# Phosphorus recovery from wastewater as vivianite using electro-coagulation

## Rania Souidi, Céline Vaneeckhaute, Patrick Drogui & Peter A. Vanrolleghem

55th Central Canadian Symposium on Water Quality Research, Toronto, 20 February 2020













#### Who Am I?

- Rania Souidi
- Tunisia
- 2 years of preparatory school (Physics and chemistry)
- 3 years of engineering studies: Hydraulics and environment Waste and water management and treatment
- Intern at Université Laval: Mitacs Program
- MSc studies: Université Laval
  - modelEAU team, Create-TEDGIEER & CentrEau research cluster QC
  - · Supervisor: Peter Vanrolleghem
  - Co-supervisors: Céline Vaneeckhaute (UL), Patrick Drogui (INRS)
- · Hobbies: Reading, swimming

Souidi, 2020 2



## **Content**

- 1) Introduction
  - Problem statement & Objectives
- 2) Phosphorus recovery as Vivianite
  - What is Vivianite?
  - Vivianite VS Struvite
- 3) What is electro-coagulation
  - Electrochemical cell
- 4) Modelling results
  - Iron oxidation in aerobic/anaerobic conditions
  - Vivianite precipitation
- 5) Conclusions

Souidi, 2020

## Introduction

I - Nitrogen and phosphorus are causing environmental problems leading to environmental stress on aquatic ecosystems such as eutrophication and toxicity.



#### Strict discharge limits

II - An annual increase in nutrient use by society is observed while global phosphorus (P) and potassium (K) reserves are becoming limited (a few centuries to go).

Souidi, 2020

5

Phosphorus is essentially used as a **fertilizer**: 80% of all mined phosphorus is used in agriculture



Beneficial for humans, yet it's not used in a sustainable way

Electrochemical processes can be used as **tertiary treatment** for P removal

#### a new tool for nutrient recovery processes

(electrodialysis, electrocoagulation, electrochemical magnesium dosage)




All these processes have currently only been studied at pilot-scale, and full-scale application still needs more investigation and research

## Phosphorus recovery as vivianite

What is Vivianite?

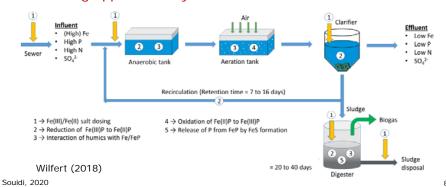




Wilfert (2018)

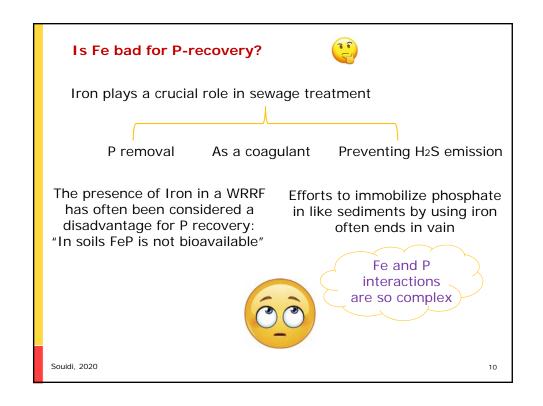
Souidi, 2020

7


## Phosphorus recovery as vivianite

What is Vivianite?

Vivianite is an important iron phosphate compound


$$2P{O_4}^{3-} + 3Fe^{2+} + 8H_2O \rightarrow Fe_3(PO_4)_2.8H_2O$$

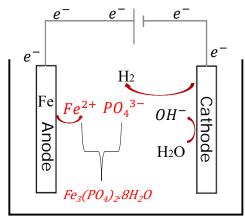
Iron dosing appears everywhere in WRRFs



Δ

#### Vivianite Vs Struvite (Wilfert, 2018) Vivianite Struvite NH<sub>4</sub>MgPO<sub>4</sub> / NH<sub>4</sub>KPO<sub>4</sub> $Fe_3(PO_4)_2.8H_2O$ The recovery efficiencies of Iron is used as precipitant struvite are relatively low to eliminate P in WRRF 10-40% of influent P-load Iron present in sludge 60-67% of the iron in the can bind to P and will make digested sludge is bound P unavailable for struvite in vivianite precipitation Vivianite properties show Iron impurities can go that it is a slow-release up to 63g/Kg TS whereas iron and phosphorus magnesium is 19g/Kg max. fertilizer Souidi, 2020




## What is electro-coagulation?

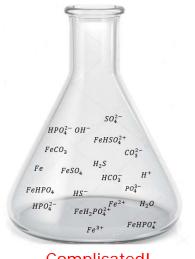


Souidi, 2020

11

## What is electro-coagulation?




At the anode: OxidationElectrochemical that cathode: Reduction Fe  $\rightarrow$   $Fe^{2+} + 2e^{-}$   $2H_2O + 2e^{-} \rightarrow 20H^{-} + H_2$ 

In the bulk solution: Vivianite Precipitation  $2PO_4^{3-} + 3Fe^{2+} + 8H_2O \rightarrow Fe_3(PO_4)_2.8H_2O$ 

## **Results**

## PHREEQC simulations

| Parameter  | Value     |
|------------|-----------|
| рН         | 7         |
| Fe (mole)  | 0.0044    |
| Phosphorus | 2 mmole   |
| Carbonate  | 30 mmole  |
| Sulfide    | 0.1 mmole |



Complicated!

Souidi, 2020

13

## **Results**

PHREEQC (pH REdox Equilibrium) simulations

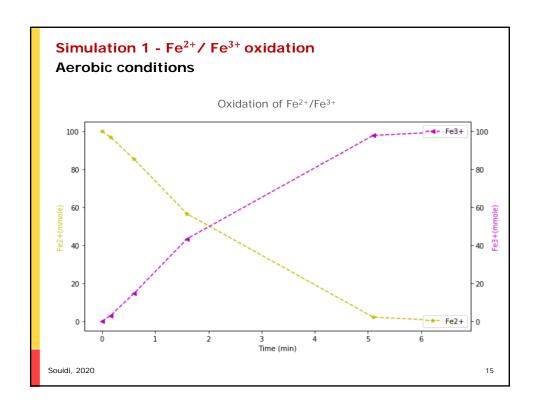
Phreeqc capabilities: Geochemical calculations

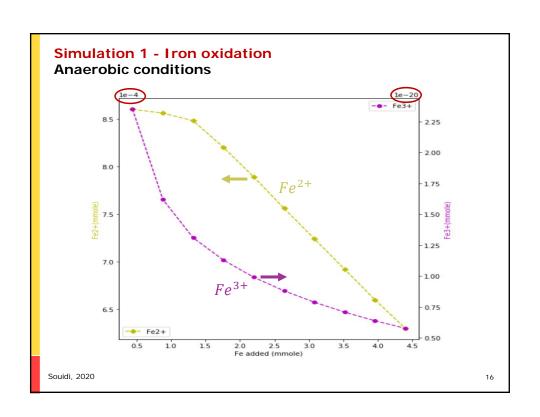
**Speciation Calculation** 

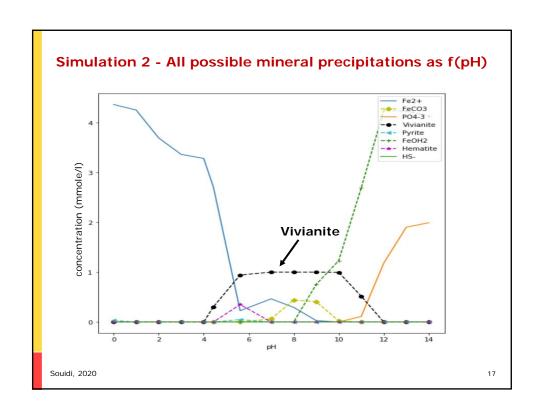
Batch reactions Saturation index

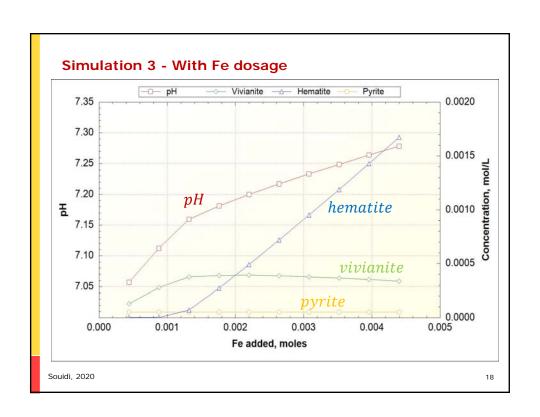
Kinetically controlled reactions...

Follow: Vivianite Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2.8</sub>H<sub>2</sub>O


Pyrite FeS2


Mackinawite FeSm Hematite Fe<sub>2</sub>O<sub>3</sub>


Iron Hydroxyde Fe(OH)2


Siderite FeCO3

Souidi, 2020









## Conclusions

- 1- Kinetics of Iron oxidation in aerobic / anaerobic conditions  $\checkmark$  Ferrous Iron oxidation is fast in aerobic conditions In anaerobic conditions, Iron is mostly oxidized to  $Fe^{2+}$
- 2- Vivianite precipitation is highly influenced by pH, and carbonate and sulfide presence

Ideal pH for precipitation: neutral

3- The bioavailabity of P in iron phosphate fertilizer needs more research



The interactions in soils are complex and the availability depend on the conditions of vivianite formation (crystal structure)

Souidi, 2020 1

Thank you for your attention!

