Table of content - Background and Modelling tool - Case study - > Design of chemical dosing and field test result - Sewer-WWTP integrated assessment - > Take-home messages ## Water quality modelling of sewer ### SeweX biochemical model Founded in Australia, widely used in local and international projects #### In-sewer processes: - Transformations of sulfur species: sulfate reduction, sulfide oxidation, etc. - > Fermentation - > Hydrolysis - Methane production - > Bacteria metabolism: growth and decay # Model-based nitrate dosing design | | | Ave. at Headwork
VFA (mg/L) | Ave. at Headwork H ₂ S (mg/L) | |-----|------|--------------------------------|--| | FM1 | 400 | 48 | 3.4 | | FM2 | 2500 | 43 | 2.6 | | FM3 | 1500 | 42 | 2.8 | ### System-wide assessment: NO₃ vs Fe Scenario 1: no chemical dosing Scenario 2: ferric dosing at FM2 and FM3 line and at PC inlet Scenario 3: nitrate dosing at all three force mains **BNR** effluent Sewer effluent Scenario 3 FM1 — Primary Secondary BNR NO₃ FM2 -Headwork clarifier settler FM3 · Digester PRI-SC® Hydrogen **Peroxide Monitoring node** Scenario 2 ## System-wide assessment: WWTP - ➤ Low VFA and sCOD under NO₃ dosing scenario - ➤ NH₄ also decreases, because nitrification process is promoted - ➤ Iron dosing at primary clarifier further precipitates PO₄ ### Take-home message - Model is a useful tool for chemical-dosing design, scenario analysis and large-scale and system-wide assessment - It is important to have sewer simulation results reflecting both dynamics and spatial variations - Sewer and WWTP should be managed as an integrated system - NO₃ enhances denitrification process in sewer, with a general improvement on nutrient removal through biochemical processes - Fe effectively removes H₂S and PO₄ through chemical reactions