

Modelling of Reactive Secondary Settling Tanks

¹ model*EAU*, Département de génie civil et de génie des eaux, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, G1V 0A6, QC, Canada

2 CentrEau, Centre de recherche sur l'eau, 1065 Avenue de la Médecine, Québec, G1V 0A6, QC, CA

Introduction

Secondary settling tanks (SST) are used for the gravity separation of microorganisms from the effluent in WRRFs.

Why do we need Modelling of Reactive Settling?

 Improve overall N removal in **WRRFs**

However,

- ✓ An important amount of overall biomass in the SST
- Biological activity can be initiated
- Large volume of SST is suitable for biological processes
- Anoxic conditions exist

- Better prediction of effluent characteristics
- Better prediction of settling behavior
- Scenario analysis for energy optimization

Modelling Methodology for Reactive Settling

Innovative Approach for Use of SSTs

Potential Advantages

Potential Disadvantages

- Reduced pumping energy
- Reduced operational cost
- No investment cost
- Retrofitting potential
- ✓ Significant potential for denitrification in the SST but optimum operational conditions & NO₃ loads need to be determined.

Operational problems in reactive settling process

- Rising sludge
- Hard operational control

Results & Conclusions

The developed <u>reactive</u> settler model is able to represent <u>sedimentation &</u> compression processes in <u>SSTs</u>, in combination with reactions.

The NO₃-N concentration decreases due to the active denitrification process in the deep layers of the SST where biomass concentrations are high.

