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a b s t r a c t 

The advent of affordable computing, low-cost sensor hardware, and high-speed and reliable communi- 

cations have spurred ubiquitous installation of sensors in complex engineered systems. However, en- 

suring reliable data quality remains a challenge. Exploitation of redundancy among sensor signals can 

help improving the precision of measured variables, detecting the presence of gross errors, and identi- 

fying faulty sensors. The cost of sensor ownership, maintenance effort s in particular, can still be cost- 

prohibitive however. Maximizing the ability to assess and control data quality while minimizing the cost 

of ownership thus requires a careful sensor placement. To solve this challenge, we develop a generally 

applicable method to solve the multi-objective sensor placement problem in systems governed by linear 

and bilinear balance equations. Importantly, the method computes all Pareto-optimal sensor layouts with 

conventional computational resources and requires no information about the expected sensor quality. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In recent years, the advent of large-scale cost-effective com-

uting and low-cost sensor hardware has stimulated great inter-

st in the deployment of large-scale sensor networks. By combin-

ng large-dimensional data sets with computationally efficient yet

exible and predictive models, it is said, one can obtain system

esigns and process operations that are much more efficient than

hose that are rooted in domain expertise, heuristics, and mech-

nistic models ( Corominas et al., 2018; International Water Asso-

iation, 2019; Venkatasubramanian, 2019 ). Executing this kind of

ision is however hampered by the fact sensors often produce sig-

als of questionable quality due to exposure to a harsh environ-

ent (e.g., Ohmura et al., 2019 ). In turn, this leads to high sensor

aintenance cost, to the point that this cost may subdue any ben-

fit of ubiquitous sensor networks. 
∗ Corresponding author at: ORNL: Oak Ridge National Laboratory, Oak Ridge, TN, 

SA. 
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Poor data quality is known to challenge the use of both ma-

hine learning models and mechanistic process models ( Hauduc et

l., 2009; Rieger et al., 2005, 2006; Rosén et al., 2008 ). It is there-

ore no surprise that several studies provide methods and insights

nto the problem of data quality assessment and control in the

ater sector ( Alferes et al., 2013; Corominas et al., 2011; Newhart

t al., 2019; Rosén and Olsson, 1998; Spindler, 2014; Spindler and

anrolleghem, 2012; Thomann, 2008; Thomann et al., 2002; Villez

t al., 2008 ). Importantly, identification of many models requires

hat the available data provide a complete and precise picture of

ll phenomena that are relevant for the task at hand. For this, data

ets ought to be representative, voluminous, and of high quality. 

It is generally valuable to place redundant sensors for the pur-

ose of computer-aided anomaly and fault detection, isolation, and

iagnosis. At the same time, installing large numbers of sensors

mplies an operational cost of sensor ownership, associated with

ensor cleaning, calibration, validation, and part replacements. We

elieve this cost will remain high for the foreseeable future, de-

pite the advent of low-cost hardware and tremendous advances

n the robustness of instruments measuring physical properties

https://doi.org/10.1016/j.compchemeng.2020.106880
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106880&domain=pdf
mailto:kris.villez@eawag.ch
https://doi.org/10.1016/j.compchemeng.2020.106880
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(e.g., flow rate, level, pressure, temperature) or water quality (e.g.,

ammonia, nitrite, nitrate, ortho-phosphate, total suspended solids).

Thus, it is key to balance the costs of sensors against information-

richness and redundancy. 

Optimal sensor placement is a complex problem due to the

presence of nonlinear relationships between the variables of in-

terest and the networked nature of many systems. Moreover, to

place sensors that measure extensive variables, like flow rates, as

well as intensive variables, like concentrations and temperatures,

special care must be taken to account for bilinear mass balance

equations describing the effect of reactions, storage phenomena,

and flow splitters. Several authors have addressed this optimiza-

tion problem. E.g., Ali and Narasimhan (1996) provide an iterative

approach to obtain an optimal sensor layout in terms of observabil-

ity, followed by a second search for additional sensors to increase

the number of redundant sensors (see below for definitions). In

a similar spirit, Le et al. (2018) search for Pareto optimal sensor

layouts that trade off the number of sensors against the relative

improvement in precision, i.e. the ratio by which the standard de-

viation of the estimation errors is reduced, thanks to installation

of redundant sensors. In the process, the search is limited to the

set of sensor layouts that make a predefined set of variables of

interest observable. The relative improvement of precision is one

way among many to evaluate practical observability (e.g., Waldraff

et al., 1998; Chmielewski et al., 2002; Chang et al., 2012; Serpas

et al., 2013; Mukherjee et al., 2017; Rico-Ramirez et al., 2007; Joshi

and Boyd, 2008; Soldevila et al., 2018; de Winter et al., 2019; Na-

har et al., 2019 ). The approach of Le et al. (2018) is based on the

analysis of systems of linear equations, meaning that measuring a

concentration in a single stream implies measurement of the flow

rate in the same stream. Because this is based on estimation pre-

cision, prior knowledge regarding the measurement error standard

deviation of the candidate sensors is required. The first author of

this study argues in Le (2019) that a better approach consists of

placing individual flow rate and concentration sensors. This how-

ever implies that bilinear constraint equations must be dealt with

carefully during the evaluation of observability. Le (2019) evaluates

his own symbolic implementation of the method for identification

of redundant relationships described in Spindler (2014) to be very

time-consuming. 

Villez et al. (2016) is a rare study where cost, information rich-

ness, and redundancy are considered as independent objectives for

optimization. To this end, the objective for information-richness

quantifies the number of variables that are structurally observable

(definition below). Similarly, the redundancy objective is based on

structural redundancy of the installed sensors. This means that no

prior information regarding the precision of any sensor candidate

is required. Unfortunately, this work is limited to the placement

of flow rate sensors only, mainly to avoid accounting of bilinear

equations during sensor layout optimization. We address this in

this work by adopting the GENOBS and GENRED procedures of

Kretsovalis and Mah (1988b) for evaluation of structural observ-

ability and structural redundancy in systems with arbitrary place-

ment of sensors measuring flow rates, concentrations, and tem-

perature sensors. We apply this to two typical wastewater treat-

ment plant (WWTP) configurations for which information about

hydraulic flow rates, concentrations and mass flows of wastewater

contaminants is crucial for plant operation. As a result, and for the

first time, it is possible to compute the complete set of Pareto opti-

mal sensor layouts in engineered systems described by linear and

bilinear balance equations. Special care has been taken to obtain

fast implementations of the GENOBS and GENRED procedures as

well as the optimization method itself. As a result, the developed

method is both efficient and generally applicable to any system de-

scribed by linear and bilinear balance equations. 
c  
. Materials and methods 

.1. Studied systems 

Sensor placement results are shown for two WWTP configu-

ations: (i) a simple organics removing WWTP ( Metcalf & Eddy,

003 ) (WWTP1, Fig. 1 a) and (ii) a WWTP for nitrogen removal

WWTP2, the so-called modified Ludzack Ettinger process, MLE,

ig. 1 e). Both configurations consist of a set of tanks, including re-

ctors and a settler, which are connected by closed pipes. All pipes

arry wastewater, including a multitude of contaminants, further

eferred to as the components.The most important conversion pro-

esses are (i) growth and decay of biomass, which affects the con-

entration of particulate matter (solids), (ii) oxidation of organic

atter, (iii) oxidation of ammonia (into nitrite and nitrate), (iv) and

xidation of nitrite (into nitrate). We consider the plants to have

erobic reactors only so that the concentration of ortho-phosphate

s unaffected by any conversion process, i.e. ortho-phosphate can

e treated as a component that is both conserved and soluble. 

.2. Sensor placement as a multi-objective optimization problem 

.2.1. Problem description 

The sensor placement problem consists of finding sensor lay-

uts that are optimal in terms of cost, observability, and redun-

ancy for a system of material flows described by linear hy-

raulic balances (total mass flows), bilinear component balances

e.g., solids mass flow), and splitter constraints (i.e., to express that

oncentrations in front and at the back of a splitter box are equal).

e apply the definitions of structural observability and structural

edundancy as in prior work ( Villez et al., 2016 ). A variable is struc-

urally observable when (i) a measurement of this variable is avail-

ble or (ii) a unique value for the variable can be computed by

eans of a set of equations and other measurements. A sensor is

onsidered structurally redundant if the measured variable remains

bservable when the considered sensor is removed. 

The total number of components is given as C and the total

umber of physical streams, i.e. pipes, is given as S . The S streams

re indexed with an integer s ( s = 1 , . . . , S). We consider five types

f variables associated with every stream: the (total mass) flow

ate (unit: [ m 

3 / d ]), concentrations of C components (unit: [ g / m 

3 ]),

 component mass flow rates corresponding to the concentra-

ions (unit: unit: [ mol / d ]), temperature (unit: [ K ]), and heat flow

unit: [ J / d ]). Within each stream we index the considered vari-

bles with v , where v = 0 is the index of the (total mass) flow

ate, v = 1 , 2 , . . . , C are the indices of the concentrations of the C

omponents (unit: [ mol / m 

3 ]), v = C + 1 is the index of temperature,

 = C + 2 , C + 3 , . . . , 2 · C + 1 index the component mass flow rates

in the same order as the concentration variables), and v = 2 · C + 2

efers to the heat flow (unit: [ J / d ]). By default, we consider that a

ensor can be placed for any the considered variables in any phys-

cal stream. 

For optimization purposes, a sensor layout is described by

eans of binary decision variables, X s, v , which represent the ab-

ence (0) or presence (1) of a sensor for variable v in stream s . The

atrix X is an S × V -dimensional matrix ( V = 3 + 2 · C) containing

he values for all decision variables ( X s, v = X (s, v ) ). Given such a

atrix, one can compute which variables are observable and which

f the placed sensors are redundant. The matrix Y is an S × V -

imensional matrix with elements Y s, v = Y (s, v ) , where Y s, v indi-

ates whether variable v in stream s is structurally observable (1)

r not (0). Similarly, the S × V -dimensional matrix Z contains ele-

ents Z s, v = Z (s, v ) indicating whether stream s is equipped with

 structurally redundant sensor for variable v (1) or not (0). The

omplete set of feasible sensor layouts consists of all feasible ma-
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Fig. 1. Schemes and graph representations of the studied plant configurations. WWTP1: (a) scheme, (b/c/d) graph. WWTP2 (MLE): (e) scheme, (f/g/h) graphs. In the graphs, 

physical streams are depicted with full lines while reaction and storage phenomena are shown as dashed lines. 

Table 1 

List of mathematical symbols. 

Symbol Description 

C Number of components 

S, S ∗ , S̄ Number of streams (physical/imaginary/total) 

s Stream index 

f C ( X ) Cost objective 

f O ( X ) Observability objective 

f R ( X ) Redundancy objective 

V Number of variables 

v Variable index 

W s, v , W ( s, v ) Weight for variable v in stream s 

X s, v , X ( s, v ) Presence of a sensor for variable v in stream s 

Y s, v , Y ( s, v ) Observability of variable v in stream s 

Z s, v , Z ( s, v ) Presence of a redundant sensor for variable v in stream s 
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rices X and is named the root set. All remaining symbols are de-

cribed in Table 1 . 

For the purpose of optimization, the cost, observability, and re-

undancy objectives are: 

f C ( X ) = 

S ∑ 

s 

V ∑ 

v 
W 

C 
s, v · X s, v (1)

f O ( Y ) = 

S ∑ 

s 

V ∑ 

v 
W 

O 
s, v (1 − Y s, v ) (2)

f R ( Z ) = 

S ∑ 

s 

V ∑ 

v 
W 

R 
s, v (1 − Z s, v ) (3)

ith W 

C 
s, v , W 

O 
s, v , and W 

R 
s, v weights. These weights are typically non-

egative. However, negative weights can be used in principle, e.g.

o express that removing an existing sensor comes with a non-

egligible cost. The optimization problem consists of finding ma-

rices X which minimize f C , f O , and f R . 
.3. Labeling observable variables and redundant sensors 

.3.1. Accounting for physical streams 

To evaluate Y and Z , the graph-based labeling procedures

ENOBS and GENRED provided by Kretsovalis and Mah (1988b) are

dopted to produce the matrices Y and Z given any plant graph

nd any sensor layout X . The graphs ( Deo, 2004 ) for the studied

WTPs are given in Fig. 1 b/c/d/f/g/h. These graphs contain at most

wo types of edges. The edges of the first type are shown as full

ines and correspond to the physical streams of the studied sys-

em. These are the S streams mentioned above. Every node in the

raph represents a total mass flow balance with the in- and outgo-

ng edges representing in- and outgoing mass flows. For example,

ode a in Fig. 1 b, corresponds to the following hydraulic balance: 

 = q 1 + q 6 − q 2 (4) 

here q 1 , q 2 , and q 6 the mass flow rates in stream 1, 2, and 6. The

orresponding edges of the graph are called a cutset, as their re-

oval cuts the graph in separate graphs. This means one can enu-

erate all possible hydraulic balances by enumerating the cutsets

f the graph. For this, efficient algorithms exist ( Deo, 2004 ). The

aximal number of independent hydraulic balances among these

alances is always one less than the number of nodes. One possi-

le set of independent hydraulic balances can be found by comput-

ng the fundamental cutsets of the graph. An advantage is that this

rovides a precise definition for the concept of overlapping bal-

nces, which has only been defined loosely so far (see e.g., Rieger

t al., 2010; Spindler, 2014; Le et al., 2018 ), namely: any two cut-

ets with a shared edge represent pair of overlapping balances. 

.3.2. Accounting for reactions 

Edges of the second type are optional, are shown with dashed

ines, and correspond to imaginary streams in the studied system.

ach dashed line in Fig. 1 c represents an edge between a phys-

cal node (node b and c ) and the environment (node e ). As dis-

ussed in Kretsovalis and Mah (1988a) , this enables accounting for

eficits in individual component balances due to the effect of re-

ctions ( Kretsovalis and Mah, 1988a; 1988b ). Stream 8 is directed
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from the environmental node e to the reactor node b . This provides

a graphical representation of the fact that the balance equation for

the j th component around node b is written as: 

0 = q 2 · c 2 , j − q 3 · c 3 , j + ρ8 · v 8 , j (5)

with q 2 and q 3 the mass flow rates in stream 2 and 3, c 2, j and

c 3, j the corresponding concentrations, ρ8 the reaction rate (unit:

mol / m 

3 . d ), and v 8, j the stoichiometric coefficient for the consid-

ered component (unit: [ −] ). The same holds for stream 9, which

represents effects of reactions in the settler. We assume, as in

Kretsovalis and Mah (1988b) , that all stoichiometric coefficients are

known. 

2.3.3. Accounting for transport phenomena 

A modified approach is taken in the graph Fig. 1 d. In this case,

an imaginary stream is added from node b to c . This particular

modification allows to account for deficits in the balances around

the reactor basin and the settler due to temporary storage of the

considered component (e.g., solids) in the reactor or settler. In this

case, reactions in the reactor or the settler are not accounted for.

As an example, the balance equation around node b now has the

following structure: 

0 = q 2 · c 2 , j − q 3 · c 3 , j − M 8 , j = q 2 · c 2 , j − q 3 · c 3 , j − ρ8 · u 8 , j (6)

where q 2 , q 3 , c 2 , c 3 have the same meaning as above and

r 8, j represents the net transport rate of component j (unit:

[ mol / d ]). To match the balance equation structure above, we de-

fine M 8 := r 8 · v 8 with v 8 a constant. u 8, j indicates whether the

component participates in the transport phenomenon. It is equal

to one if the component is subject to the considered storage phe-

nomenon (e.g., component j is a solid) and zero otherwise (e.g.,

component j is soluble). We refer to ρ8 as the transport rate. In the

present case, a positive (negative) transport rate means the con-

sidered component is accumulating in the reactor (settler). This is

represented by the minus sign in the term −M 8 and as an edge

going out from node b in the graph. More terms of the same form

can be added when multiple components are stored and released

with distinct rates, thus leading to the addition of multiple imagi-

nary edges to the graph. This approach is different compared to ex-

isting work ( Kretsovalis and Mah, 1988a; 1988b ) in the sense that

the added imaginary streams connect nodes that represent phys-

ical locations, in contrast to edges representing reactions. Impor-

tantly, this modified method implies that the total mass of every

component in the system remains constant, i.e. we assume that

there are no plant-wide component balance deficits. 

As a result, Fig. 1 b represents the situation for a conserved

component (e.g., ortho-phosphate), Fig. 1 c represents the situa-

tion for a reactive component (e.g., ammonia, nitrite, nitrate), and

Fig. 1 d represents the case of a component whose total mass in the

plant is conserved (e.g., total solids). Similar graphs for WWTP2

(MLE) are shown in the same order in Fig. 1 f/g/h. The total num-

ber of imaginary edges is given as S ∗. The edges are indexed so

that the first S edges among the complete list of S̄ := S + S ∗ edges

correspond to the physical streams. Similar to the cutsets discussed

above, one can compute the cutsets of the complete graph, cover-

ing both physical and imaginary streams. By doing so, one can enu-

merate all possible component flow balances for any single compo-

nent, regardless of whether the component is conserved, subject to

conversions, or subject to storage phenomena. As before, pairs of

cutsets with shared edges represent pairs of overlapping balances. 

2.3.4. Implementation 

While the original Structural Observability And Redundancy

(SOAR) toolbox ( Villez et al., 2016 ) could in principle be used for

this work also, initial results indicated that its computational ef-

ficiency was insufficient to solve the multi-objective sensor layout
ptimization problems within acceptable time windows (days to

eeks). For this reason, a new version of the SOAR toolbox (v2.0)

as been created. The most important change is that the sets of

a) all cycles of the complete graph, (b) all cutsets of the com-

lete graph, and (c) all cutsets of the graph without imaginary

dges are computed in advance and used as inputs to the GENOBS

nd GENRED procedures. This enables an efficient search for the

areto front. The exact implementation is described in detail in

illez (2019) . All code necessary to reproduce our results is added

n the Supplementary Information . 

.4. Optimization 

.4.1. Concept of surplus redundancy 

In any system equipped with a given sensor layout, one can

dd redundant sensors by installing sensors for variables that are

lready observable. In many cases, such an additional sensor will

nly increase the cost by one and increase the number of redun-

ant sensors by one. When this is the case, we consider the re-

ulting sensor layout to have surplus redundancy, i.e. one could

emove at least one sensor without changing the number of ob-

ervable variables or the number of non-redundant sensors. Sur-

lus redundancy can bring a multitude of benefits. E.g., additional

edundant sensors can improve the precision of reconciled mea-

urements (e.g., Crowe, 1989; Le et al., 2018 ) or improve the abil-

ty to isolate sensor faults (e.g., Gertler and Singer, 1990 ). In the

resent study, we exploit surplus redundancy to obtain a more ef-

cient multi-objective optimization strategy, as explained below. 

.4.2. Using surplus redundancy during multi-objective optimization 

The complete Pareto front is computed with a two-step method.

In step A, we solve a modified version of the multi-objective

ptimization problem by replacing the redundancy objective func-

ion with f N , which computes the fraction of the objective f R that

s associated with only the non-redundant sensors among the in-

talled sensors. 

f N ( X , Z ) = f R ( X − Z ) (7)

his new objective function computes a penalty for installing non-

edundant sensors. The modified optimization problem then trades

his penalty off against the cost and observability objectives. This

roblem is solved with the deterministic multi-objective branch-

nd-bound optimization method ( Nemhauser and Wolsey, 1988;

hrgott and Gandibleux, 2002; Villez et al., 2016 ). 

In step B, we consider the original objective functions f C , f O , f R .

he complete Pareto front, now including sensor layouts with sur-

lus redundancy, is obtained by executing the following steps for

ach layout on the existing Pareto front: 

1. Take the computed matrices for the considered layout and

name these X 0 , Y 0 , and Z 0 . Compute the objective functions f C ,

f O , f R and add this solution to the list of solutions. 

2. List the K additional candidate sensors that have not been

placed but for which the corresponding variable is already ob-

servable. Any of these additional sensors, when placed, will be

redundant automatically. 

3. Create N = 2 K − 1 additional sensor layouts by placement of ev-

ery non-empty subset of the additional candidate sensors. Call

the number of added sensors P . 

4. For each of the N layouts: 

(a) Check if the considered layout is already in the Pareto front.

If not, continue. 

(b) Compute X 1 by changing every 0 in X 0 in the location of the

added sensors P to 1 to reflect the added sensor placement.

Z is computed in the same fashion starting with Z . 
1 0 
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Table 2 

WWTP2. Applied weights for the observability objective function. 

Stream ( s ) Total mass Component Component mass 

flow rate concentration flow rate 

1 1 1 1 

2 0 0 0 

3 0 0 0 

4 0 0 1 

5 0 0 0 

6 1 1 0 

7 1 1 1 

8 0 0 1 

9 1 1 1 

10 1 1 0 

11 1 0 0 

12 1 0 0 
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(c) Set Y 1 = Y 0 . Indeed, no variables becomes observable be-

cause sensors are only placed for variables that are already

observable. 

(d) Compute the objective functions f C , f O , f R and add the ob-

tained solution to the list of solutions. 

5. Prune any solution that is not Pareto optimal in the original

objective functions f C , f O , f R from the list of solutions. 

e prove that this two-step method effectively computes the

areto front for the objectives f C , f O , f R . To this end, we refer to

he Pareto front obtained by direct optimization of f C , f O , and f R as

F0. The Pareto front obtained in step A described above consists

f all solutions that exhibit Pareto optimality for f C , f O , and f N and

s named PF1. Now consider any Pareto optimal layout in PF0 and

all it layout L0. If this layout has no surplus redundancy (Case

), it means that one cannot remove any sensor from this layout

ithout decreasing the value of f O or increasing the value of f N .

his layout is therefore also part of PF1 and is added to the final

et of sensor layouts in Step B.1 above. If this layout has surplus

edundancy (Case 2), it is possible to remove a redundant sensor

rom this layout in such a way that the sensor layout is guaranteed

o belong also to PF0. Indeed, one can remove a sensor among the

edundant sensors for which the proportion of the increase of f R to

he decrease of f C is minimal. In addition, removing any redundant

ensor cannot change the value of f O , given that all variables that

ere observable remain observable. One can continue this process

f sensor removal to produce sensor layouts that are guaranteed

o be in PF0 until one has reached a sensor layout without surplus

edundancy. At this point, one has obtained a sensor layout in PF0

hat is necessarily part of PF1 also. Call this layout L1. Conversely,

his means that layout L0 can be produced by adding sensors to

ayout L1 for variables that observable already. Since Step B.2 until

.3 enumerate every possible sensor layout L0 by adding sensors

o every layout L1 in PF1, it follows that the complete Pareto front

F0 is produced by combining Step A and B as described above. 

.5. Illustration of the methods 

.5.1. Restrictions 

The studied methods are general and enable placement regard-

ess of (a) the number of components and (b) the chosen weight

atrices ( W 

C , W 

O , W 

R ). Without losing generality, we illustrate the

ethods with the following restrictions: 

• We assume there are 3 or more components present in the sys-

tem and that these components are present in every stream

( C ≥ 3). 

• The cost weights ( W 

C 
s, v ) are 0 (sensor available at no cost), 1

(sensor available at a cost), or + ∞ (sensor not feasible). 

• Sensors for direct measurement of component mass flow rates

and heat flow rates are not available. 

• We place sensors for two variables only: total mass flow rates

and concentrations of one component (e.g., ortho-phosphate

or total suspended solids, but not both). Practically, all cost

weights are equal to infinity, except for v = 0 and v = 1 . 

• Unless mentioned otherwise, we assume that every stream can

be equipped with a flow rate sensor, a concentration sensor, or

both: 

W 

C 
s, v = 

{
1 , if: s ∈ { 1 , . . . , S} and v ∈ { 0 , 1 } 
+ ∞ , otherwise 

(8) 

• Unless mentioned otherwise, we assume a uniform interest in

estimates for all variables (all potential estimates are equally

valuable), and assume that it is equally desirable for any sensor

to be redundant: 

O R 
W s, v = W s, v = 1 (9) A  
.5.2. Studied problems 

We study a total of nine optimization problems. The first four

ptimization problems are based on the WWTP1 system ( Fig. 1 a)

hile the remaining five are based on the WWTP2 system ( Fig. 1 e).

mong each of these sets of optimization problems, the first prob-

em consists of placement of flow rate sensors only (problem 1

nd 5). This problem is selected to compare the performance of

he methods proposed in this work with the methods used in

illez et al. (2016) and is therefore solved with the original tool-

ox (SOAR v1.2) and the newest version (SOAR v2.0). Optimization

roblem 2, 3, and 4 concern placement of sensors for flow rates

nd one component in WWTP1. These correspond to the graphs in

ig. 1 b/c/d and thus reflect a case with a conserved component, a

eactive component, and a conserved solid component. Optimiza-

ion problem 6 to 8 are the equivalent problems for WWTP2. In

his case, the concentration in stream 9 (carbon dosage stream)

s considered to be known. Optimization problem 9 consists of a

odification of problem 8 by changing the weights for the ob-

ervability objective. These weights are listed in Table 2 and re-

ect our judgment regarding the relevance of flow rates, concen-

rations, and component flow rates for sludge management (solids)

n a typical WWTP. For example, only the component mass flow

ates in stream 1 (influent), 6 (settler loading), 7 (effluent), 9 (car-

on dosage), 10 (sludge removal), 11 (return sludge), and 12 (inter-

al recycle) are of interest. In addition, we consider the flow rates

or stream 9 to 12 known (carbon dosage, internal recycle, sludge

ecycle, sludge waste). This is based on the fact that these streams

re often equipped with a pump, so that these mass flow rates or

heir setpoints can be known in principle. By doing so, we illus-

rate the generality of our method. 

.6. Implementation 

All computations were executed with Matlab 9.6.0.1072779

R2019a) on a desktop machine (System: Intel® Core TM i7-4770

PU 3.40GHz, RAM: 16GB; OS: Microsoft Windows 10 Education,

4-bit). The Supplementary Information includes all software to re-

roduce our results, including the SOAR software toolbox devel-

ped for this purpose, and is published under the GPL v3 license. 

. Results 

The WWTP1 system mainly serves a didactic purpose. For this

eason, we refer the reader new to sensor placement, graph the-

ry, or multi-objective optimization to Section S.2 of the supple-

entary information, where results with WWTP1 are described in

etail. In the next paragraphs, we discuss on results obtained for

WTP2 (MLE), as the scale of this system matches realistic cases.

t the end of the results section, we discuss computational re-
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quirements. Note that all computed Pareto fronts are listed in tab-

ular form in the Supplementary Data . 

3.1. WWTP2 (MLE) 

We discuss results for optimization problems 6 to 9 to illus-

trate the applicability of our approach in diverse systems at real-

istic scale. In Problem 6 to 8, mass flow rate sensors and compo-

nent concentration measurements can be placed in every physical

stream except stream 9. In stream 9, the component concentra-

tion is considered known and only a mass flow rate sensor can be

placed. This means a total of 23 sensors can be placed, leading to

a total of 8,388,608 candidate sensor layouts. Problem 9 is used

to stress the generality of our method by demonstrating that one

can easily modify the objective functions to account for a reduced

set of sensor candidates, presence of already installed sensors, and

prioritization of certain variables of interest over others. 

3.1.1. Problem 6: WWTP2 (MLE) with conserved component 

In problem 6, the component of interest is a conserved com-

ponent, e.g. ortho-phosphate, so that the corresponding graph

( Fig. 1 f) does not contain any imaginary edge. Fig. 2 shows the

obtained Pareto front. One can see 32 distinct bubbles describing

the complete Pareto front. These contain a total of 1,565,072 sen-

sor layouts (19% of all candidate layouts). Within this Pareto front,

there are 1,531,864 sensor layouts with surplus redundancy (15 red

bubbles, 18% of all candidate layouts) and 33,208 layouts without

surplus redundancy (17 bubbles, 0.40% of all candidate layouts). In

this second category, one can recognize (a) the trivial layout with-

out any sensor (black), (b) 7,437 layouts with some but not all vari-

ables observable and one to six non-redundant sensors (white),

(c) 24,690 layouts with all variables observable and seven non-

redundant sensors (blue), (d) 400 layouts with all variables observ-

able and eight sensors, all of which are redundant (yellow), and (e)

680 layouts with some but not all variables observable and two to

seven sensors, some or all of which are redundant (green). 

To understand the Pareto solutions better, Fig. 3 provides an-

other look into the set of optimal sensor layouts. Rather than

showing the number of redundant sensors on the vertical axis,

it shows the fraction of concentration sensors among all installed

sensors. This results in dividing most of the bubbles shown in

Fig. 2 into multiple bubbles. For example, the blue bubble in Fig. 2 ,

representing 24,690 sensor layouts with seven sensors making all

variables observable is now split into four bubbles in Fig. 3 . From

bottom to top, these are (a) a bubble of 8,880 layouts with five

mass flow rate sensors (71% mass flow rate sensors), (b) a bub-

ble of 11,369 layouts with four mass flow rate sensors (57% mass

flow rate sensors), (c) a bubble of 4,051 layouts with three mass

flow rate sensors (43% mass flow rate sensors), and (d) a bubble of

390 layouts with two mass flow rate sensors (29% mass flow rate

sensors). It is particularly striking that the linear profile of bub-

bles representing layouts with surplus redundancy in Fig. 2 has

now been transformed into a set of bubbles appearing like scales

on a fish, first with increasing spread (as if from mouth to body)

and then with decreasing spread (as if from body to tail). This is

a result of two competing effects. First, as the number of sensors

is increased, this also increases the flexibility in choice of sensor

type for these additional sensors. Second, increasing the number of

sensors beyond 14 sensors starts to limit the number of additional

sensor options that remain available. This continues until all (14)

candidate sensors are selected and no flexibility remains at all. The

same phenomenon occurs for every problem involving both flow

rate sensors and concentration sensors (Problem 1–3 and 6–9, not

shown). By setting the cost weights for flow sensors and concen-

trations equal to each other one obtains sensor layouts achieving

the same levels of structural observability and redundancy while
xploiting a varying number of sensors for each variable. This abil-

ty to achieve the same sensor layout performance (observability

nd redundancy) with layouts with varying distributions of mass

ow rate and concentration sensors is a result of giving equal

eight to all sensors in the cost and redundancy objectives and to

ll variables in the observability objective. A simple modification,

.g. increasing the relative cost of concentration sensors, would re-

uce the number of solutions dramatically. We return to this ob-

erved flexibility in the discussion. 

.1.2. Problem 7: WWTP2 (MLE) with reactive component 

Problem 7 concerns the case of a reactive component, like any

itrogen-containing component (e.g. ammonia, nitrite, nitrate, to-

al nitrogen). This is reflected in Fig. 1 g. Fig. 4 shows the re-

ulting Pareto front. In this case, there are 48 bubbles represent-

ng 981,242 layouts (12% of all candidate layouts). The majority of

hese (909,132 layouts, 11% of all layouts) have surplus redundancy

nd are spread over 26 bubbles (red bubbles). These bubbles are

plit into 2 subsets of equal size (each 13 bubbles, each 454,566

ayouts). One subset consists of layouts with all 42 variables ob-

ervable and all sensors redundant except one. The other subset

onsists of Pareto optimal layouts that make only 37 out of 42 vari-

bles observable but exhibit redundancy for all sensors. 

A minority of the Pareto optimal layouts (72,110 layouts, 0.86%

f all layouts) do not exhibit surplus redundancy and are spread

ver 22 bubbles. This includes (a) the trivial layout without any

ensor (black). This trivial layout produces one observable vari-

ble, namely the concentration in stream 9, because it is assumed

nown. One also recognizes (b) 38,629 layouts with some but not

ll variables observable and one to eight non-redundant sensors

white), (c) 30,214 layouts with all variables observable and nine

on-redundant sensors (blue), (d) 972 layouts with all variables

bservable and ten sensors, nine of which are redundant (yel-

ow), and (e) 2,294 layouts with some but not all variables observ-

ble and two to nine sensors, some or all of which are redundant

green). 

Note that reaching complete observability without redundancy

n Problem 7 requires two more sensors compared to Problem 6.

his is not so surprising, considering that the reactive case includes

wo additional rate variables (the two reaction rates). For example,

he available balances around the reactor and settler (nodes d and

 , component mass flow balances) enable estimation of the unmea-

ured reaction rates (stream 13 and 14) when the mass flow rates

nd component concentrations in stream 4, 5, 6, 7, and 8 are mea-

ured. This is because the stoichiometric coefficients for stream 13

nd 14 are known, so that the two component mass flow balances

nable estimation of the reaction rates. This requires 10 sensors.

ote that similar effects can be observed for WWTP1 (Problem 2

nd Problem 3, see Supplementary Information for details). 

A curious diagonal pattern can be seen at the top-left of the

gure. One can see two series of bubbles representing layouts with

urplus redundancy. The first series starts with a bubble represent-

ng 8,001 layouts with 11 sensors that make all (42) variables ob-

ervable and 10 of the 11 installed sensors redundant. The second

eries starts with a bubble of the same size (8,001 layouts) with 10

ensors that make all but five variables (37 total) observable and

ll (10) sensors redundant. The remaining bubbles in each series

an be traced by increasing the number of sensors incrementally

hile simultaneously increasing the number of redundant sensors

ith the number of sensors added. Importantly, for each increase

f the number of installed sensors, the number of layouts in the

orresponding bubbles in both series remains the same. 

The interesting repeated pattern observed in the previous graph

an be explained as follows. The most important property of Prob-

em 7 is that it is impossible to place a redundant concentration

easurement in stream 7. More specifically, it is impossible to
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Fig. 2. Problem 6 – Placing sensors for flow rate and concentration of a conserved component (e.g., ortho-phosphate) in WWTP2. Visualization of the Pareto front. The ideal 

solution is indicated as a white triangle. The size of the bubbles reflects the number of layouts in each point on the Pareto front: (black) zero sensors; (white) incomplete 

observability, no redundancy; (green) incomplete observability, some or complete redundancy; (yellow) complete observability, some or complete redundancy; (red) surplus 

redundancy. Reaching observability for all variables and redundancy of all sensors requires only seven sensors. Many other Pareto optimal choices are available, including 

layouts without observability and layouts with surplus redundancy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 3. Problem 6 – Placing sensors for flow rate and concentration of a conserved component in WWTP2. Alternative visualization of solutions on the Pareto given in Fig. 2 , 

showing the number of sensors f C , the number of observable variables f O , and the fraction of installed sensors that are mass flow rate sensors f C q / f C . The size of the bubbles 

reflects the number of layouts in each point: (black) zero sensors; (white) incomplete observability, no redundancy; (green) incomplete observability, some or complete 

redundancy; (yellow) complete observability, some or complete redundancy; (red) surplus redundancy. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 4. Problem 7 – Placing sensors for flow rate and concentration of a reactive component (e.g., ammonia) in WWTP2. Visualization of the Pareto front. The ideal solution is 

indicated as a white triangle. The size of the bubbles reflects the number of layouts in each point on the Pareto front: (black) zero sensors; (white) incomplete observability, 

no redundancy; (green) incomplete observability, some or complete redundancy; (yellow) complete observability, some or complete redundancy; (red) surplus redundancy. 

Reaching observability for all variables and redundancy of all sensors requires a minimum of nine sensors, two more compared to Problem 6. Many other Pareto optimal 

choices are available, including layouts without observability and layouts with surplus redundancy. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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write a balance equation involving the concentration in stream 7

which does not involve the reaction rate for stream 13, which is

always an unknown variable that needs to be estimated. To see

this, consider evaluating redundancy for the concentration sensor

in stream 7, i.e. remove this sensor and check if this variable is

still observable. When doing so, ρ13 and c 7 are two unknowns

participating in a single independent balance equation only, mean-

ing that these unknowns cannot be estimated, in turn indicating

that the removed sensor is not redundant. The equivalent graph

theoretical observation is that there is not a single cutset in the

graph ( Fig. 1 f/g/h) including edge 7 but not including edge 13.

More specifically, one cannot split the graph into two graphs so

that the nodes connected by edge 7 are disconnected without re-

moving edge 13. For this reason we consider this a structural iden-

tifiability issue. Importantly, this means it can only be resolved by

modifying the definition of Problem 7. For example, one could con-

sider (a) simultaneous consideration of balances for multiple com-

ponents, thus requiring concentration sensors for more than one

component, (b) by measuring all mass fractions in stream 7 (which

is practically impossible for the water mass fraction), (c) allowing

for installation of redundant sensors in the same stream (hardware

redundancy), or (d) assuming that no reaction involving the com-

ponent of interest occurs in the settler (thus removing stream 13

from the graph). 

3.1.3. Problem 8: WWTP2 (MLE) with conserved solid component 

Problem 8 concerns the case of a conserved solid component

(e.g., total suspended solids), as reflected in Fig. 1 h. The corre-

sponding Pareto front is shown in Fig. 5 . There are 33 bubbles rep-

resenting 1,563,126 layouts (19% of all candidate layouts). The ma-

jority of these (1,478,757 layouts, 18% of all layouts) have surplus

redundancy and are spread over 14 bubbles (red bubbles). The re-
aining layouts (84,369 layouts, 1.0% of all candidate layouts) do

ot exhibit surplus redundancy and are spread over 19 bubbles.

hese bubbles include (a) the trivial layout without any sensor

black), (b) 23,454 layouts with some but not all variables observ-

ble and one to seven non-redundant sensors (white), (c) 58,026

ayouts with all variables observable and eight non-redundant sen-

ors (blue), (d) 1,500 layouts with all variables observable and nine

ensors, all of which are redundant (yellow), and (e) 1,388 layouts

ith some but not all variables observable and two to nine sen-

ors, some or all of which are redundant (green). 

In this case, reaching complete observability without redun-

ancy requires one more sensor compared to Problem 6 and one

ess compared to Problem 7. This is explained as the consequence

f adding the transport rate variable, which is introduced to ac-

ount for component imbalances in the reactor and the settler and

annot be measured directly. The unmeasured rate participates as

 single rate in two independent balance equations: for node d

stream 4, 5, and 13) and node f (stream 6, 7, 8, and 13). Con-

ider measuring mass flow rates and concentrations in all physi-

al streams. This makes all variables of interest observable. It also

akes all sensors redundant as each mass flow rate and compo-

ent concentration participates in at least one balance equation

hat excludes the unknown transport rate. Indeed, by considering

he balances around nodes a, b, c, e , and g one obtains 10 indepen-

ent equations (5 flow balances and 5 component balances) involv-

ng 24 measurements. Removing any single measurement, means

hat one obtains 10 equations with one unknown, so that any sin-

le measurement clearly is redundant. Following this path of rea-

oning, the Pareto front has to include at least one sensor layout

or which all sensors are redundant while all variables of interest

re observable. 
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Fig. 5. Problem 8 – Placing sensors for flow rate and concentration of a solid component (e.g., total suspended solids) in WWTP2. Visualization of the Pareto front. The ideal 

solution is indicated as a white triangle. The size of the bubbles reflects the number of layouts in each point on the Pareto front: (black) zero sensors; (white) incomplete 

observability, no redundancy; (green) incomplete observability, some or complete redundancy; (yellow) complete observability, some or complete redundancy; (red) surplus 

redundancy. Reaching observability for all variables and redundancy of all sensors requires a minimum of eight sensors, one more compared to Problem 6 and one less 

compared to Problem 7. Many other Pareto optimal choices are available, including layouts without observability and layouts with surplus redundancy. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.1.4. Problem 9: WWTP2 with conserved solid component, 

ustomized objectives 

Problem 9 is a modification of Problem 8 by assuming different

eights for the observability objective and knowledge about the

ow rates in four streams. These streams are typically equipped

ith pumps. Such pumps often come with an associated flow rate

easurement. Alternatively, the pumps’ flow rate setpoints, or sig-

als describing power consumption, heat loss, and pressure loss

ould act as a proxy for the flow rate. Consequently, there are now

nly 19 sensor locations available, resulting in 524,288 candidate

ensor layouts. One can easily verify that the mass flow rate for

tream 8 is observable without any additional sensor. 

Fig. 6 shows the resulting Pareto front. This now includes 25

ubbles with 258,268 layouts (49% of all candidate layouts). The

ajority of these layouts have surplus redundancy (16 red bub-

les, 256,957 layouts, 49% of all candidate layouts). The remaining

,311 layouts (0.25% of all candidate layouts) are distributed over

 bubbles. These bubbles include (a) the trivial layout without any

ensor (black), (b) 181 layouts with some but not all variables ob-

ervable and one to three non-redundant sensors (white), (c) 709

ayouts with all variables observable and four non-redundant sen-

ors (blue), (d) 162 layouts with all variables observable and five

ensors, all of which are redundant (yellow), and (e) 258 layouts

ith some but not all variables observable and two to nine sen-

ors, some or all of which are redundant (green). 

.1.5. Overview of all results 

Table 3 gives an overview of the results obtained through solv-

ng all nine sensor layout optimization problems. 

The flow rate sensor placement problems (Problem 1 and 5) are

olved with v1.2 and v2.0 of the SOAR toolbox. For both WWTP1

nd WWTP2 the resulting Pareto front is the same regardless of
he chosen software version, as expected. The major difference lies

n the computational requirements. For WWTP1, the Pareto front is

omputed in less than 5 seconds with v1.2 and less than 3 seconds

ith v2.0. For WWTP2, the improvement is more impressive: a fac-

or 10 improvement from 250 s to less than 25 s. Improvements

re partially due to the implementation changes in the GENOBS

nd GENRED. These are small for GENOBS (reduction of less than

 s for WWTP2) yet substantial for GENRED (reduction of 40 s

or WWTP2). It is noteworthy that the average use of GENRED for

valuation of a single layout for WWTP2 takes only 0.05 ms with

2.0 while the same task requires 12 ms on average with v1.2, thus

roviding a factor 200 improvement. Despite this impressive rel-

tive improvement, the changes in GENOBS and GENRED are re-

ponsible for a reduction of the total computational load by 2 s

nly. The remaining reduction of 220 s for WWTP2 is therefore at-

ributed to (a) an improved implementation of the multi-objective

ranch-and-bound search method, (b) deployment of the two-step

earch strategy discussed above. Most importantly, the computa-

ionally expensive GENOBS and GENRED procedures are only re-

uired in step A. 

The seven sensor placement problems involving both flow rate

nd concentration sensors (Problem 2–4 and 6–9) are solved with

2.0 only. In this case, the computational effort is substantially

arger, e.g. up to 51 h for Problem 8. Note however that multi-

bjective sensor placement problems of this complexity and scale

ould not be solved before (e.g., with v1.2). One can also see that

he sensor layouts without surplus redundancy that are Pareto op-

imal represent a small fraction of the total set of feasible sensor

ayouts. For the WWTP2 configurations, this fraction is at most 1%.

his has a two distinct advantages. The first advantage is that the

omputationally expensive GENOBS and GENRED procedures are

nly required to compute a small subset of the complete Pareto
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Fig. 6. Problem 9 – Placing sensors for flow rate and concentration of an conserved solid component (e.g., total suspended solids) in WWTP2 with non-uniform weights for 

the objective functions. Visualization of the Pareto front. The ideal solution is indicated as a white triangle. The size of the bubbles reflects the number of layouts in each 

point on the Pareto front: (black) zero sensors; (white) incomplete observability, no redundancy; (green) incomplete observability, some or complete redundancy; (yellow) 

complete observability, some or complete redundancy; (red) surplus redundancy. Reaching observability for all variables of interest and redundancy of all sensors requires a 

minimum of five sensors. Many other Pareto optimal choices are available, including layouts without observability and layouts with surplus redundancy. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Results obtained with all sensor layout optimization problems. 

Plant configuration WWTP1 WWTP2 

Problem 1 2 3 4 5 6 7 8 9 

SOAR toolbox v1.2 v2.0 v2.0 v2.0 v2.0 v1.2 v2.0 v2.0 v2.0 v2.0 v2.0 

# Sensor candidates 

Flow rate [-] 7 7 7 7 7 12 12 [-] 12 12 12 8 

Concentration [-] 0 0 7 7 7 0 0 [-] 11 11 11 11 

# Sensor layouts 

Feasible [-] 128 128 16,384 16,384 16,384 4096 4096 [-] 8,388,608 8,388,608 8,388,608 524,288 

Evaluated total [-] 128 128 15,425 12,627 14,574 3537 3964 [-] 7,186,549 6,089,723 7,174,826 497,555 

Evaluated in step 1 [-] - 128 14,569 12,200 13,970 - 3545 [-] 5,362,015 4,658,522 5,293,215 450,790 

Evaluated in step 2 [-] - 0 856 427 604 - 419 [-] 1,824,534 1,431,201 1,881,611 46,765 

Pareto optimal [-] 70 70 6,037 1501 2,633 872 872 [-] 1,565,072 981,242 1,563,126 258,268 

Pareto optimal (no surplus) [-] - 47 1,121 547 1,080 523 872 [-] 33,208 72,110 84,369 1,311 

Evaluated total [%] 100 100 94.15 77.07 88.95 86.35 96.78 [%] 85.67 72.60 85.53 94.90 

Evaluated in step 1 [%] - 100 88.92 74.46 85.27 - 86.55 [%] 63.92 55.53 63.10 85.98 

Evaluated in step 2 [%] - 0 5.22 2.61 3.69 - 10.23 [%] 21.75 17.06 22.43 8.92 

Pareto optimal [%] 54.69 54.69 36.85 9.16 16.07 21.29 21.29 [%] 18.66 11.70 18.63 49.26 

Pareto optimal (no surplus) [%] - 36.72 6.84 3.34 6.59 - 12.77 [%] 0.40 0.86 1.01 0.25 

Computational time 

Total [s] 4.73 2.61 127.71 112.39 133.11 248.78 21.77 [h] 29.19 43.49 50.11 0.99 

Time step 1 [s] - 2.50 124.92 111.76 133.43 - 21.26 [h] 25.52 40.21 42.84 0.95 

Time step 2 [s] - 0.11 2.79 0.63 1.68 - 0.52 [h] 3.67 3.29 7.27 0.04 

GENOBS [s] 0.38 0.12 23.08 20.23 23.87 11.19 8.61 [h] 3.81 3.51 3.72 0.25 

GENRED [s] 1.21 0.05 38.82 34.23 39.69 41.69 0.20 [h] 10.47 11.78 11.72 0.24 

GENOBS per layout [ms] 2.98 0.90 1.58 1.66 1.71 3.16 2.43 [ms] 2.56 2.71 2.53 2.01 

GENRED per layout [ms] 9.45 0.36 2.37 2.09 2.42 11.79 0.05 [ms] 4.49 5.05 5.03 1.63 
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front (Step A). The second advantage is that structural criteria (for

cost, observability, and redundancy) appear sufficient to reduce the

number of candidate sensor layouts significantly. 

One general phenomenon is that adding variables that cannot

be measured directly (e.g., reaction rates, storage) decreases the

number of layouts on the Pareto front. Thus, adding additional
egrees of freedom to the data reconciliation problem reduces

he number of Pareto-optimal solutions. The table also shows that

omputing the sensor layouts with surplus redundancy on the ba-

is of the sensor layouts without surplus redundancy can be ex-

cuted fairly efficiently. Taking Problem 8 as an example, one can

ee that step 2 of the search strategy requires just under 15% of the
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otal computational time while this step is responsible to evaluate

bout 25% of the number of the evaluated sensor layouts. 

. Discussion 

.1. Optimal placement of flow rate and concentration sensors based 

n structural information 

In this study, we search for Pareto optimal sensor layouts by

nding sensor layouts which optimally trade off cost of sensor

wnership, informativeness, and redundancy. This is achieved by

xpressing all optimization objectives as flexible functions that are

onotonic in binary variables describing whether a sensor is in-

talled, whether a variable is structurally observable, and whether

n installed sensor is structurally redundant. The major benefits of

his approach are demonstrated for the first time at a realistic scale

nd level of complexity through this study: 

• The method is generally applicable and enables computation of

the complete Pareto front within reasonable time windows. 

• The Pareto front solutions are enumerated completely. This is

achieved by deterministic optimization, which means the set of

Pareto solutions is provably optimal and complete. 

• Flow rate and concentration sensor layout optimization (i)

can be executed for existing plants with sensors (brown-field,

retrofitting) as well as for new plants prior to construction

(green-field), (ii) does not rely on information of typical sen-

sor signal quality, and (iii) does not require any measurements.

In turn, such placement will impact the utility of real-world

data by enabling effective data reconciliation at minimal cost,

in turn transforming unchecked data produced in complex sys-

tems, such as WWTPs, into a valuable resource for machine

learning, model identification, and monitoring of daily opera-

tions. 

• Internal storage and release of components that are conserved

at a plant-wide level are accounted for in a systematic manner,

thanks to modification of the observability and redundancy la-

beling procedures of Kretsovalis and Mah (1988a,b) . This modi-

fication is important as it leads to a Pareto front that is suitable

for the total solids in wastewater plants. More specifically, it al-

lows to account for temporary imbalances of the solids in indi-

vidual subsystems of the plant (e.g., reactor, settler), e.g. due to

rain events, while assuming that the solids content of the plant

as a whole remains intact under normal operational conditions.

• Every Pareto front is found within 2.5 days of computing time

on a single machine. This is in part due to the modified

GENOBS and GENRED procedures for observability and redun-

dancy labeling, which were implemented efficiently by enumer-

ating all cycles and cutsets of the graphs a priori. Automated

screening of candidate sensor layouts is therefore possible with

conventional computing infrastructures. 

.2. Effects of objective functions, available sensor types and 

ocations, and system topology on the resulting Pareto front 

The relationship between the problem specification, i.e. the ob-

ective functions, the available sensor types and locations, and the

tructure of the system graph and its solution, i.e. the resulting

areto front, is a highly nonlinear. Moreover, small changes in the

roblem specification can lead to large changes in its solution. Con-

equently, statements about this relationship that are true in gen-

ral will have limited use in specific instances of the sensor place-

ent problem. This is exactly why the ability to efficiently com-

ute the Pareto front for general plant configuration is so valu-

ble. Nevertheless, we mention a few general lessons that can be

earned, either through graph theoretic considerations or from the

esults discussed above: 
• Increasing the number of streams without increasing the num-

ber of cycles in the graph e.g., by representing a single pipe

with two separate pipe sections - will lead to the same Pareto

front as long as the number of sensor candidate sensors re-

mains the same. This is because the added variables can be re-

moved from any data reconciliation problem by simple appli-

cation of the equality constraints describing the balances over

the node connecting the two pipe sections. If instead additional

sensor candidates are added for every added variable, then one

should expect the Pareto front to be in the same location, while

many points on the Pareto front will contain more sensor lay-

outs (larger bubbles). 

• Increasing the number of cycles without changing the number

of streams, tends to move the Pareto front to solutions that re-

quire more measured flow rates and concentrations to achieve

the same level of observability and redundancy. This follows

from the idea that making a flow (component flow rate) for

a particular stream is observable when every cycle with this

stream must have at least one stream with a measured flow

rate (component flow rate) or an independent estimate thereof.

• Adding a sensor to the set of candidate sensors for a variable

that can be made observable already without this sensor will

increase the number of layouts in the points on the Pareto

front. Quite possibly, a better Pareto front may be obtained, e.g.

if a concentration sensor is added for a concentration variable

that otherwise requires a combination of flow sensors and con-

centration sensors to become observable. 

• As observed in the results section, setting weights for distinct

sensor types and location equal to each other, thus indicat-

ing equal preference for any candidate sensor leads to a large

number of sensor layouts on the Pareto front. The solicitation

of stronger preferences, e.g. a preference for flow rate sensors

rather than concentration sensors, will significantly reduce the

number of sensor layouts on the Pareto front. 

.3. Nature of sensor layout optimization in wastewater treatment 

lants 

The following additional observations appear valid for typical

WTPs: 

• Accounting for reactions (e.g., involving total ammonia, or the

organic soluble fraction) and transport phenomena (e.g., for

solids) adds additional variables without changing the num-

ber of balance equations. It is therefore not a surprise that

the consideration of such phenomena requires additional sen-

sors to achieve the same level of observability and redundancy,

mainly to compensate for the additional degrees of freedom

implied by unmeasurable rates (e.g., reaction rates, transport

rates). In practical situations, one may choose to ignore certain

reactions and transport phenomena. E.g., for data reconciliation

over long periods of time, e.g. months to years, one may expect

that short-term effects of reaction and internal transport can be

ignored, thereby increasing the number of redundant sensors

and the number of balance equations available for data recon-

ciliation. In turn, this leads to improved precision of reconciled

measurements and shorter times between the onset of sensor

faults and their detection. In shorter time scales, e.g. days to

weeks, it may very well be possible to ignore reactions still and

only consider internal transport as a source of temporary im-

balances within the plant. This would be the case of the total

solids component in a plant subject to rain events. On the other

hand, being able to assess reaction and transport rates can be

very useful for process troubleshooting and optimization. Thus,

it is important to define the sensor layout optimization objec-



12 K. Villez, P.A. Vanrolleghem and L. Corominas / Computers and Chemical Engineering 139 (2020) 106880 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tives according to the intended time scales for data reconcilia-

tion. 

• The fraction of optimal layouts among all candidate layouts is

fairly small (e.g., less than 20% for the most complex prob-

lems with the realistic WWTP2 configuration, 6–8). However,

the total number of Pareto-optimal layouts tends to be large

still (more than a million in some cases). We discuss a num-

ber of ways to reduce this number below. Based on current re-

sults, the resulting Pareto front is especially valuable to assist

the end-user with further elucidation of sensor layout prefer-

ences. 

• Restricting oneself to the most cost-effective sensor layouts, by

selecting sensor layouts without surplus redundancy only, re-

duces the number of optimal sensor layouts to a very small

fraction of the candidate sensor layouts (e.g., 1% or less for the

most complex problems with the realistic WWTP2 configura-

tion, 6–8). 

• In all studied problems, the total number of sensors (flow rate

and concentration) required to achieve complete observability

and complete redundancy of all sensors is only one more than

the total number of sensors (flow rate and concentration) to

achieve complete observability without any redundancy. This

shows that the additional investment necessary to transition

from complete observability to complete observability and re-

dundancy is likely small in many WWTPs, even when flow rates

and concentrations need to be reconciled simultaneously. 

4.4. Criticism 

Despite the advances reported above, a few points of improve-

ment must be considered for future work. These are: 

• Equal weights were assumed for the cost of flow rate and con-

centration sensors. This leads to extreme flexibility. We illus-

trated this by showing how the fraction of sensors of one type

can vary significantly within the sets of Pareto optimal sen-

sor layouts delivering the same values for the optimization ob-

jectives. Several options are available to reduce this flexibility,

should it be desired: 

1. Modify the weights of the cost function so that certain sen-

sors, i.e. for a specific variable or in specific locations, cost

more than others. For instance, sensor location with difficult

access or sensors whose cost of ownership is expected to be

high can be given a larger weight. 

2. Add an additional objective function in the multi-objective

optimization problem to discriminate between sensor lay-

outs with otherwise equal values for objective functions.

E.g., one can add the number of concentration sensors as an

additional objective to prefer sensor layouts with a larger

fraction of flow rate sensors. 

3. Include practical objectives for observability (e.g., expected

bias, expected precision) and redundancy (e.g., expected

fault detection rates Ali and Narasimhan, 1996 , variance of

reconstruction error Valle et al., 1999 ) as a way to discrim-

inate between sensor layouts that are otherwise equivalent

in performance. 

• The system scale, while realistic for wastewater plants, is rela-

tively small to more complex networks, such as sewer systems

and drinking water networks. We expect relative ease to scale

these methods to sewer systems, due to the tree-like structure

of most sewer system graphs. Drinking water distribution net-

works are far more dense however and may therefore provide

more challenging cases. Given that most of the computational

effort is spent on the search for the Pareto front, rather than

the GENOBS and GENRED procedures, we believe that a more

efficient optimization scheme is desirable for such cases. This
could be achieved by designing algorithms for multi-objective

deterministic optimization that exploit the nature of the sen-

sor layout optimization problem better. Quite possibly, the use

of parallel computing could also facilitate a faster delivery of

the Pareto front. Alternatively, one can also abandon guaran-

teed optimality and completeness of Pareto front, thus allowing

the use of stochastic optimization algorithms, such as genetic

algorithms ( Sen et al., 1998; Gerkens and Heyen, 2008 ). 

• In this and prior work, we have only considered observability

and redundancy objectives. However, redundancy only ensures

that one can recognize the presence of sensor faults (detec-

tion), not necessarily identify them (isolation) (e.g., Luong et al.,

1997; Commault and Dion, 2007; Prez et al., 2011; Sarrate et al.,

2014; Palleti et al., 2016 ). To do so, the value of surplus redun-

dancy should be studied in more detail. Adding an objective to

evaluate structural isolability would be valuable for this (as in

Bhushan and Rengaswamy, 20 0 0 ). For instance, one could count

the number of sensors for which a fault, when it occurs, can be

uniquely attributed to this sensor. In our opinion, it might be

even better to count the number of sensor pairs for which one

can uniquely identify the faulty one, should one of the sensors

in the pair be faulty. In addition, we believe that more refined

sensor cost objectives and practical measures of observability,

redundancy, and isolability are desirable objectives to include

into our systematic approach for multi-objective sensor layout

optimization. 

.5. Outlook 

Our results show promise for research directions not considered

et: 

• The evaluation of observability and redundancy in cases where

linear balance equations, bilinear balance equations, and con-

centration equality in splitter nodes need to be considered can

be executed very fast thanks to prior computation of all graph

cutsets and graph cycles. The enumeration of the complete set

of graph cutsets is equivalent to the enumeration of every lin-

ear flow balance equation or every bilinear balance equation for

a single component. Thus, this means that one can also quickly

evaluate whether a particular balance equation should be in-

cluded to solve a particular data reconciliation problem. Select-

ing the linear total mass (bilinear component) flow balances

that should be included is equivalent to selecting all cutsets

among the cutsets which have streams with observable total

mass flow rates (component flow rates) only and at least one

redundant sensor. This means that it is likely that the auto-

matic setup of data reconciliation problems could be executed

in less than a second, which is three orders of magnitude faster

than the result by Le (2019) through adoption of the method

described in Spindler (2014) . Fast formulation of data recon-

ciliation problems could be essential when reconciled data are

very valuable, especially in on-line control settings where the

availability of measurement can change frequently (e.g., due to

sensor or communication failures, or maintenance effort s). Note

that a multi-parametric programming approach may solve this

problem too ( Teles et al., 2012 ). 

• A quick evaluation of structural observability and redundancy

would also be valuable in pressured networks, including sewer

systems and drinking water supply networks. In this case, there

are nonlinear equations describing the relationship between

pressure drops and flow rates. To our understanding, there is

no graph-theoretic approach for simultaneous labelling of flow

rates, pressures, and concentrations (e.g., contaminants) in such

networks. While not explored in detail yet, it is noteworthy that

every cycle composed of edges representing physical streams
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corresponds to a single pressure balance equation, i.e. the net

pressure loss across the pipes in a loop must always be zero. 

. Conclusions 

The optimal placement of flow rate and concentration sensors

s addressed by solving a multi-objective integer sensor layout op-

imization problem considering weighted cost, weighted structural

bservability, and weighted structural redundancy. We solve this

ype of problems for the first time at a realistic scale and level

f complexity and achieve this with a generally applicable method

or physical systems described by linear and bilinear constraints

nvolving total mass flow rates, heat flow rates, temperature, and

ass flow rates and concentrations of any number of physico-

hemical components. The applied graph-theoretic method is mod-

fied to account for internal storage and release of components that

re otherwise conserved and special attention was given to an ef-

cient implementation of this method. As a result, the provided

ethod is efficient while it is applicable to any system described

y linear and bilinear balance equations. 

An interesting practical result is that the investments in sensors

o move from complete observability to complete observability and

edundancy requires only one more sensor (flow rate or concen-

ration) in realistic plant configurations. This appears true despite

ffects of complexity, nonlinearity, and scale. 

Finally, the applied optimization method is applicable for any

lant configuration without data collection requirements or speci-

cation of sensor properties. This property of the method is attrac-

ive as a way to design data acquisition systems that produce in-

ormative and high-quality sensor signals. This is considered useful

specially for tasks involving empirical models, for which reliable

ensor signals are paramount. 
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