

Modeling of active chlorine production from a synthetic saline effluent by electrolysis using Artificial Neural Networks

Majid Gholami Shirkoohi¹, Patrick Drogui¹, Peter A. Vanrolleghem², François Zaviska³, Rajeshwar Tyagi¹

¹ Institut National de la Recherche Scientifique (INRS), Centre-Eau Terre Environnement, Université du Québec, 490, Rue de la Couronne, Québec (QC) G1K 9A9, Canada ² modelEAU, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, QC G1V 0A6, Canada ³ Institut Européen des Membranes, Université de Montpellier, Place Eugene Bataillon, CC047, 34095 Montpellier, France

Motivation

- Complexity and nonlinearity within electrochemical processes are not always described well with the conventional modeling approaches.
- > Artificial neural networks (ANNs) represent promising alternative tools for classical process modeling.

Impact and selection of Regularization Factor

Regularization:

Makes slight modifications to the learning algorithm such that the model generalizes better.

45		Ţ.	l.	1	1	1	Ì.		7
40								— Train — Cross Validation	_
35	_								
30	_								-
0.5									

Objective

> Implementation of artificial neural networks (ANNs) for the prediction and simulation of active chlorine production from a synthetic saline effluent by electrolysis.

Experimental setup

Figure 1. Schematic diagram of the experimental unit for chlorine gas production: (1) electrolytic cell; (2) power supply; (3) peristaltic pump; (4) glass tank; (5) air diffuser

✓ Improves the model's performance on unseen data.

A graph of Error vs regularization factor (lambda) helps to optimally select the best lambda (Figure 3).

Figure 3. Impact of regularization factor on the model performance

[NaCI]

10%

Electrolysis

time

Outcome: 3-layer feedforward back propagation network with 5 hidden neurons and lambda=7

Relative importance of input variables (Garson's algorithm)

30 assays were carried out in a batch system (Figure 1). Four important operational parameters used as ANN inputs:

- **Electrolysis time**
- **Current intensity**
- Hydrochloric acid conc. \bullet
- Chloride ion concentration

ANN output (Table 1):

Active chlorine production

Modeling results

Table 1. Experimental operating conditions range

Parameter	Min. value	Max. value
Electrolysis time (min)	15	35
Current intensity (A)	0.8	1.6
[H ₃ O+] (M)	0.05	0.11
[NaCI] (M)	0.3	0.8

About 88% influence for treatment time and current intensity on active chlorine production.

35

25

20

Chlorine tion (mg/l)

Active Chlo Production

[H₃O⁺] 2%

Figure 5. Effect of the electrolysis time and current intensity on active chlorine production

Conclusions

- \succ Artificial neural network modeling can effectively predict and simulate the behavior of the electrolysis process.
- > This approach can be used besides statistical and empirical modeling for optimization of electrochemical processes.

majid.gholami_shirkoohi@ete.inrs.ca