

Turning a primary clarifier into a fermenter: Analysis using titrimetry

Maryam Tohidi^{1,4}, Michele Ponzelli², Christophe Boisvert¹, Elsayed Elbeshbishy², Domenico Santoro³ and Peter A. Vanrolleghem^{1,4}

¹ model*EAU*, Département de génie civil et de génie des eaux, Université Laval, 1605 Avenue de la Médecine, Québec (QC) G1V 0A6, Canada

² Ryerson University, Department of Civil Engineering, 350 Victoria Street, Toronto (ON) M5B 2K3

³ Trojan Technologies, 3020 Gore Road, London (ON) N5V 4T7

⁴ CentrEau, Université Laval, 1065 avenue de la Médecine, Québec (QC), G1V 0A6, Canada

Efficient Denitrification AIR > ===== $6NO_3 - + 5CH_3OH \rightarrow 3N_2 + 5CO_2 + 7H_2O + 6OH$ M-230 M-250 M-240 Needs adequate COD source LSHH-210 Creates alkalinity to maintain optimum pH

Fermenter

::: AIT-110

LSLL-100

SBH

V-111

DÉLAIS RESET LSLL

5.00

OUT

P-110

P-120

Titrimetry, a titration based method to measure VFAs

Primary clarifier

Objective:

IN

V-102

Figure 1. pilEAUte plant bioreactor (anoxic zone in red)

Soluble organic matter in the form of **VFAs** by a *higher degree* of fermentation in the primary sludge blanket.

Nutrient removal rate in the downstream treatment plant.

Figure 6. Titration curve of a sludge blanket sample

Figure 7. Methrom Titrino device with a Sample Processor

Buffer capacity curves: An application of titrimetry

SLUDGE

How to turn a primary clarifier into a fermenter?

Operational factors for VFA enhancement

Increase sludge age in blanket

Qr

- Recirculation line from bottom back to inlet
- pH conditioning by dosing alkaline

Figure 3. Schematic of the primary clarifier with recirculation

Figure 4. Internal recirculation set-up

Sample Composition	Concentration mg/L	pKa 1	pKa 2
Alkalinity (HCO ₃)	100.12	6.37	10.5
VFA (as CH ₃ COOH)	442.72	4.76	-

Figure 8. Buffer Capacity Curve in meq/L/pH

What is my wastewater's composition?

Simulating a down-titration with PHREEQC

Solution 2 Wastewater sample Wastewater sample after titration

Running PHREEQC

Reading database Simulating titration Time-series

Solution 1

Experimental curve ≅ PHREEQC curve (calculated) (titration)

Running OpenSolver

Table 2. Calculated concentrations of VFAs & Alkalinity using PHREEQC as a simulator

Sample Composition	Concentration mg/L
Alkalinity (HCO ₃)	110.3
VFA (as CH ₃ COOH)	446.32

Figure 5. pH, VFA, and alkalinity profiles along the sludge blanket height

Table 1. Operating and environmental conditions HRT SRT QW HRT SRT

m3/d

0.04

2.1

Sample composition V

Figure 9. PHREEQC simulated curve fitted with least error on the experimental curve

TAKE HOME MESSAGE

Titrimetry allows analyzing the pH and alkalinity profiles in a primary clarifier to monitor the reactive settler's performance and evaluate the VFAs produced in the sludge blanket. It allows assessing the benefits for improved denitrification in the subsequent bioreactors.

