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The future of WRRF modelling - outlook and challenges
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ABSTRACT

The wastewater industry is currently facing dramatic changes, shifting away from energy-intensive
wastewater treatment towards low-energy, sustainable technologies capable of achieving energy
positive operation and resource recovery. The latter will shift the focus of the wastewater industry to
how one could manage and extract resources from the wastewater, as opposed to the conventional
paradigm of treatment. Debatable questions arise: can the more complex models be calibrated, or
will additional unknowns be introduced? After almost 30 years using well-known International Water
Association (IWA) models, should the community move to other components, processes, or model
structures like ‘black box’ models, computational fluid dynamics techniques, etc.? Can new data
sources - e.g. on-line sensor data, chemical and molecular analyses, new analytical techniques,
off-gas analysis — keep up with the increasing process complexity? Are different methods for data
management, data reconciliation, and fault detection mature enough for coping with such a large
amount of information? Are the available calibration techniques able to cope with such complex
models? This paper describes the thoughts and opinions collected during the closing session of the
6th IWA/WEF Water Resource Recovery Modelling Seminar 2018. It presents a concerted and
collective effort by individuals from many different sectors of the wastewater industry to offer past
and present insights, as well as an outlook into the future of wastewater modelling.
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THE NEED FOR QUESTIONING THE STATUS QUO

The wastewater industry is currently facing dramatic
changes, shifting away from energy-intensive wastewater
treatment towards low-energy, sustainable technologies
capable of achieving energy- positive operation and resource
recovery. The latter will shift the focus of the wastewater
industry to the extraction of resources from the wastewater,
as opposed to the conventional paradigm of treatment.
Thanks to the pioneering developments of the past few dec-
ades, process models were established in the wastewater
industry for designing, upgrading, and optimizing waste-
water treatment plants. However, due to the ever
expanding and ambitious objectives of wastewater manage-
ment, the scope and structure of the process models of the
next generation need to be re-defined to address new chal-
lenges. The new and wider vision for water resource
recovery facilities (WRRFs) includes water sanitation, pro-
tection of water sources and the environment, energy
reduction and production, and resource recovery. Conven-
tional process models must be extended with new
approaches such as thermodynamic, hydraulic, or economic
models, just to name a few.

During the past few years, different approaches in the
wastewater modelling field have been proposed, presenting
new solutions to fulfil the new requirements for WRRFs.
Approaches describing physicochemical models (Batstone
et al. 2012), energy and economic cost models (Rahman
et al. 2016), greenhouse gas models (Mannina et al. 2016)
or methods about how to integrate all these aspects in a
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plant-wide context (Solon et al. 2017) have been recently
proposed.

Moreover, hydrodynamics and mass transport have
become a crucial point for the optimum design and oper-
ation of WRRFs or novel technologies dedicated to
resource recovery. In addition to simulating hydraulic
phenomena occurring in WRRFs (Samstag ef al. 2016), com-
putational fluid dynamics (CFD) models show a great
potential in physicochemical processes where gaseous,
solid, and aqueous phases interact and can be a very valu-
able tool for, for example, the optimization of the aeration
process or the recovery of valuable products from waste
streams by crystallization.

However, simplicity (given by the well-known and
generally-accepted International Water Association (IWA)
Activated Sludge Model (ASM), and Anaerobic Digestion
Model (ADM)) vs complexity (proposed in new models
with greater numbers of components, processes, and par-
ameters) is a question for which there is no clear
agreement in the modelling profession (Lizarralde et al.
2018). How complex should the models be? Can the more
complex models be calibrated (i.e. fitted to data and process
observations), or will additional unknowns be introduced?
After almost 30 years using well-known IWA models,
should the community move to other components, pro-
cesses, or model structures like black box models, CFD
techniques, etc.? Can new data sources - e.g. on-line
sensor data, chemical and molecular analyses, new
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analytical techniques, off-gas analysis - keep up with the
increasing process complexity and a growing need for pro-
cess understanding? Are different methods for data
management, data reconciliation, and fault detection
mature enough to deal with such a large amount of data?
Are the available calibration techniques able to cope with
such complex models?

This paper represents a concerted and collective effort
by individuals from many different sectors of the wastewater
industry to offer insights, as well as an outlook into the
future of wastewater modelling.

THE LIMITATIONS AND USEFULNESS OF ASMS

A useful process model has the level of complexity that is
required to mimic the process aspects that are of importance
to the investigation at hand. The complexity of the model is
the result of several things, such as the temporal and spatial
scales involved in the simulation. For example, oxygen
dynamics take minutes while microbial population
dynamics take weeks; the micro-scale of processes inside a
floc are important but are frequently neglected (Picioreanu
et al. 2007). The most significant impact on model complex-
ity is the number of state variables that define relevant
biological, chemical, and physical conversion processes.
ASMs were developed as a tool for the design and operation
of biological wastewater treatment (Henze et al. 2000). They
are an effective process evaluation tool for determining the
effluent composition as well as process requirements for a
facility such as aeration demand, recycle pump flow require-
ment and sludge production as a function of time-varying
influent characteristics. The inherent flexibility of the
matrix model structure of ASMs facilitates the incorporation
of additional microbial or chemical processes such as
deammonification (Dapena-Mora et al. 2004), methane
oxidation (Daelman et al. 2014), sulfide conversion (Lu
et al. 2012), and cellulose conversion, which were not
originally included in the ASM formulations. Three decades
of applied dynamic-mechanistic models have produced a
set of values for model parameters (specific growth
rates, decay rates, yield coefficients, etc.). Most of these
parameters are not site-specific, which allows for the appli-
cation of the models to situations where no existing
performance data exist (e.g. modelling treatment plants
that are not yet built).

Proponents of ASMs recognize the models’ limitations
due to knowledge gaps or the simplification of complex pro-
cesses. For example, there are still some relevant processes

such as the formation of nitrous oxide (a potent green-
house gas (GHG)) and the conversions within the biological
phosphorus removal process (due to the variability of phos-
phate accumulating organism metabolics (Gebremariam
et al. 2011), which are not understood clearly enough to be
put into a model for use in simulations.

Two limitations of ASMs, as clearly outlined in the lit-
erature, are (1) a lack of ability to properly account for
solids retention times (SRT) and (2) an inability to predict
sludge settleability. The recommended useful range of the
models is SRTs from 3 to about 30 days (Henze et al
1987). The mechanism of bioflocculation is not well-under-
stood and this precludes an accurate prediction of effluent
suspended solids (Jimenez ef al. 2005, 2007). This is true at
any SRT but is particularly relevant for high-rate systems
running at SRTs less than 3 days (Smitshuijzen et al. 2016).
There has been a growing interest in high-rate processes
with the intent of maximizing carbon capture by biofloccula-
tion while minimizing carbon oxidation. Although sludge
settleability is relatively simple to measure, this parameter
cannot be easily predicted because there is still a gap in
the fundamental understanding of floc formation. Settling
models have been coupled with ASMs, but they lack theor-
etical descriptions of observed settling behaviour. Moreover,
they are oriented to predict return sludge concentrations but
not effluent concentrations.

A further limitation of ASMs is that only one microbial
group (one state variable) is considered for a single process
(e.g. nitrification). At best, extended ASMs are used in which
a distinction is made between ammonium oxidizing and
nitrite oxidizing bacteria (Wyffels ef al. 2004), while a wide
range of species are able to carry out nitrification, all of
which are reduced to a single organism behaviour that is
reflected in model parameter settings (Vannecke & Volcke
2015). Explicitly considering this variation, however, is gen-
erally not required to achieve useful predictions of the
macroscopic reactor behaviour (e.g. representation of efflu-
ent quality). Furthermore, the half-saturation values used
in ASMs do not truly represent intrinsic affinity constants
but rather lump the effect of diffusion and spatial gradients
of local environments (Arnaldos et al. 2015; Baeten et al.
2018). Substrate diffusion is largely dependent on floc prop-
erties which are a function of the local shear conditions,
cohesion forces related to the exopolymeric substances
characteristics, and turbulence intensity (Chu et al. 2003).
This aspect of ASMs limits the model’s ability to predict
the outcomes of processes like simultaneous nitrification-
denitrification as well as the conversion of micropollutants
in biological wastewater treatment systems.
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Despite these limitations, with appropriate calibration,
ASMs can provide accurate results based on the data
entered into the model. The actual conditions at a facility,
however, will rarely match the exact values used in the mod-
elling effort. Thus, it is important that informed judgment is
used regarding the applicability and accuracy of the model
results. Fortunately, the relative behaviour of modelled
states obtained from ASM-based simulations is typically
quite accurate even if the numerical values themselves
may not be. Understanding the qualitative response of the
process to changes in facility operation or potential designs
is often sufficient. This means that the extent and rigour of a
model calibration exercise will depend on the model
application.

Historically, uncalibrated ASMs have proven very useful
as well. Models used for understanding mechanisms and for
studying influencing factors require little or no calibration.
For example, modelling N,O emissions may not be used
for exact prediction but are useful in identifying N,O for-
mation mechanisms, which in turn are crucial for
evaluating greenhouse gas mitigation strategies. Such
models are used not only for research but also for teaching
purposes. The use of models for knowledge transfer
cannot be understated. The process model that is shared
and valued by multiple stakeholders facilitates effective
communication and generation of insight. In addition,
ASMs are used for knowledge continuity (e.g. when key
staff members enter or leave a project team). The use
of ASMs formed an instruction and training manual for
this field for many novice engineers. As these engineers
develop their skills, they, in turn, modify and expand
existing ASMs, or develop competing model structures
altogether. In this way, new knowledge is shared and
strengthened over time.

It is almost always the misuse of a model that results
in some users deciding that the model is not useful. This
misuse results primarily from three sources: (1) a lack
of understanding of the model structure and under which
conditions it is valid, (2) improper calibration, normally
from using default wastewater fractionation parameters, or
(3) believing the model results are a perfect representation
of the true system behaviour. The first and second items
are reasonably well-recognized by most of the model-use
community; however, the third item is often ignored or forgot-
ten, even among frequent users of simulators. It is always
essential to keep in mind the original modelling objective
and the modelling assumptions defining the boundaries
of applicability.

THE IMPACT OF DATA ABUNDANCE ON WRRF
MODELLING

The largest impact of an increased abundance of data on
WRRF modelling is in the inclusion of more data and non-
traditional data sources into modelling and in the combi-
nation of various modelling technologies into a tool set
that is more broadly-based and at the same time more uni-
fied than it is currently. Users and developers of models
will have more opportunity to make use of much more
(on-line) data and of various types (e.g. images from cam-
eras, operational log books, spectra from analysers,
outputs from acoustical sensors, etc.) that are either directly
or indirectly related to components of interest and to
employ many modelling methods to solve engineering and
operational problems that are related to WRRF operation.

Because of this, there is a blurring of lines between tech-
nologies that are traditionally seen as separate and unique
and which will bring about the development of hybrid
models that use both traditional and new forms and sources
of data. This suggests a change in thinking about how data
are used in model development, and in current ideas
about whether models are strictly data-driven or are based
on mathematical statements about fundamental principles
of conservation of mass, charge, and energy.

Currently, there is much-heated debate regarding model-
ling methodology starting with terminology conventions.
These conventions imply that so-called ‘black box’ models
are those that employ modelling methods that are in some
fashion not directly accessible (i.e. are in some sense
opaque), or that are not easily interpreted by the model
developer and user. In contrast to this, the terminology
‘white box’ is used to describe models that are thought to
describe fundamental principles based on an in-depth
understanding of the underlying processes. The latter
model types are often touted as more open and readily inter-
pretable by the user (i.e. they are deemed to be more
transparent in some way).

As part of this ongoing discussion, often the term ‘black
box’ is considered synonymous to models that are data-
driven and that are developed using algorithms and other
methods that do not reference fundamental mass, charge,
and energy balances. In contrast, the ‘white box’ terminology
is deemed as equivalent to thermodynamic fundamentals or
first-principles physical laws. While this terminology may be
useful for certain purposes, it is misleading to consider
black box models as purely data-driven and white box
models as purely based on first principles. For example,
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activated sludge models (e.g. ASM1/2d/3), while considered
first principles models, include a variety of Monod-type
switching functions which are mathematically tractable but
are not supported with theory. Data are used to determine
their kinetic parameters and these switching functions are
also used to fit models that do not use biological or chemical
concepts directly or not at all such as hydrolysis modelling.
Similarly, settling velocity functions are not based on theoreti-
cal first principles constructs but their mathematical forms
and parameters can be deduced from properly designed
experiments. Thus, this labelling of models as data-driven or
first-principles-based is largely irrelevant. In contrast, the
interpretability of a model remains an important factor in
choosing a useful model, as discussed further below.

Choosing a suitable modelling technology to capture
useful information from data is largely a function of utility.
George E. P. Box, a prominent data analyst and statistician
famously wrote roughly 40 years ago: ‘All models are wrong,
some are useful’ (Box 1979). Today, this statement is
especially compelling given the ever-increasing amount of
data that are available to engineers for model-building and
testing, and the ease of use of software tools. In examining
the work of Box and his colleagues, it should be obvious
that all useful models are derived from data of sufficient
quality. These data are collected through carefully designed
and performed experiments, plant trials, and/or database
queries of one kind or another, and that all model-building
is inherently data-driven with data acting as the principal
conduit of information (Box et al. 2005). This information
is ultimately sequestered in the form of a model and is
used for various practical or theoretical applications. The
use of data in model-making is clear in models such as the
ASM family, as much as it is in developing models that
are based on neural networks or multivariate statistical
analysis. Data are used to determine kinetic parameters
for biological processes and data are also used to fit
models that do not use biological or chemical concepts
directly or at all.

Ultimately, models are judged on their ability to predict
events or process outcomes in a given application such as
closed-loop control, plant design, etc. (which is the main
practical application after achieving a better understanding
of a process or system) (Box et al. 2015). User preference,
familiarity, and ease of model use in practical applications
are also key differentiating factors for engineering work
as much as what the mathematical form of the model
may be.

Well-constructed models should be able to provide
clearly interpretable results for the model developer and

user no matter what the model type is. In the case of acti-
vated sludge models, this comes in the form of mass,
charge, and energy conservation equations, and the relation-
ship to the biological process that is being studied. However,
a process expert is needed to analyse the results. In other
model types, for example, in the application of multivariate
statistics, the interpretability can be achieved using contri-
bution functions and plots that reveal how variables are
combined to provide a certain model prediction or output
(Miller et al. 1998). If these tools are properly set up, the
user can have direct diagnostics as part of the model results.
An example is the application of various types of multi-
variate statistical methods (Spearman’s rank correlation
analysis, hierarchical k-means clustering and principal com-
ponent analysis) to relate N,O emission from biological
nitrogen removal systems (Vasilaki et al. 2018). With careful
examination of modelling methods and supporting diagnos-
tic tools, it should be evident that models of any type can be
interpreted and used properly.

While the successful and meaningful application of tools
for model interpretation is certainly important to the model
developer, they should not be a barrier to using models of
any kind nor should they be used to classify modelling tech-
nology in an unnecessary way. Instead, the focus should be
given to fostering approaches to combine modelling
methods and various data sources as well as the develop-
ment of tools to help visualize, interpret, and interact with
the calculated model results, such as using principal com-
ponent analysis to assess membrane bioreactor fouling
(Maere et al. 2012). A modern process simulator is an
example of visualization and interaction between data,
models, and model users. The increasing effort to create
more user-friendly software points to the value of software
development techniques in examining and interpreting
data and model outputs. However, this development
requires the combination data-centred methods with process
knowledge. Moreover, as data become more and more
abundant, it is imperative that students are trained in
advanced data methods to truly engage in multi-disciplinary
approaches that remove barriers to success and bring results
to WRRFs. This emphasis on education will likely pay divi-
dends in the long run as students become employees and
create demand for more education and training by identify-
ing new and creative ways of solving problems.

Model interpretation should be the key discussion point
in a multidisciplinary forum. One example of successfully
combining modelling, numerical methods, and data analysis
is the use of multivariate methods in biological flux balance
explorations. Here, principal components methods can be
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used in combining linear programming and flux balance
modelling to deduce the distribution of glucose and ammo-
nia in an Escherichia coli system (Sariyar et al. 2000).
Other examples that require knowledge of multiple fields
to achieve practical results can be found in image analysis
where cameras provide images that are used as data in
closed-loop feedback control and in chemometric analysis
(Prats-Montalban et al. 2011).

In an increasingly data-rich environment, it is not likely
that ‘black box’ or ‘white box’ models will overtake one-
another as more data are used in model development.
Instead, combinations of techniques (hybrid models that
combine black and white box models in parallel or in
series (Lee et al. 2005)) that can be applied to solve real-
world problems will emerge as dominant as will better
methods and ways to interpret and communicate model
results. Model developers and users will be more able to
use and combine models of many types in their quest to
solve interesting and practical problems. As part of this,
the development of models will increasingly involve mathe-
maticians, computer scientists, systems engineers, and
software developers as well as chemical, environmental
and civil engineers, biochemists and biologists.

THE STATE OF DATA QUALITY

The improved computational power offered by new instru-
mentation hardware, pre-packaged algorithms, and models
promises a future in which ubiquitous use of old and new
instruments and data collection systems will continue to
lead to improved management and operation of water infra-
structures. In this paradigm, the data that are generated must
be of such quality that the information needed for manual
and automated decision-making can be easily extracted
and used. Data should be collected because they are direct
inputs to (1) model calibration and adjustment procedures
for mass and energy balance models, (2) the development
of data-driven and empirical models (soft-sensors), (3)
closed-loop controls, and (4) operational decision support
systems that are used both on-line and off-line. These appli-
cations that consume data can, in turn, produce other data
that are used in various combinations and at various fre-
quencies. This may include, for example, fault and event
detection systems that exploit correlations and relationships
among measured variables to detect a faulty control system,
a bad sensor, an unexpected process problem, or a flawed
laboratory procedure.

To define an appropriate level of data quality, it is typical
to rely on measurements such as accuracy, precision, and
timeliness of the produced data. This will likely remain so
in the future with a strong focus on the extraction of reliable
information from available data that are taken for a clearly
defined purpose (Hotelling 1947). However, the use of
data-augmentation algorithms could help increase the
information contained in the available data (De Mulder
et al. 2018). Measures of data quality can only be reason-
ably assessed within the context of the end-use of the
data. It should be clear that the notion of data quality is
not limited to one sensor or device taken individually. Dis-
cussions of data quality apply to networks of measurement
devices and various measurement principles. This implies
that high-quality data are fit for purpose, i.e. they express
the information needed by the decision-maker (or an
automated control system), and that low-quality data are
not capable of this. An experimental design procedure
balancing data collection cost and accuracy, ensuring
that measured variables lead to the identification of key
variables defined by the end-user, was proposed by Le
et al. (2018).

Quite frequently, data are deemed of low data quality
when the required information is obscured in the data carry-
ing that information. Indeed, typical wastewater process
data (i.e. from automated sensors) and laboratory data are
noisy, may contain inconsistent values or biases and are
often not available for periods of time or at the required
sampling frequency. This can make both model identifi-
cation protocols and control systems ineffective, leading to
poor decisions, e.g. increasing energy use unnecessarily.
Although the knowledge of process experts can be used to
design and implement fail-safes and other safeguards to
overcome some deficiencies in sensor data, implementing
such fail-safes can be cumbersome and cannot guarantee
a fail-free operation. This suggests that there is an opportu-
nity to improve the designs of fail-safes, fall-backs and
perhaps entire WRRF processes in general to include
data handling and data processing systems. This could
improve the dynamic performance of plants from the
outset starting with plant designs that incorporate data
management and control system considerations explicitly
(Marlin 2000).

Currently, improvements to process and laboratory data
can be achieved through effective actions that are performed
as part of plant maintenance activities. This is not likely to
change in the future, but these activities will probably
expand in scope, for both sensor and laboratory data. To
ensure overall data quality (i.e. fitness to purpose), these
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activities should target all aspects in the chain of data
acquisition, transmission, storage, and end-use. Regular
maintenance such as laboratory tests using standards,
sensor cleaning and calibration should be combined with
reviews of database structures and settings to ensure that
useful information that is encapsulated in stored data is
accessible when needed.

For example, improperly set data historian or SCADA
system compression and logging frequencies can break cor-
relation patterns in data that may be useful for extracting
information on process faults and upsets. If these settings
are not properly chosen, data may only reflect the effect of
compression settings and not information on the underlying
process at all.

An interesting discussion on the negative aspects of
poorly-applied data compression schemes can be found in
Kourti (2003). In her paper, Kourti describes how typical
algorithms that are used to compress data in historians
and databases can create artificial trends in data to such a
degree that measured values on variables that are not related
to one another in a process are identified as very highly cor-
related during data analysis. The artificial correlation that is
caused by compression settings, including sampling rates,
can be easily changed in software to ensure that a database
or a historian provides data that are fit for use. These and
other system design settings (e.g. connections between sen-
sors and control loop inputs) should be reviewed
periodically to ensure that the data management system
can meet its purpose in supporting control systems and
other goals by providing a reliable flow of information that
is taken from the data.

Regular maintenance of data management systems
should be coupled with data visualization and the use of
models to improve data quality. When they are part of an
SOP (standard operating procedure), consolidating data
for plotting and visualization can provide valuable insight
into the state of data and how reasonable data values
may be. This can include summaries of data that are
directly related to WRRF energy and effluent permit per-
formance such as averages and key process indicators but
it should also include raw values collected and stored
from sensors (i.e. soft and physical sensors) and labs
(Thomann et al. 2002). Models can be used as part of an
automated methodology to identify, correct, and replace
poor or missing data. Such systems can include automated
mass balance calculations or soft-sensor-based diagnostic
checks for outliers and other unusual conditions. Data-
driven models and fundamental mass and energy balance
models can be created and geared to specifically deal

with data quality so that the information the data carry
can be used effectively. The combination of these calcu-
lations will improve the performance of critical systems
that rely on data as inputs, especially if they are performed
in an automated manner with little or no operator
involvement.

For certain deviations from acceptable quality such as
outliers or spikes, there are many algorithms and data treat-
ment and filtering methods available to avoid labour-
intensive data-cleaning procedures. While these methods
can be beneficial in identifying and removing some causes
of poor data, challenges still exist. For example, the impact
of sensor drift on sensor measurements is typically much
smaller than the impact of process variability and changes
in the measured environment. As a result, drift is often diffi-
cult to detect algorithmically. In addition, hardware
redundancy can be of limited value in dealing with drift
(and other sensor faults) as all redundant sensors that
measure the same variable may exhibit the same drift as a
problematic sensor.

This suggests that relying on redundancy that is based on
many diverse measurements (on different but related vari-
ables) simultaneously taken in a multivariate approach
may be a better option for dealing with poor or missing
data (Miletic ef al. 2004). Since building this kind of redun-
dancy may be cost-prohibitive in some cases due to the need
for multiple sensors of different kinds, on-site inspection and
reference measurement checks are often the only available
option for maintaining data quality. This provides an oppor-
tunity for research and software development focused on
improving data availability and quality (Rieger ef al. 2010;
Villez et al. 2016) or extracting valuable information from
low-cost or poorly maintained sensors (Wani et al. 2017;
Thiirlimann ef al. 2018).

THE ERA OF CHEAP AND FAST CFD MODELS

In 1972 Octave Levenspiel, in a widely-used textbook on
chemical process engineering said, ‘If we know what is hap-
pening within the vessel, then we are able to predict the
behaviour of the vessel as a reactor. Though fine in prin-
ciple, the attendant complexities make it impractical to
use this approach.’

In his textbook, Levenspiel went on to describe the
tanks in series (TIS) and axial dispersion models that he
rightly felt were the best that could be used in his earlier
era. The development of CFD methods since the 1970s
changed this outlook significantly. CFD is the set of
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numerical schemes and analyses to solve momentum and
continuity equations for fluid mechanics. These numerical
methods are necessary because the partial differential
equations describing the fluid mechanics of process tanks
typically have no analytical solution and, hence, the fluid
domain is generally discretized into a grid or mesh
scheme. Instead of assuming homogeneity or symmetry in
multiple dimensions, as is the case for one dimensional
(1D) formulations, e.g. TIS (Levenspiel 1998) and 1D-settler
models (Takacs et al. 1991; Biirger ef al. 201), CFD includes
more detail in the dimensions (Samstag ef al. 2016).

Using CFD, one can now compute two- or three-
dimensional (2D or 3D) velocity fields and follow
interactions of reactants and products throughout a tank.
This information can be used to optimize tank geometry
and to improve designs and operation. TIS models have pro-
vided the computational base for biokinetic models like the
IWA activated sludge models (ASM - Henze et al. 2000) for
over 30 years. Today, by using CFD confirmed by field
testing, it is demonstrated that the distribution of reactants
and products within reactor tanks can vary widely across
commonly-used reactor types. This work shows that CFD
can provide a much more accurate description of these
processes than was possible in an earlier era.

The wastewater modelling community remains compu-
tationally limited today when using CFD in combination
with biokinetic modelling in biological wastewater treat-
ment. Currently, it is known that CFD can be used to help
predict the effectiveness of tank mixing and biological trans-
formation in different geometries and locate sensors so that
they can optimize control and be used as a calibration for
simpler TIS and other models to improve their accuracy
(Karpinska & Bridgeman 2016; Samstag et al. 2016). How-
ever, to provide more details and realism in the CFD
models, extensions are required on multiphase flows, inte-
grating kinetics, and adding distributions using population
balance models for modelling phenomena such as bubbles
(aeration and gas stripping) or granular sludge and floccula-
tion. The need for additional features to expand the
possibilities of CFD is clearly a limiting factor as it increases
the simulation time considerably.

Regardless of the computational burden, CFD provides
vital information for the design, upgrade, optimization,
and operation of WRRFs. Beyond the obvious advantages
for hydraulic design and capacity assessment, it also
allows highlighting the impact of concentration variations
in the reactor (Gresch et al. 2011; Rehman et al. 2017)
which have been shown to have a significant impact in
experimental work (Amaral et al. 2018) and measurement

campaigns (Bellandi ef al. 2018). Documented cases of
rapid return of investments in using CFD have been demon-
strated also for water treatment applications, specifically in
the area of ultraviolet treatment (Santoro et al. 2010)
where strong gradients and coupled optics, chemistry, and
hydraulics dictate photoreactor performance. Furthermore,
CFD can help to unravel the ambiguous, as well as arbitrary,
lumping of kinetic parameters such as half-saturation indi-
ces (Arnaldos et al. 2015 2018) and improve the
predictability of biokinetic models under varying oper-
ational conditions.

At the start, the CFD model is initialized with (dynamic)
inputs and boundary conditions. Preferably, those inputs
and boundary conditions are derived from measured data.
In the end, the model is confronted with reality for vali-
dation, i.e. does it live up to the expectations and
observations. This reality-check is clearly based on data
and is essential in order to make CFD more than just a
way to produce colourful images that are not easily inte-
grated and combined with as ASM or other models.

While the general applicability of Moore’s Law (a con-
jecture that suggests that the speed of computers doubles
every 18 months) is uncertain, it is clear that within the
last 10 years, a CFD model of a million cells that would
have taken weeks to complete can now be completed over-
night. As computer speeds have increased, the number of
cells to get a finer mesh has increased substantially,
rather than to dramatically reduce computation times
using a coarser mesh. If recent trends of acceptance of
CFD models for WRRF process design are any indication
of things to follow, CFD will become a much more
widely-used technique in the analysis of biological treat-
ment than was possibly imagined in the early days of
ASM modelling.

FIT FOR USE

The widespread adoption of modelling and simulation in the
wastewater industry demonstrates the benefits of ASM-type
models used in the last decades (Brdjanovic et al. 2015). In
a wastewater system project, models can be used in all pro-
ject phases, e.g. WWT management options, configuration,
design, commissioning and operation (Daigger 2011). Despite
the many purposes of modelling, the main objective in the
industry is to assist designers, utility managers, and oper-
ators in decision making. Therefore, the benefit of any
model does not increase with its complexity but rather by
its ability to supply an adequate basis for decisions. While
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mass-balancing might be sufficient at an early project stage,
detailed dynamic models with high accuracy are needed for
optimizing operations and controller design, e.g. for aeration
(Schraa et al. 2017).

The balance between model complexity and ease of use
depends on the set of questions being addressed. Conse-
quently, the trade-off between complexity and ease-of-use
of a model is not something that is set once (i.e. prior to
the investigation) and does not remain constant. It rather
evolves together with knowledge and depends on the
stage where the project or scientific investigation is, and
the level of understanding of the phenomena being
modelled.

A generally-accepted approach in searching for the opti-
mum among complexity, robustness, and accuracy of a
model relies on the principle of building-block-based
model development. This approach calls for models where
a building-block also represents the unit of complexity: as
a result, simpler models (with fewer building-blocks) are
typically preferred to complex ones. It should be stressed
that models with more building-blocks do not always yield
more accurate results. This is the case if the blocks added
to the model are of marginal or no benefit to explaining
the underlying physical processes, or potentially even inter-
fere with the identifiability of the parameters utilized in the
overall model. As such, it is good practice to conduct a stat-
istical analysis to confirm whether added model complexity
can indeed adequately explain the desired phenomenon
with the increased number of model parameters. Failing to
pass such a test would imply that the additional model par-
ameters produce a model that is overfitted in a certain
context i.e. they model only noise or that the additional par-
ameters are not numerically tractable with a result of poor
estimates that seem insignificant (Draper & Smith 1998;
Box et al. 2005). This can, therefore, affect the usefulness
of the overall model leading to the apparent paradox that
the more complex model is less predictive than the simpler
one.

A model, whether in its conceptual stage or translated
into its mathematical form - is a tool for facilitating the
deployment of the scientific method in research. Such a pro-
cess, that is cyclic in nature involves steps such as
hypothesizing, predicting, testing and questioning. There-
fore, a good model is the one supporting the investigator
to refine hypotheses, to design experiments, to sharpen
data analyses and to provide insight into results interpret-
ation. For practitioners, the recent developments in
improved wastewater process models are continually evol-
ving in research and in practice. Important applications

such as novel treatment technologies, stricter effluent
requirements, GHG emissions, and other sustainability indi-
cators require a better understanding of the processes and
more powerful models for decision support. This holds
both for modelling new treatment processes and operational
boundaries, as well as any output variables that are of inter-
est. With respect to treatment process modelling,
conventional model formulations fall short of capturing
new processes such as aerobic granular sludge, anammox,
and algae-based systems (Daigger 201). More model com-
plexity may be needed to describe these phenomena.
Although a relatively straightforward ASM1-based model
was considered sufficient for design and process analysis
of granular systems (Volcke et al. 2012), complex models
including granule formation and growth were considered
necessary for obtaining improved process understanding.
Another important area of recent research is on plant and
system-wide modelling. The expansion of the models outside
the plant allows for integrated evaluation and control of the
whole system (Rauch et al. 2002). Furthermore, integrating
life cycle analysis in the models makes it possible to assess
the off plant environmental impact, e.g. for changes in use
and recovery of resources (Arnell et al. 2017).

As urbanization forces many wastewater treatment
plants to operate closer to their design capacity while
facing stricter effluent standards, economic and operating
margins are reduced. Several of the recent research
models go towards fundamental biological and chemical
modelling (Ni et al. 2014; Kazadi Mbamba et al. 2016;
Vaneeckhaute et al. 2018). Excluding empirical parameters
specific for each plant but rather using fundamental con-
stants. A large number of state variables and parameters in
these models is potentially a problem. The identifiability of
parameters and possibility to directly measure them are
often limited. However, initial studies show that the funda-
mental parameters are robust and require little or no
calibration, provided the proper model components are
included (Kazadi Mbamba et al. 2016; Vaneeckhaute et al.
2018). Still, the data requirements for model calibration
and validation of more complex models are an issue as his-
torical data of many needed states do not exist and large
measurement campaigns are costly. Increasing the number
of model equations might also affect simulation times.
Depending on the project, this might be an issue for the
modeler. However, the ever-increasing computer speed, or
even access to cluster computers, makes it manageable in
many cases.

In developing such models, an important yet often
neglected aspect is the model verification step (i.e. the



12 P. Regmi et al. | The future of WRRF modelling — outlook and challenges

Water Science & Technology | 79.1 | 2019

confirmation that the mathematical formulation used to
describe the conceptual model is correctly implemented).
For example, an unchecked model, i.e. a model that perhaps
contains a subtle mathematical error such as wrong conver-
sion factor, etc., could lead to unintended consequences if
calibration is used to reconcile predicted and observed
data with such a model. Such a model error could affect par-
ameter estimations in a way that impairs the ability of the
model to predict process outcomes faithfully outside its cali-
bration range, despite the apparent good agreement with
data within the calibration region. It is stressed here that
adding model complexity does not always mean a more dif-
ficult model application. Appropriately-chosen sub-models
for mixing and aeration of reaction networks may facilitate
better model calibration and application, even if underlying
models are more complicated.

THE FUTURE

Future model development will likely put emphasis on
resource recovery (water, nutrients, organics, energy)
rather than wastewater treatment. The practice of design,
operation and control of resource recovery technology will
need models that consider stringent objectives related to
water-product quality, process performance stability, and
operating costs. As models lead to a better understanding
of processes, this may also lead to new and innovative
resource recovery solutions.

For resource recovery to thrive, it will have to be con-
sidered from a broader perspective than technical
feasibility. Unit process models for resource recovery will
likely be integrated within broader frameworks (e.g. auto-
mated dynamic process control, sustainability, etc.) and at
various scales (e.g. sewershed, watershed) to target com-
bined social, economic, and environmental goals. Effective
cost and price models will need to be developed for the
different parts of the WRRF value chain in order to provide
input to economic assessments. The life-cycle analysis will
help decision-makers make environmentally sound choices
on the most cost-effective process design and best process
operation. These decisions can only be taken if the analysis
comprehensively accounts for environmental aspects such
as resilience assessments, and broader environmental
impact studies as well as plant-level control and optimiz-
ation efforts. No matter the modelling application or
scope, better experimental designs that result in improved
measurement campaigns for gathering key data will be
paramount.

Whatever the future may hold for model development,
increased data availability in combination with improved
computational capacity will continue to shape the structure
of future modelling frameworks. The newly-developing
synergy between first principles and data-driven models
has the potential to create very powerful tools for further
innovation, development and decision support. However,
balancing the efforts for model development and complex-
ity, data collection, data quality assurance, and integration
of different frameworks will be challenging and will require
diverse technical skills.
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