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 Implementation of artificial neural networks (ANNs) for the prediction 

and simulation of active chlorine production from a synthetic saline 

effluent by electrolysis.

30 assays were carried out in a

batch  system (Figure 1). Four

important operational parameters 

used as ANN inputs:

• Electrolysis time

• Current intensity

• Hydrochloric acid conc.

• Chloride ion concentration

ANN output (Table 1):

• Active chlorine production

Table 1. Experimental operating conditions range

Parameter Min. value Max. value

Electrolysis time (min) 15 35

Current intensity (A) 0.8 1.6

[H3O
+] (M) 0.05 0.11

[NaCl] (M) 0.3 0.8

Figure 1. Schematic diagram of the experimental unit for 

chlorine gas production: (1) electrolytic cell; (2) power supply; 

(3) peristaltic pump; (4) glass tank; (5) air diffuser 

Table 2. Feed-forward backpropagation neural networks

Figure 2. Mean learning curve for different 

number of training examples

 High variance problem

 No need for more complex model  
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Figure 4. Importance (%) of the input variables on the

electrochemical active chlorine production

 About 88% influence for treatment 

time and current intensity on 

active chlorine production. 

Impact and selection of Regularization Factor

Regularization:

 Makes slight modifications to the 

learning algorithm such that the 

model generalizes better.

 Improves the model’s performance 

on unseen data.

A graph of Error vs regularization factor 

(lambda) helps to optimally select the 

best lambda (Figure 3).

Figure 3. Impact of regularization factor on 

the model performance

Outcome: 3-layer feedforward back propagation 

network with 5 hidden neurons and lambda=7

Figure 5. Effect of the electrolysis time and current intensity on active chlorine production 

 Artificial neural network modeling can effectively predict and simulate the 

behavior of the electrolysis process.

 This approach can be used besides statistical and empirical modeling for 

optimization of electrochemical processes.

 Complexity and nonlinearity within electrochemical processes are not 

always described well with the conventional modeling approaches.

 Artificial neural networks (ANNs) represent promising alternative tools 

for classical process modeling. 

Motivation

Objective

Experimental setup

Modeling results

Configuration R2 training R2 validation R2 test

# Samples 20 5 5

5 hidden neurons 0.9475 0.9186 0.8951

6 hidden neurons 0.9556 0.9096 0.8929

7 hidden neurons 0.9605 0.8996 0.8882

Conclusions
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