reasons mentioned in Section 2.3.3, the
degrees of freedom of the measurement campaign had to be identified.
They include the location of the AMS and thus the location of the
measurement set-up as well as the timing of the measurement, differ-
entiating between WWF and DWF and identifying different timings for
both situations. Knowledge of the typical performance of the used
measurement equipment and anticipation of different measurement
conditions allow proposing measurement scenarios.

The experience of the first measurement campaign showed that
maintenance of the sensors is of fundamental importance and that
sensors give only reliable data for a relatively short period of time after
a maintenance event (Ledergerber et al., 2017). For the given case
study, it is assumed that, in the worst case, the reliable period lasts for
only about 12 h after a maintenance event. So, scenarios of 12 h were
planned with a measurement interval of three minutes, corresponding
to the storage interval for the online sensors.

Different measurement scenarios were then created for the typical
DWF pattern. For DWF, the day is split into day and night conditions,
splitting at 09:30, respectively 21:30, assuming that a workday starts at
09:00 at the site and sensors would have received their routine main-
tenance and be ready for use by 09:30. Measurement scenarios were
also defined for WWF conditions, considering that, in contrast to DWF
conditions, each rain event is different. To have representative rain
scenarios, the proposed experiments were simulated using actual rain
data of the previous measurement campaign, conducted in 2017. One
big summer storm (cumulative 24 h rainfall: 24.9mm) was chosen in
which multiple overflows were taking place in addition to a smaller rain

event (cumulative 24 h rainfall: 2.4 mm). Similar rains were observed
several times over the summer of 2017. In total seven different sce-
narios were proposed, summarized in Table 1.

3.2. OED for evaluation of measurement location

For the planned measurement campaign, the OED methodology was
used to re-evaluate the original location of the AMS at NT and CdH with
respect to the information content of the measurement data. As men-
tioned initially, two AMS were available for the measurement cam-
paigns. During the first measurement campaign in 2017, which was
designed based on expertise and practical experience, one AMS was
installed at the inlet of the WRRF CdH and the second was placed at the
pumping station NT in the sewer system. The location of the AMS in the
sewer system was re-evaluated, using seven other locations as possible
locations (see Fig. 5). The evaluated locations correspond all to
pumping stations or retention tanks upstream of the WRRF in the sewer
system. The first AMS was always maintained at the inlet of the WRRF
since this is the final outlet of the sewer system. As preliminary mea-
surements were only available at the pumping station NT and the inlet
of the WRRF CdH, the measurement error could only be estimated for
those two locations. For the OED calculations, it was assumed that the
measurement error found at NT was representative of the other seven
locations in the sewer system.

For the evaluation of the location of the AMS, timing scenario 6
(beginning of big rain event) was chosen, as this was expected to be the
best scenario independent of the location chosen, given the large TSS
dynamics occurring (this will be confirmed in Section 3.3). Fig. 6 il-
lustrates how the value of the D-optimal criterion changes according to
the location of the AMS (for timing scenario 6). The location of the AMS
at the pumping station NT chosen for the first measurement campaign
ranks third among the eight identified options. The two places that rank
better are located further upstream and contain information about the
sewer system on the right bank of the Garonne, which NT lacks.

For the second measurement campaign a re-location of the AMS
from NT to either CV&JR or JR was therefore considered. A closer
evaluation of the sites, however, revealed that those locations were not
practical, either due to the elevated risk of vandalism (JR) or accessi-
bility (CV&JR). The location of the AMS for the second measurement
therefore remained at NT as it was the best possible location of those
that were practically feasible.

3.3. OED for evaluation of measurement scenarios

Having both location and timing as degrees of freedom (see Section
3.1.2) results in a two-dimensional problem, as the evaluation of the
timing scenarios depends on the location of the AMS chosen. Therefore,
it was first analysed how often a timing scenario is evaluated as the
most information-rich scenario for all possible measurement locations
before analysing the results in more detail for the chosen location of the
AMS. In the last step the influence of the distance from the measure-
ment point to the series of linear reservoirs on the identifiability of their
respective local parameters was studied.

Fig. 4. Measurement Error. Linear dependency of absolute measurement error
ε| |meas,TSS on TSS concentration at pumping station NT.

Table 1
Description of scenarios and resulting values of the D-optimal criterion for
chosen AMS location (NT and CdH).

# Description scenario Characteristics D-Opt value

1 Day long DWF period Preceding DWF: 7 days 5.7E−142
2 Night long DWF period Preceding DWF: 7 days 4.2E−127
3 Day following WWF Preceding DWF: 0 days 2.6E−136
4 Night following WWF Preceding DWF: 0 days 3.0E−127
5 Entire small rain event 24 h cumulative rain: 2.4 mm 3.9E−115
6 Beginning big rain event 24 h cumulative rain: 24.9 mm 9.0E−91
7 Tail big rain event 24 h cumulative rain: 24.9 mm 2.7E−117
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3.3.1. Most Information-rich scenario
Fig. 7 shows for how many locations a timing scenario was the most

information-rich among the eight different locations. The analysis was
conducted once for all DWF and WWF scenarios and once for the DWF
scenarios only (scenario 1–4). The results show that, independent of the
location chosen, the best-case scenario is always scenario 6, which

corresponds to the beginning of a big rain event. If the analysis is
conducted for the DWF scenarios only, the results show that in seven
out of the eight possible locations, scenario 4 (Night following WWF)
contains the most-information rich data. The actual information con-
tent (value of the D-optimal criterion) depends on the location and is
analysed in detail for the chosen location of the AMS in the next Section
3.3.2.

3.3.2. Detailed analysis for chosen location
As concluded in Section 3.2, the best practically feasible locations of

the two available AMS is the combination of NT and CdH, for which the
D-criterion results are summarized in Table 1. One will notice that the
absolute values for the D-criterion are very low in absolute terms, but
this is due to the units used for the variables and parameters of the
model. Optimality of the experiment does not depend on the absolute
values, but on the ranking of the D-values.

For the DWF scenarios, only 28 parameters were considered, as the
WWF TSS runoff concentration can only be estimated during WWF
scenarios. The tabulated results show that the values of the D-criterion
are by orders of magnitude higher for the WWF scenarios than for the
DWF scenarios. The measurement campaign has therefore to focus on
capturing wet weather conditions. It is also to be noted that the be-
ginning of a big rain event is by far richer in information than the tail of
the event. In case of DWF-only conditions, the results show that data
collected during night (21:30–09:30) are richer in information content
than during day (09:30–21:30).

As the inverse of the FIM, V , corresponds to the parameter esti-
mation error covariance matrix, the relative parameter estimation error
of each parameter can be evaluated (the squared parameter estimation
errors of the parameters j, σj

2, are the diagonal elements of the matrix
V). The resulting relative parameter estimation error (σ θ/j j) is shown for
three timing scenarios in Fig. 8, the worst-case scenario 1 (top), the
best-case DWF scenario 2 (middle) and the overall best-case scenario 6.
The figure clearly shows that parameter identification with only DWF

Fig. 5. Potential AMS Locations. Schema of the “Clos de Hilde” catchment with eight different identified locations of AMS.

Fig. 6. Comparison AMS Locations. Information content for different locations
of the second AMS in the sewer (for timing scenario 6).

Fig. 7. Evaluation Best Scenario. Number of location pairs for which the given
scenario provided the most information content among all scenarios or all DWF
scenarios.
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measurements, even under the best conditions, is very difficult. Many
parameters remain unidentifiable with a parameter estimation error
much larger than the parameter value itself ( ≫σ θ/ 1j j ). An example for
this is parameter 5, the flow at which half of the resuspension rate is
reached (Qhalf ) for an upstream series of linear reservoirs. In the in-
formation-poorest scenario 1, the parameter has a parameter estimation
error approximately 12 times its own value, while in the best-case DWF,
this ration is only reduced to approximately 3. Analysing scenario 6 in
Fig. 8 shows, on the contrary, that the error on the parameter estima-
tion reduces dramatically for most parameters when measurements are
conducted under WWF conditions. For instance, parameters 1–6 can
now be estimated with a parameter estimation error that is less than
20% of their respective parameter value, an excellent result for water
quality process parameters. It must be accepted though that some
parameters remain difficult to identify, which is further studied in the
next Section 3.3.3.

3.3.3. Parameter estimation error and distance from the measurement point
For the chosen location of the AMS and the best-case scenario 6, the

parameter estimation error is studied with respect to where in the
model the parameter occurs, i.e. in which sewer stretch the parameter
occurs in the model. The hypothesis analysed here is that the farther the
sewer stretch is from a measurement point, the lower the information
content relative to the parameter occurring in that stretch is. The dis-
tance measure that is adopted here is the number of series of linear
reservoirs between the sewer stretch of interest and the closest down-
stream measurement point. For this the layout of the case study shown
in Fig. 5 is schematized in Fig. 9, indicating the distance from a mea-
surement point by levels, which indicate the number of series of linear
reservoirs. Global parameters are primarily the different TSS con-
centrations in the catchments, which determine the global mass balance
and are thus considered to be “Level zero” parameters.

In Fig. 10 the distance to the closest downstream measurement
point is given for the parameters ordered with respect to their error
estimation σ θ/j j. This figure shows a marked tendency for the parameter
estimation error to increase with the distance to the closest downstream
measurement point. Global parameters (Level zero) and parameters

close to a measurement point can generally be better estimated.

3.4. OED for optimal 12 h measurement segment of DWF day

Following the analysis of the scenarios in the previous section, this
last analysis tackles the question of which 12 h segment during stable
DWF flow conditions contains the most information. Fig. 11 shows the
D-optimal value for every 12 h segment following the full hour of the
day. As the previous section already suggested, the information content
is highly variable during the day and is lower during measurement
segments starting during day hours than during night hours. The 12 h
segment with the most information content starts at 02:00.

4. Discussion

In the results Section 3.2, this paper showed how OED can be used
to identify the optimal measurement location. The results showed that
the chosen location of the measurement station in the sewer, NT,
ranked third. The better-ranked locations with regard to information
content, CV&JR and JR, were unfortunately not feasible as location of
the AMS for practical reasons. This finding about the location of the
AMS is consistent with the location of the sewer stretch in which
parameters occur that have a large parameter estimation error (see
results Section 3.3). It was demonstrated that parameters occurring in
sewer stretches located at a large distance to the closest downstream
measurement point (high level) are difficult to estimate. In general,
those stretches are located on the right bank of the river Garonne.
Moving the second AMS to CV&JR or JR would indeed have allowed
collecting more information about the parameters in those stretches.

In the results Section 3.3 different measurement scenarios were
analysed for the chosen location of the AMS (CdH and NT). It illustrates
that for the same effort, i.e. a measurement campaign of 12 h, data of
markedly different information content can be obtained depending on
the scenario. It was shown that data collected under WWF conditions
generally contain more information than those under DWF, with the
beginning of a big rain event containing the most information. This is
due to the important dynamics occurring during WWF conditions and
the first-flush phenomenon observed for the given case study. The
scenario analysis for DWF showed that the measurement campaign
starting at 21:30 contains more information than the one starting at
9:30. This might be because the TSS concentrations during the night are
generally lower than during daytime, which means that the measure-
ment errors are smaller. Thus, the information content per TSS value is
higher for the studied parameters.

The results Section 3.4 analysed all theoretically possible 12 h

Fig. 8. Relative Parameter Estimation Error. Relative parameter estimation
error for the worst-case scenario 1 (top), the best-case DWF scenario 2 (middle)
and the overall best-case scenario 6 (bottom), with a zoom on the errors for the
best experiment (scenario 6).

Fig. 9. Definition Distance. Distance from the closest measurement point, in-
dicated as the number of series of linear reservoirs between the measurement
point and the sewer stretch in which the parameter of interest occurs.
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measurement segments starting at a full hour of a DWF day. Those
results confirmed the findings of the previous section and show that the
later during a workday the 12 h measurement campaign starts, the
more information content the measurement data will have. The analysis
also demonstrated that the information content of a measurement
segment starting at 02:00 would contain most information, but those
segments are not feasible from a practical point of view due to acces-
sibility issues of pumping stations at night.

For the planning of the measurement campaign, it was imposed that
the maintenance of the sensors must be performed prior to rain events
because, if the sensors fail during a rain event, no maintenance inter-
vention can be conducted for safety reasons. Since the beginning of the
rain event is the critically important, this is quite acceptable. In case
DWF conditions prevail, the measurement campaign has to start late
during the workday, in order to capture the information-rich night
values to the fullest extent practicable. Having all of this information
allows for planning a measurement campaign in its most efficient way,
as it clearly indicates when the measurement campaign should be
prepared and started. This ensures the optimal use of the measurement
equipment and the limited resources during the campaign.

5. Conclusions

This research demonstrates that adaptation of model-based OED to
complex sewer models is possible. It also shows that OED is a valuable
tool for planning measurement campaigns in the challenging sewer
environment as it allows making optimal use of the investments ne-
cessary for such a campaign. In comparison to posterior analysis of a
measured data set, OED evaluates the best location and timing for

measurements prior to the actual measurement campaign. This would
otherwise need to be planned by expert opinion only. OED allows to
objectively rank different measurement locations with respect to their
information content. This enables balancing how far upstream or
downstream an AMS should be placed. With respect to the timing
scenarios, both expert opinion and OED identify WWF events as more
important than DWF conditions. However, OED also differentiates be-
tween the importance of a small versus a big rain event and their be-
ginning versus their tail. From a methodological point of view, it was
demonstrated that considering the real measurement error (in this case
constant relative error) affects the evaluation of the DWF scenarios.
This would not have been possible without the mathematical tools
provided by OED.
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Fig. 10. Parameter Location. Parameters ordered from best to worst parameter error as function of the distance to the closest downstream measurement point.

Fig. 11. DWF Evaluation. D-optimal evaluation of the information content of a 12 h measurement campaign, starting at every full hour of the day.
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