

Propriétés des particules retenues par les unités de dessablage: Influence de la méthode de caractérisation

Queralt Plana^{1,2}, Jessy Carpentier¹, Françoise Tardif¹, Aurélien Pauléat³, Alain Gadbois³, Paul Lessard^{2,4} and Peter A. Vanrolleghem^{1,2}

¹ model*EAU*, Université Laval, 1065 Avenue de la Médecine, Québec (QC) G1V 0A6, Canada
 ² CentrEau, centre de recherche sur l'eau, Université Laval, 1065 avenue de la Médecine, Québec (QC) G1V 0A6, Canada
 ³Veolia Water Technologies, 4105, Sartelon, Saint-Laurent, Québec (QC), H4S 2B3, Canada
 ⁴Département de génie civil et de génie des eaux, Université Laval, 1065, Avenue de la Médecine, Québec (QC) G1V 0A6, Canada

Problématique: Aucun protocole standardisé de caractérisation des particules retenues par les unités de dessablage (« grit », en anglais) n'existe. Il y a une:

- · Variété de méthodologies de caractérisation
- Variété de variables à étudier pour la caractérisation
- · Diversité de difficultés d'échantillonnage du liquide

Objectif: Évaluer différentes méthodes pour caractériser les « grits » en termes de:

- Distribution de la taille des particules (DTP)
- Distribution de la vitesse de chute des particules (DVCP)

Points d'échantillonnage

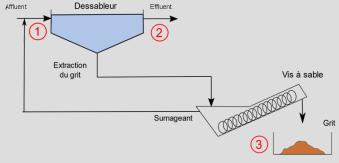


Figure 1. Schéma d'une unité de dessablage.

Méthodes de caractérisation des particules

Protocoles utilisés pour la caractérisation de la DTP du « grit »

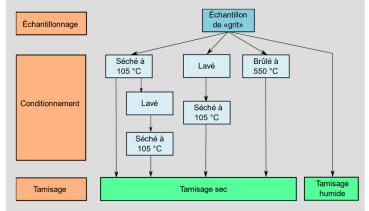
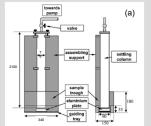



Figure 2. Plan expérimental

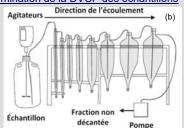


Figure 3. Colonne ViCAs adaptée de 2m (a) et système d'élutriation (b)

Résultats									
% de masse cumulée	100%			-		—Sans lavage			
	80%					Lavage à sec			
	60%		1 1			— Lavage a sec			
	40%		/ //			Lavage humide			
	20%	/.	11			—Cendres			
	0%	غندي_							
	0.01	0.1	1	10	100	· · · Tamisage			
Taille de particules (mm) humide									

Figure 4. Courbes de DTP obtenues avec les méthodes de tamisage

1 Vitesse de chute (m/h)
Figure 5. Courbes de DVCP obtenues avec ViCAs et élutriation

MESSAGE À RETENIR								
	Tamisage humide	Lavage humide + tamisage sec	ViCAs adaptée de 2m	Élutriation				
Sécuritaire	X	✓	X	X				
Répétable	X	1	1	/				
Représentatif de la réalité	✓	✓	/	√				
Petit volume d'échantillon nécessaire	X	×	✓	×				
Stockage échantillon avant analyse	X	✓	X	X				

