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ABSTRACT

Information about the location of modeling errors is crucial for the efficient improvement of an invalid
model. This article discusses how to pinpoint modeling errors through comparison of experimental data
with data obtained through simulation of the invalid model. An observer-based approach is presented.
By designing a dedicated observer for the system using the invalid model, a signal vector is generated, on '
which each modeling error imposes an easily identifiable feature. An algorithm to analyze the featured
signal is then presented. With this algorithm, the features of each of the modeling errors are extracted.
The approach is illustrated for a denitrification reactor model in which errors in the dimension of the
state vector, in the structure of the biokinetic relationship and in the values of the parameters could be
identified. © 1997 IAWQ. Published by Elsevier Science Ltd
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INTRODUCTION

The use of modeling and simulation has proven to be invaluable in the design, analysis and optimization
of activated sludge wastewater treatment plants (see for instance Coen et al., 1996). A typical modeling
process starts by identifying an Experimental Frame. The frame represents the experimental conditions
under which the modeller wants to investigate the system. As such, it reflects the modeller’s goals
and questions. Based on the identified frame, a class of matching models can be identified. Through
structure characterization, the appropriate model structure is selected based on the a priori knowledge
and/or the measurement data. Subsequently, parameter estimation and/or calibration yield parameter
values. Using the identified model and parameters, simulation allows one to mimic the system behavior.
The validity of the model is then substantiated by comparing new experimental data sets (different from
those used for model structure and parameter identification) to those produced by simulation (model
validation).

A model has to be corrected once proven invalid. Considering the important efforts required during
model building, e.g. for the collection of the experimental data, it must be quite obvious to the reader
that an indication of the source of model error is very valuable for more economic model improvement
as it allows to direct the efforts.

As one might intuitively expect, different modeling errors usually cause the behavior of the model to
deviate in different ways from that of the real system. Or, in other words, different modeling errors

correspond to different “patterns” in the error signal, the difference between experimental data and
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simulated data. These “patterns”, if extractable, can obviously be used to identify the modeling errors.
Starting from this conjecture, an observer-based approach to modeling error identification has been
developed in Yuan et al. (1996b). By designing a dedicated observer of the system with the invalid
model, a signal vector was generated, on which each modeling error imposed an identifiable feature. An
algorithm to analyze the featured signal was also developed, with which the features of the modeling
errors were extracted. As a result of this specific approach, the type as well as the location of the errors
can be determined once a model is found to contain significant errors. Then, an appropriate action to
improve the model can be taken.

The aim of the current paper is to show how the errors associated with activated sludge models can be
identified with such an approach. This is achieved by showing the identification of the modeling errors
of a biological denitrification model. The theory presented in Yuan et al. (1996b) is briefly summarized
first. The denitrification model and its enumerable modeling errors are then discussed. Finally simula-
tion studies on identifying the modeling errors of the denitrification model are reported.

AN OBSERVER BASED APPROACH TO MODELING
ERROR IDENTIFICATION

Model and System Representation

Assume that the parametrized model under evaluation takes the form,
Em(t) = fm(Tm(t), Om, u(t), ) (1)

where r,,(t) € R" is the state variable vector of the model, «(t) € RP is the input vector, and 8,, is
the model parameter vector, which is known (e. g. from parameter estimation). On the basis of this
model, the real behavior of the system can generally be represented as (Yuan et al., 1996a),

&r(t) = fr(zr(8),6r,u(t),t) = fn(zr (), O, ult), t) + em(t) (2)

where z,(t) € R" is the state vector of the system, e,(t) € R" is the modeling error vector. It is
assumed in equation (2) that the real system has the same number of state variables as the model.
This representation does not limit the generality of the representation since the errors introduced by
erroneous state aggregations in deriving model (1) can also be represented by the error term e,,(t). The
error term e, (t) can further be represented as e,(t) = ¥} Fid;(t), and hence system equation (2) is
rewritten as (Yuan et al., 1996b),

!

Er(t) = fin(@r(t), O, u(t), 1) + D Fidi(t) (3)

=20

where F; € R™*%, a constant matrix, is called the feature matrix of the i-th modeling error; d;(t) € R*,
which is generally unknown and time-varying, represents the magnitude of the i-th modeling error. To
apply the modeling error identification approach to be presented below, one is required to construct the
feature matrices based on a priori analysis of the possible modeling errors. However, it is not necessary
to specify d;(t).

Feature Equation Derivation

To present the concept, only the case where all the states z,(t) of system (3) are measurable is discussed
here. The approach for the case of incomplete state measurement can be found in Yuan et al. (1996b).
Based on model (1), a dedicated observer of system (3) is designed as follows,

£0(t) = fm(@e(t),0m, u(t) t) + g (z.(t) — zo(t)) (4)

which is asymptotically stable as long as g, a scalar, is positive. Note that observer (4) differs from
a conventional one in that: (1) fun(z,(t),0m,u(t),t), instead of fin(zo(t),bm,u(t),t), is used on the
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right-hand side of the observer equation; (2) the observer gain matrix is designed as g - I. As will be
seen in the sequel, these special designs make the modeling error identification possible.

The dynamics of the error signal e(t) = z,(t) — zo(t), is characterized by é(t) = —ge(t) + X', Fidi(t).
Thus,

i
2 Fidi(t) = e(t) (5)

where d;(t) = [} e79¢~")d;(r)dr is the manifestation of the i-th modeling error in the error signal e(t).
In equation (5) e(to) = 0 is assumed since z,(t) are completely measurable.

Equation (5) clearly shows that each modeling error imposes a subspace, which is spanned by its
feature matrix, on the n-dimensional e(t) space. This indicates that one may identify the modeling
errors associated with the model by investigating the properties of the e(t) space. Equation (5) is called
a feature equation. Correspondingly, e(t) is called the featured error signal.

Modeling Error Identification

Equation (5) implies that information about modeling errors can be obtained when the featured signal
e(t) is localized to a certain subspace. Obviously, the identification process involves two essential steps,
localizing e(t) to a subspace and interpreting the localization based on the feature equation.

Given a signal e(t) € R™ and a subspace S C R", to verify if e(t) lies in S one may investigate the
projection of e(t) on S1, the orthogonal complementary subspace of S, making use of the fact that any
signal lying in S has zero projection on St. Assume V = (Vi Va] € RM*, where the columns of V; and
Vi, constitute a unitary, orthogonal basis of the subspaces S and S*, respectively. The projection of
signal vector e(t) on S*, represented under the basis constituted by the columns of V3, is Vo7 e(t). If
e(t) € S, we have V;7e(t) = 0. This equation gives a theoretical criterion to judge whether or not e(t)
lies in 8. Practically, however, it will never strictly hold due to, for instance, noise contained in the
measurement of (¢}, the existence of insignificant modeling errors, etc.. Noting that the objective is
to identify the most significant modeling errors, this criteria is relaxed to,

Vi e®ll2/IVie®)l2 < & (6)

where VTe(t) is the projection of e(t) on S, represented under the basis constituted by the columns of
Vi, € is a threshold, which should be chosen according to the magnitude of the system noise and of the
measurement noise.

Let Mex be a subset of the pre-defined modeling error set My = {F}, F3, ---, F;}. Note that symbol
F;, defined as the feature matrix of the i-th modeling error before, is also used to denote the i-th
modeling error for simple notation. Assume Mey satisfies, ¥ p.cm., R(F;) = S where R(F;) denotes the
space spanned by the columns of F;. By introducing feature equation (5) in inequality (6), one obtains,

I Y WEGWA Y WEGH+ Y. WEGOlh<a ©
F;€Mp —Mex F;EMex F;€Mp—Mex

When inequality (6) holds, inequality (7) implies that the most significant modeling errors are among
those that are contained in Mgy or those whose subspaces spanned by their feature matrices are ‘close’
to S. The latters constitute a set M, which can be constructed with,

M = {Fj | F; € Mp — Mex , o(V5 Fj)/o(VTF)) < e; where €2 > €1} (8)

where o(Vy F;) and o(V{'F}) are the largest singular values of matrices V;' F; and VT F}, respectively.
Generally, ¢; should be chosen sufficiently large in order to reduce the risk of excluding significant
modeling errors contained in My — M. However, a too high e; decreases the effectiveness of the
algorithm. A user specified compromise is thus needed. When inequality (6) does not hold, which
implies that e(t) does not lie in subspace S, no information about which modeling errors are the most
significant ones can be drawn. The above discussion leads to the following algorithm for identifying the
NST 36-5-0
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modeling errors.
Step 1 : Construct set S, as,

S.; = {Sl J Si = Z §R(Fm-) where Mi = {Fi,h E,Z: ey, F'i,k,-} g Mp, d1m($,) < n} (9)
Fi j€EM;

Apparently, S is a set constituted by all the true subspaces of R™ that are spanned by the feature
matrices of one or more pre-defined modeling errors.

Step 2 : For each S§; € S, construct matrices Vi and V, such that their columns constitute unitary
bases of S; and S}, respectively. Define a modeling error set My, as,

Ms, = {Fj | F; € Mp, V;F; =0 or o(V;'Fj)/o(W'F}) < e} (10)

According to the above analysis, M, is such a set that all the modeling errors in M, — Mg, can be
excluded when inequality (6) holds.

Step 3 : For each S; € S, define f; as a logical vector. f; = 0 if inequality (6) holds; f; = 1 otherwise.
The most significant modeling errors are thus localized to,

Me = [ {Ms, U (Mp — Ms,) fi} (11)

MODELING A BIOLOGICAL PROCESS
Process Model

Figure 1 shows a biological denitrification process of a post-denitrification plant, which aims to remove
the nitrate as well as the carbon compounds contained in the influent water by means of biological
reactions. It consists of two functional units, a bioreactor and a settler. In the reactor, which is often
completely mixed, biomass is present in the form of sludge flocs. The biomass oxidizes the carbon com-
pounds with nitrate as the oxygen source. The carbon compounds and nitrate are thus both removed
and biomass is produced. In order to prevent the sludge concentration in the reactor from becoming
too high due to its continuous growth, surplus sludge is removed via the waste flow (see Figure 1). The
a priori knowledge allows one to model the process by making mass balances for three materials,

X0 = wx -exe - 2xq
Ss() = —gomBX() - Q’"()s<t)+Q';,“’sq,n(t> (12)
Swolt) = ~gamenX() - T IPox() - Lo + Lo

where X, Sg, Syo denote the biomass, the carbon compounds and the nitrate concentrations in the
bioreactor, respectively; Sg;, and Syo,in denote the carbon compounds and the nitrate concentrations
in the influent, respectively; Q;, is the influent flow rate; @,, is the waste flow rate; V is the volume of
the bioreactor; Yy is the yield coefficient; b is the biomass decay coefficient; fp is the fraction of the
inert materials in biomass; p(t) is the specific biomass growth rate, which is still to be modeled. Note
that a point settler is assumed in the model.

The following double Monod law is commonly used to model the specific biomass growth rate in the
considered system (Henze et al. 1987),

Ss(t) Snolt)
Hmoz g+ S5(t) Ko + Sno(d)

u(t) = (13)
where pi,q; 1S the maximum specific growth rate, Ks and Kyo are the so-called half saturation coeffi-
cients for the carbon compounds and nitrate, respectively. Equation (12), together with equation (13),
gives a parametric model of the denitrification process. All the parameters involved are plant dependent
and hence have to be specifically calibrated or estimated for each individual case.
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Figure 1: Biological denitrification process

Modeling the Enumerable Modeling Errors

Basically, modeling errors may be introduced in each stage of the modeling process. In defining the
experimental frame, some important components may be missed, some significant disturbances to the
system may be improperly neglected, state variables may be deliberately aggregated to reduce the
model order and so on. All of these introduce errors into the model. In identifying a model structure,
a wrong one may be assumed due to for instance lack of knowledge of the mechanism of the process or
due to an oversimplification. Similarly, incorrect model parameter values may be used due to improper
or inadequate data used for model estimation and/or ill defined estimation algorithms. Analysis of the
denitrification process allows for instance to enumerate the following modeling errors,

modeling error due to ozygen presence in influent

An assumption underlying model (12) is that no other reactions occur in the process which affect the
mass balance of the concerned materials. One knows, however, that this assumption is not valid when
dissolved oxygen is present in the influent. In fact, when dissolved oxygen is fed to the bioreactor aerobic
oxidation will also occur. With r, denotes the oxidation reaction rate, this reaction introduces an r,
term into the first equation of (12) and an r,/Yy term into the second equation. The modeling error
term in equation (2) thus takes the form of e, () = [t —1/Yy 0]T7,(t), where [l —1/Yy 0] is the
feature matrix/vector of the concerned modeling errcr, r,(¢) is the unknown, time-variant magnitude
of the modeling error.

modeling error due to an improperly characterized reaction rate

There does not exist a fundamental law that precisely characterizes the dependence of the specific
denitrification reaction rate on the concentrations of the substrates. The “laws” which have hitherto
been proposed are all quite empirical. A problem of this type of laws is that they have a limited
applicability range. An inappropriate choice of the “laws” will introduce the following error term
(assuming that the real reaction rate: p,(t) = p(t) 4 dps(t), where §u4(t) is the modeling error) into
equation (2) : e, () =[1 —1/Yy — (1~ Yy)/(2.86Yg)|Tu,(t)X ().

modeling errors due to inaccurate parameter values

modeling error of b. Assuming b, = b-+0b, where b, is the real decay coefficient and 6b is the modeling
error, one obtains e, (1) = [-1 0 — (1 — fp)/2.86]75bX (t).

modeling error of fp. Assuming fp, = fp + 6 fp, where fp, is the real inert fraction in a biomass
cell and & fp is the modeling error, one obtains ey, s, (t) = [0 0 1)76fpbX (t)/2.86.

modeling error of Yy. Assuming 1/Yy, = 1/Yy + §(1/Yg), where Yg, is the real yield coefficient
and 6(1/Y}y) is the modeling error, one obtains ey, (t) = [0 —1 — 1/2.86]76(1/Yn)u(t) X (t)
modeling errors of f.,, Kyo and Ks. Assuming p,(t) = p(t) + 6p,(t), where y,(t) is the real
specific reaction rate and du,(t) is the error caused by the modeling error of pnq., Kno or Kg, one
obtains em e, Kyoks(H) =1 —1/Yg —(1—Yu)/(2.86Yn) Tou,(t) X (t).

One finds that all the modeling errors shown above, caused either by missing state variables, by choosing
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inappropriate model structures or using inaccurate parameter values, has been modeled with a term

Fidy(t).
SIMULATION STUDY
Design

Assume the real behavior (,(t) = f.(z,(t), 6, u(t),t)) of the denitrification process shown in Figure 1
is characterized by,

%) = w00 + o)X 1) — b X0 — 2l )

Sse(t) = _%,Tﬂr(t)xr(t) - iuo(t)Xr(t) - Q‘%(t)ss,r(t) + Q—i‘"/@&gm(t) (14)
Sort) = gyt X:(0) - AL, (0) - Lel5v0,0 + 250,00

So) = ~ T2l %, () - 500 + H 0,00

where Sp and Sp ;, are the oxygen concentrations in the reactor and in the influent, respectively; u,(t)
and p,(t) are the specific denitrification and oxidation rates, respectively,

Ssr(t) Sno(t) Koi
sy + Ss-(t) Knor + Snvo s (t) Kor + So(t)
= HMmaz,;r SSr( ) SO(t)

Ksr + Ssr(t) Ko + So(t)

Note how u.(t) has a different structure from its model shown in equation (13). The extra term
Kor/(Kor + So(t)) in u,(t) reflects the effect of oxygen inhibition of the denitrification rate.

ur(t) = ,umn:r,r (15)

Hot)

(16)

While states Sg,(t) and Syo,(t) and inputs Sgn(t) and Svon(t) in system (14) can be measured
through chemical analysis, state X, (t), the biomass concentration, is not directly measurable. However,
with a newly developed biological sensor, DECADOS (patent pending), the combination of parameters
and the state pimer Xy (t)/Yur, denoted as X,(t), can be measured (Bogaert et ol. 1996). In order to
make this measurement usable, model (12) is rewritten as,

X0 = pmaan X -o%0 - 25

S5t = —ax() - 4o (t>+Qm(” Ssan(t) (7)
Swolt) = —tb ()X() ﬂfn’j;Qgé"bX() 9ol 500) + Ll 510,000

o _ fmas _ o Ss(t) Sno(t)

X(t) = Yu X “(t)"KS'*'SS(")KNO“'SNO(t)

Based on model (17), an observer is designed (equation (4)) with g = 3. The error signal,
e(t) = [X:(t) Sss(t) Snos)” —[Xo(t) Ssolt) Snool”

is a featured signal. Corresponding to the reformulation of the model, the modeling errors modeled in
the previous sub-section are reformulated as,

em,n(t) = Fldl(t) = [Mma:t -1 O]le(t)
emu)(t) = Fada(t) = [tmaz — 1 — (1 — Yir)/2.86]7 da(t)
emp(t) = Fads(t) =[~1 0 —Ya(l - fp)/(2.86maz))" ds(t)
emfp(t) = Fads(t)=[0 0 1]7du(2)
emyy(t) = Fsds(t) =[001]Tds(2)
emKnoKs(t) = Feds(t) = [maz —1 — (1 — Yg)/2.86)7 d(t)

T
d
uma () = Frdn(t) = [(1) o —0.122] [d:;g”
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With the “estimated” model parameters (fimqee = 1day™, b = 0.24day™ fp=0.2, Yy = 0.67, Kno =
0.5mg/l, Kg = 2mg/l), the feature matrices F;~F are calculated. In order to improve the identifiability
of the modeling errors, a row wise transformation is applied to all the feature matrices, and the improved
feature matrices are shown in Table 1 where W, the transformation matrix, is chosen as diag(1 1 8).
Correspondingly, the feature equation (5) is changed to 7, Fi,, [ e79*"7d;(r)dr = &(t) = We(t).

Table 1: Feature matrices

Fru=WR | By =WFE | F3y=WF | Fo, =WFy | F5, =WF; | Foy = WFs | Fr,y = WF;
1 1 -1 0 0 1 1 0
-1 -1 0 0 0 -1 0 0
0 -0.923 —1.499 8 8 —0.923 0 -1

With feature matrices Fi,—Fry, set S is constructed as (with (9)),

Se = {81,82,83,84, 85,86, 51, S} = {R(Flu) , R(Fow) » R(Faw),
R(Faw) , R(Fru) , R(Frp) + R(Fow) , R(Frw) + R(F3) , R(Fay) + R(Fiu)}

With e; = 0.2, sets Mg, e =1,2,---, 8, can be calculated as follows with (10),
Msl = {FUU} MSz = {F‘Zw y Fﬁw}
Mss = {F3W} MS. = {F4uh FSw}
M85 = {F7w, FBw: F4w7 FSw} M.Ss = {Flw; FZw» F4w; F5w» FGw}
M51={F1W)F3w} M\sa:{FZ‘W7F3HJ1F5w}
Simulation

System (14) and its observer were simulated for different modeling errors, with random noise added
to all three measurements: X,, Sg, and Syo,. The conditions and parameters that were used in the
simulations, when not specifically mentioned, are: Sp;, = 0, Ko = 0.5 mg.l"!, Koy = 1.5 mg.l"%, b,,
fprs Ysry Knoy and Kg, took the same values as those of the model (see above). The cases studied
are,

Casel : Son = 2mg.l7 Y Case2 : So i, = 10mg.l 7},

Case3 : b, = 0.3day™; Cased : fp, =0.3;

Caseb : Yy, = 0.5; Case6 : Knor = 1mg.d™

CaseT : tmaz,yr = 1.2day ™Y Case8 : b, = 0.3day™", Kno, = Img.l7};

Case9 : b, = 0.28day !, Kyo,r = 0.2mg.l™}; CaselO: pmeer = 1.2day ™}, Knor = 0.3mg.17 Y

Note that for Case 1 and Case 2, the presence of oxygen in the influent not only introduces modeling
error Fj,, but also Fy, due to the oxygen inhibition of denitrification.

The identification results are shown in Table 2, where r; denotes |VIWe(t)|l2/||VTWe(t)|lz, the ratio
of the projection of We(t) on S to that on S;, for i = 1,2,---,8. M, is obtained using equation (11)
where f; is obtained by comparing r; with ¢; = 0.1. The following observations are made on Table 2.

e For Case 2 to Case 8, the algorithm successfully localizes the modeling errors to a subset of My
in which the real modeling errors are contained (M, C M,eq);

e For Case 1 and Case 9, the modeling errors identified are only a subset of those that are really
associated with the model. In Case 1, both i/, and F,, are associated with the model due to
the existence of oxygen in the influent. F, is not identified because the influence of the oxygen
inhibition of denitrification, when the oxygen concentration in the reactor is low, is much smaller
than the influence of oxygen on carbon compounds consumption and biomass growth. A similar
reasoning explains why Fj,, is not identified in Case 9. This is considered to be a nice property
since it means that the algorithm will only identify the most significant modeling errors that have
caused the invalidity of the model.
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Table 2: Identification results

Case | T2 T3 T4 T5 g T7 T8 M, M;eal
1 0.14 | 0.87 | 1.73°| 7.38 | 0.98 | 0.00 | 0.06 | 0.27 {Fiw} {Fiw, Fow}
2 030 | 1.17 | 1.29 | 3.39 | 0.92 | 0.00 | 0.12 | 0.31 | {Fiy, Fouw, Fauw, Fsu, Fow} | {Fiw, Fow}
3 12531 642 | 0.03 063 |0.02] 042 | 0.01 | 0.00 P} (Fro)
4 1376 1.62 | 0.64 | 0.03 | 0.02 | 0.00 | 0.47 | 0.3 Fiws Fou) (Fra
5 1278 | 142 | 0.71 | 0.04 | 0.02 | 0.00 | 0.47 | 0.34 Fro, Fou) (Fow
6 | 0.65|0.00 803 | 1.54 | 0.74 | 0.00 | 0.24 | 0.00 (Fru, Fou) (Fow
7 1140 | 5.81 | 0.38 | 1.40 | 0.01 | 0.60 | 028 | 021 | (Fre Frw, Fiw, Fou) (Fro)
8 0.23 | 0.53 | 265 | 811 | 0.67 | 0.19 | 0.23 | 0.00 {Fow,: Faw, Fow) {F3w , Fow}
9 [ 1.02 | 0.24 | 2.65 | 0.99 | 0.67 | 0.09 | 0.23 | 0.00 (P, Fou) (oo, Fou)
10 0471102 | 1.32 | 952 | 0.37 | 0.45 | 0.35 | 0.15 M, {Fow , Fruw}

e For Case 10, the algorithm fails to give any conclusion on the modeling errors.

CONCLUDING REMARKS

An approach to modeling error identification has been presented in this paper. It consists of three
major steps: (i) analyzing the process and its model to predict the possible modeling errors and extract
the feature matrices of these errors, (ii} designing observers for the process based on the invalid model
to generate the featured signal, and (iii) analyzing the featured signal to identify the modeling errors.
Since the approach requires enumeration of the modeling errors in advance, it is more suitable for
mechanistic models than for black box ones. For grey box models, one may consider each small black
box as a unit and localize the modeling errors to this level.

The method has been illustrated for a denitrification reactor model in which different modeling error
types could be identified, 1. e. state dimension deficiency, model structure error and parameter value
inaccuracy. The potential for more efficient model improvement is evident as efforts for model adjust-
ment e. g. via additional experiments can be directed much better.
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