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ABSTRACT

In recent years, there has been a growing awareness of the ill-de�ned nature of environ-
mental processes. To provide a frame of reference for discussions regarding ill-de�ned
systems, a taxonomy and terminology of the modelling and simulation of systems
is presented. Due to the complexity of ill-de�ned systems, it is not only necessary
to describe the nature of models, but also to describe modelling procedures. This
enables the modeller to obtain the model which best �ts his goals (optimal model).
For meaningful description of models, di�erent model formalisms will be presented.
Furthermore, modelling procedures will be described at a generic level and di�er-
ent model formalisms will be presented. Throughout this presentation, Waste-Water
Treatment Plants and processes occurring within these plants will illustrate the de�-
nitions given.

Key words: mathematical modeling, simulation, ill-de�ned systems, wastewater
treatment.

1 INTRODUCTION

In recent years, the use of mathematical models has gained importance in
environmental studies. Environmental processes, such as those occurring in
Waste-Water Treatment Plants (WWTP's), are often referred to as examples
of ill-de�ned systems. Compared to the modelling of well-de�ned (e.g., elec-
trical, mechanical) systems, ill-de�ned systems modelling is more complex. In
particular, the di�culty in choosing the \right" model is very apparent.

In the sequel a rigorous approach to modelling of ill-de�ned systems is
presented. Illustrations are given for the case of WWTP's.

In order to develop a framework for the modelling of ill-de�ned systems,
some de�nitions concerning the modelling and simulation enterprise are given.
Thereafter, a procedure to guide the modeller in �nding the \right" model is
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presented. This modelling procedure consists of interactions between informa-
tion sources and activities. Models, the focal point of the modelling enterprise,
may be described in di�erent formalisms. A common formalism classi�cation
will be presented.

2 MODELLING AND SIMULATION CONCEPTS

In most sciences studying ill-de�ned systems, researchers have very di�erent
scienti�c backgrounds. In particular in the �eld of environmental sciences this
is very apparent. Biologists and ecologists, need to collaborate with for exam-
ple, mathematicians, statisticians or computer scientists. This diversity may
result in very interesting approaches but also in communication di�culties [6].
The main goal of this section is to provide an unambiguous terminology. The
understanding of the modelling and simulation de�nitions will also help scien-
tists to better carry out their task. For an in depth presentation of modelling
and simulation concepts the reader is referred to Klir [15] and Zeigler [34].

2.1 Basic Entities and Processes
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Fig. 1. The real world and its abstraction
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In modelling and simulation three basic entities, i.e., a system, an experi-

mental frame and a model, as well as two main processes, i.e., modelling and
observation of behaviour, can be de�ned. A system, is de�ned as a potential
source of behaviour. A system is an object in the \Real World" (�gure 1),
observed within a certain experimental context. An object is really a purely
hypothetical concept because a perception of reality is determined by our own
capacity for observation [25]. As such, we must always de�ne the experimental
frame within which reality is observed and modelled.

The concept of experimental frame refers to a limited set of circumstances
under which a system is to be observed or subjected to experimentation. As
such, the experimental frame reects the objectives of the experimenter who
performs experiments on a system [34] (see Figure 2).

In its most basic form, an experimental frame consists of two sets of vari-
ables, the frame input variables and the frame output variables, matching the
systems inputs and outputs, and a set of frame conditions, matching the con-
ditions under which the systems' behaviour is to be observed. On the input
variable side, a generator describes the inputs or stimuli applied to the sys-
tem or model during an experiment. On the output variable side, a transducer

describes the transformations to be applied to the system outputs for mean-
ingful interpretation. The acceptor will complete the experimental frame. It
determines whether input/output pairs \�t" certain acceptance criteria (frame
conditions) such as \goodness of �t".

System
(real or model)

generator transduceracceptor

Experimental Frame

Frame Input
Variables

Frame Output
Variables

Frame Conditions

Fig. 2. System versus Experimental Frame

The third entity, a model, is an abstract representation of a system and
its experimental frame. A model can be de�ned as anything which is capable
of generating behaviour resembling the behaviour of a system within its ex-
perimental frame. The process of producing a model, for a given system and
experimental frame is called modelling.

Systems as well as models are capable of generating behaviour. The pro-
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cesses of generating behaviour of systems and models are called experimenta-
tion and simulation, respectively. Simulation can be seen as experimentation
on a model, i.e., virtual experimentation. Both experimentation and simulation
result in (sets of) data.

The success of using models is mainly due to the relatively easy and cheap
simulations. A model can be used to design a system, even before the system is
built. A good example is the use of models to design the capacity of WWTP's.
Moreover, models can be used to gain insight in a systems behaviour or to
control it.

In the following two important model properties are de�ned. These prop-
erties lead to the de�nition of an ill-de�ned system.

2.2 Model Formalism and Validity

As a result of the various application areas, the di�erent levels of a priori knowl-
edge, the diverse goals, etc., a plethora of model formalisms were developed.
Model formalisms play an important role in modelling and simulation of com-
plex and ill-de�ned systems. In modelling, the most optimal model formalism
must be chosen to describe the system. This choice has an impact on the simu-
lation of the developed model. Currently, di�erent formalisms require di�erent
simulation tools to simulate the model in an optimal way.

Some commonly used formalisms [27] are DAE (Di�erential Algebraic Equa-
tions), PDE (Partial Di�erential Equations), SDE (Stochastic Di�erential Equa-
tions), Bond Graphs[7], DEVS (Discrete Event System Speci�cation) [34] and
System Dynamics. Note that data can also be seen as a particular model
formalism. In complex systems it is often necessary to combine di�erent for-
malisms for di�erent sub-systems. Figure 3 gives an example of such a system.
At the top level, a system of WWTP's and storm-water tanks (bu�er tanks)
can be modelled using the DEVS formalism. Taking events (rain events, toxic
discharges) into account, one must schedule the distribution of the wastewater
loads between the WWTP and the tanks. In this case, a WWTP will be mod-
eled as a \black box" with a given time delay and a given capacity. However,
the WWTP can be seen as a system consisting of components such as aeration
tanks and settling tanks. Those components can be modelled using the PDE
or DAE formalism.

When a real world object is studied under particular experimental con-
ditions, it is called a system. The experimental conditions are formalised in
an experimental frame, and the system behaviour is formally represented as a
model. di�erent model formalisms may be used to represent a model. An ex-

periment performed on a system can be reproduced in a virtual experiment or
simulation. However, the question remains whether a speci�c model of a given
system, under known experimental conditions is, through simulation, able to
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Fig. 3. model formalisms in WWTP's

reproduce system behaviour to a desired level of uncertainty. A model's ability
to mimic system behaviour is referred to as \validity"[1]. Three di�erent levels
of model validity are de�ned [23]

� replicative: the model is able to reproduce the input/output behaviour
of the system.

� predictive: the model is able to be synchronised with the system into a
state, from which unique prediction of future behaviour is possible.

� structural: the model can be shown to uniquely represent the internal
(structural) workings of the system.

With each ascending level, the validity of the model becomes stronger causing
an increasing need for information and justi�cation. Conversely, this implies
that, for example, a replicatively valid model does not need to be valid at the
predictive level.

2.3 Ill-de�ned or Well-de�ned

As mentioned before, \system" is a purely theoretical concept and will al-
ways be viewed through an experimental frame. Therefore, for classi�cation
purposes, one has to de�ne the properties of a model describing the system.
A well known and often used classi�cation of systems is that between well-
de�ned systems and ill-de�ned systems. General examples of well-de�ned and
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ill-de�ned systems are electrical or mechanical system and social or environ-
mental systems, respectively. Both well-de�ned and ill-de�ned are often used
terms but they also lead to confusion; an ill-de�ned system for one scientist
may be well-de�ned for another. Hence, a de�nition of both well-de�ned and
ill-de�ned must be given. Moreover, by understanding the de�nition of an
ill-de�ned system one is aware of the pitfalls in using models for ill-de�ned
systems.

A well-de�ned system can be de�ned as a system of which it is possible
to build, within an experimental frame and given the current formalisms and
techniques, a structurally and behaviourally completely speci�ed and, up to a
certain level of accuracy, valid model. An ill-de�ned system can be de�ned as
every system which is not a well-de�ned system.

As an example, consider as a system and its experimental frame an aeration
tank with a constant temperature and volume and as relevant variables the
inow (Qin) and the outow (Qout). If one is only interested in the general
ow this system is a well-de�ned system. Its internal workings can be described
by the mass balance. The system will become ill-de�ned if the accuracy is
re�ned, e.g., one wants to describe the system on the level of internal ows
(turbulence), or the output oxygen concentration is added as a relevant variable
(change of experimental frame). Note that the well/ill-de�nedness of a system
also depends on the current formalisms and techniques, i.e., a currently ill-
de�ned system may become well-de�ned in future by using a new formalism or
technique.

Despite the ease of use and general applicability of models and simulation,
one has to be cautious in using these to describe ill-de�ned systems. Being
ill-de�ned implies that there will always be a chance that the behaviour (or
structure) of the model describing the system will be di�erent from the system
itself, i.e., that the model will not be valid.

3 THE PROCESS OF MODEL BUILDING

The process of model building is, in many ways, not unlike the process of soft-
ware development. In both cases, very speci�c detailed knowledge must be
acquired and represented. After development both the model and the software
programme must meet strict requirements. Unlike the process of model build-
ing, the software development process has often been a topic for research. This
resulted in software development models such as the \spiral model" [4] or the
\entity process model" [13]. In [10] the spiral model is used as a methodology
for the development of computer-based models of complex systems. The model
building process given in this paper is more similar to an entity process.
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Roughly de�ned, the process of model building consists of constant inter-
actions between information sources and modelling activities. A schematic
representation of the process of model building is given in Figure 4.
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Fig. 4. the process of model building

From Figure 4 may be concluded that all activities have to be performed top
down. However, a previously performed activity can be repeated depending on
the outcome of the current activity. During the whole process of model building
there exist constant interactions between activities and information sources.
To ensure an equal importance of each information source, the modeller must
justify each activity by using all information sources.

It has to be mentioned that since Figure 4 is a schematic representation
(model) of a very complex and sometimes intuitive process (ill-de�ned system),
it must not be taken for granted. Its only use lies in the rough guidelines it
gives.

In the following the information sources and activities will be described.

3.1 Information Sources

Three major information sources can be identi�ed:

� Goals and purposes

� A priori knowledge



8 S. KOPS ET AL.

� Experimental data

The goals and purposes of the model user will orient the modelling process.
The goals will, for example, determine the complexity of the model. The a pri-

ori knowledge available reects the knowledge already gathered. This a priori
knowledge often consists of (physical) \laws", such as the mass conservation
law. A priori knowledge not always has to be developed within the (scienti�c)
�eld in which the system to be described lies. Especially in environmental
sciences, which is a rather new science, some of the \laws" used have been
developed in other sciences and subsequently been adopted to model environ-
mental systems. The experimental data are the observations of the systems
behaviour. Experimental data may be collected to guide the modelling process
or to validate the developed model.

Depending on the importance given to a priori knowledge and experimen-
tal data, two di�erent modelling methodologies have been developed: deduc-

tive modelling and inductive modelling. Deductive modelling assumes a priori
knowledge as the most important information source. Starting from the a priori
knowledge, a deductive modeller will develop a model by using mathematical
and logical deductions. Experimental data is only used to accept or reject the
model or the hypotheses made during the modelling process. The observed
behaviour (data) is assumed to be the most important information source in
inductive modelling. Whereas deductive modelling has its roots in physics, in-
ductive modelling is based on statistics. Using the available data of a system,
an inductive modeller will try to �nd a model describing the data. Often a
part of the available data will be used to accept or reject the model or the
hypotheses made during the modelling process.

Both deductive modelling and inductive modelling have a fundamental
problem with the lack of a priori knowledge and data, respectively. There-
fore, pure forms of both modelling approaches will seldom yield optimal results
in modelling ill-de�ned systems. This implies that a good mix between the two
approaches is needed.

During the last decades both deductive and inductive modellers are ap-
proaching this mix more and more closely. Deductive modellers have become
aware that, for ill-de�ned systems, the measured data can never be duplicated
by the simulated data. This led to an increase of statistical techniques and the
concept of uncertainty [3]. Uncertainty is a measure of the probability that the
simulated data match reality. Uncertainty and the analysis of uncertainty (un-
certainty analysis) will play an important role during the modelling activities.
As opposed to using more statistical techniques, inductive modellers' more and
more use the a priori knowledge to compare their results with [31].

Before starting the modelling process one must acquire and structure the in-
formation sources (external information acquisition). The information sources
can also be updated during the modelling process (internal information acqui-
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sition). While modelling it is the modellers task to �nd a balance between
the use of the a priori knowledge and the experimental data. This balance
will, during each modelling activity, depend on the current availability of both
information sources.

3.2 Modelling Activities

As mentioned before, �ve main modelling activities exist. All these activities
will shortly be discussed below.

Experimental Frame De�nition

As a model describes a system together with its experimental frame, the ex-
perimental frame de�nition must be the �rst modelling activity.

By de�ning an experimental frame, the modeller must de�ne the systems in-
puts, outputs, and frame conditions. These can be accompanied by generators
(inputs), transducers (output) and acceptors (conditions).

Actually, if the main focus is to model a system, the �rst experimental
frame de�nition is not oriented towards de�ning the exact properties of the
experimental frame. The exact properties only need to be speci�ed before
doing an experiment on the system or model. From a computer scientists'
point of view one might say that the �rst experimental frame de�nition is the
de�nition of the experimental frame class whereas experiments are done using
objects of this class1.

In activated sludge systems [12], the inputs and outputs may, for example,
be de�ned as the ow rate and the concentrations of dissolved substances (such
as dissolved oxygen), particulate substances and inert substances. Conditions
are de�ned as, for instance, constant temperature and/or constant and neutral
pH. The main inputs and outputs in water quality systems [26] are dissolved
oxygen and biochemical oxygen demand. In order to couple (connect) models
(such as WWTP's with receiving waters) the experimental frame classes of
both models must be the same. Moreover, the units of all inputs and outputs
must be the same. Conversion of units can be performed by transducers. Since
the experimental frame classes of activated sludge systems and water quality
systems are not the same, coupling of the models of these two systems has
appeared to be rather di�cult. Currently, research is being done to unify
the experimental frame classes of WWTP's and, respectively, sewers [11] and
receiving waters [18, 20, 22].

Structure Characterisation

Structure characterisation (or structure identi�cation) addresses the question

1Viewing the experimental frame as a model the �rst de�nition is to de�ne the structure

of the frame. An experiment is done using this model with known parameter values.
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of �nding an adequate model structure. Its aim is to reduce the class of models
which are able to mimic the given system and experimental frame, its internal
structure and behaviour. In [23] some guiding principles for structure charac-
terisation are given:

� physicality: A model must bare close resemblance to reality.

� �t: The experimental data available should be explained by the model as
well as possible.

� identi�ability: After structure characterisation, it must be possible to
estimate the parameters.

� parsimony: The most simple explanation for phenomena must be found.

� balanced accuracy: The most useful model is often a balanced compro-
mise of the previous principles.

The principles of physicality and �t are closely related to two information
sources, a priori knowledge and the data, respectively. As a proper mix of the
available information sources is needed to derive an optimal model, a proper
mix of the above principles is needed to arrive at an optimal model structure.

The principles of identi�ability and parsimony are closely related together.
A structure containing an unidenti�able parameter is often assumed to be su-
peruous. However, if unidenti�ability occurs not only the model structure,
but also the information source used for identifying the parameters, need to be
questioned.

In practice, structure characterisation techniques can be classi�ed into two
main classes; a priori techniques and a posteriori techniques. A priori tech-
niques are capable of selecting models without the need of �tting the model(s)
to the available data. These techniques include techniques which select mod-
els based upon the available a priori knowledge and the given experimental
frame [8], techniques based on neural nets [30] and techniques using observers
or �lters [2, 24, 32].

In contrast with a priori techniques, a posteriori techniques do need the
parameters to be estimated before selecting a model. These techniques are
most widely used and include criteria such as the well known AIC, FPE [16]
or BIC [19]. Other techniques included are, for example, statistical hypothesis
tests (F-test) or analysis of residuals [21]. Using a biological process, a com-
parison of techniques, including both a priori and a posteriori ones, is given
in [29].

As may be concluded from the above, structure characterisation issues can-
not strictly be separated from parameter estimation. Another modelling ac-
tivity closely related to structure characterisation is model validation. Both
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activities may, approximately, use the same techniques. However, while struc-
ture characterisation is focused on the selection of a model structure among
other structures, model validation is focused on �nding aws in the developed
model.

Parameter Estimation

Parameter estimation will provide parameter values (and values for initial con-
ditions) for a chosen model structure. Parameter estimation aims to reduce the
class of parameters, using the �t principle de�ned previously. It is based on
the optimisation of a criterion de�ning the goodness-of-�t. Well known criteria
are maximum likelihood and minimum variance2.

Estimation of parameters can either be done recursively (on-line) or not
recursively (o�-line). Recursive estimation updates the estimation of the pa-
rameters every time a new observation is available. One of the best known re-
cursive estimation algorithms is the extended Kalman �lter [14]. Non-recursive
estimation will use a batch of data to estimate the parameters. The criterion is
minimised using optimisation algorithms such as simplex [17] or direction set
methods [5].

An important concept in parameter estimation is that of identi�ability (see
the above on structure characterisation). By identi�ability is meant the ability
to estimate (identify) an (almost) unique value for the parameter, using the
given model and observations. A parameter is said to be unidenti�able if only a
large set of parameter values can be identi�ed. Identi�ability of parameters may
be theoretical or practical. If a parameter is theoretical unidenti�able, i.e., it
can not be identi�ed given only the model structure, one needs to return to the
structure characterisation. Practical unidenti�ability occurs if the parameters
are unidenti�able given the model structure and the available data. In this
case, one may be able to increase the information contained in the available
data using optimal experimental design [28].

Simulation

An experiment performed on a model, a virtual experiment, is called simulation.
It consists on generating and observing the behaviour of a model together
with its completely speci�ed experimental frame. Simulation is used to gain
information about the model and, if the model is validated, to gain information
about the system described by the model. After validation, simulation results
can be used to design, analyse or control a system.

Simulation is performed by a simulator. A simulator consists of an internal

representation and a solver. The internal representation is a representation
of the model which can be understood by the solver. The solver \solves" the

2If the model is deterministic the criterion reduces to the least squares criterion.
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model, i.e., generates behaviour. Both the internal representation and solver
depend on the model formalism [27].

Simulation is often said to be optimal if it can be done within a certain
accuracy and time instant. Thus, within a given time instant, the simulator
must provide output which resembles the \real" model output within a given
accuracy. Both the accuracy and time instant depend on the goals and purposes
of the modeller and user, the formalism and the current techniques.

Due to the ability of duplicating the complex system's behaviour and ac-
tivities at a high speed and accuracy, computer software are mostly used as
simulators. Earlier, simulators were rather isolated, i.e., only capable of sim-
ulation. However, nowadays simulators often are embedded in a software tool
for both modelling and simulation [9].

Validation

As validity is the model's ability to mimic system behaviour, validation is
the process in which the validity of a model is determined. Some principles
for model validation are given in [1]. Three levels of validity can be identi�ed
namely the replicative (reproduce data), the predictive (predict behaviour) and
the structural (describe internal structure) level.

According to the de�nition of ill-de�ned systems, a model describing such a
system can not be validated i.e., it will never be valid. Therefore, in modelling
ill-de�ned systems, the term \falsi�cation" is preferred over \validation". With
falsi�cation is meant the process of trying to falsify (to �nd errors in) the model.
If it appears to be very hard to falsify the model, the con�dence in the model
might increase (decrease of uncertainty) but validity will never be proven.

The most common falsi�cation (validation) of models describing ill-de�ned
systems is that on the replicative level. A model is tested using the same
batch of data used for structure characterisation and parameter estimation.
Falsi�cation on a predictive level is often done using two data sets. The model
is developed using one data set and validated using the other (cross validation).
Concerning the level of validity, one must be aware that a high con�dence level
on the replicative level does not imply a high con�dence level on a higher level
(predictive or structural).

Methods used in validation often are the same as those used in structure
characterisation. These include statistical hypothesis tests (F-test), residuals
tests [21] and tests using di�erent observers or �lters [33].

After having tested the model's ability to mimic the system's behaviour it
can be tested (validated) whether the model �ts the goals of the user. These
tests include tests for technical applicability, universality and uncertainty.
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4 CONCLUSIONS

In recent years more and more di�erent scienti�c �elds have been involved in the
modelling and simulation of systems. Moreover, the complexity of ill-de�ned
systems has made it necessary to describe a procedure according to which the
modelling will proceed.

By presenting both a taxonomy of modelling and simulation of systems and
a modelling procedure, the above has provided a frame of reference for further
discussions and research.
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