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Abstract

Estimates of biokinetic parameters for an activated sludge
respiration model are obtained using an `on-line' combined
state/parameter estimation algorithm. The analysis sug-
gests that the continuous-discrete type of recursive predic-
tion error algorithm can be used to (i) obtain improved
estimates of certain identi�able parameter combinations
based on oxygen data only, and (ii) to evaluate the model
`on-line' through recursive estimates of the steady state
Kalman gain matrix K1.

1 Introduction

The estimation of biokinetic parameters from dissolved
oxygen data only is an increasingly topical subject of study
and de�nes one of the challenges in the modelling and con-
trol of biological processes [2, 10]. This paper discusses the
problem of `on-line' estimation of biokinetic growth pa-
rameters on basis of data collected by a Rapid Oxygen De-
mand TOXicity device (RODTOX), [9]. The data set used
in this paper has been studied earlier with special reference
to the structural identi�ability of various activated sludge
models in an earlier study [1, 2, 10] of which the analysis
of the identi�ability of the parameters in the Michaelis-
Menten kinetics is the most interesting result. The ap-
proach to the parameter estimation problem by Vanrol-
leghem et al. [10] is the application of `o�-line' parameter
estimation techniques. This study is extended in this con-
tribution using an `on-line' state/parameter reconstruc-
tion algorithm which will be applied to a synthetically
generated data set of a Single Monod model only. The `on-
line' or recursive approach provides a good fault detection
framework to sense a change of metabolism in the biore-
actor since the `on-line' estimates of the time-invariant
parameters can, indeed, reveal sudden shifts relating to

an inappropriate candidate model structure. More specif-
ically, the applied recursive algorithm assumes a parame-
terized steady state Kalman gain K1 which weights the
innovation �(tk) and can be utilized as a fault detection
mechanism since de
ections in the steady state gain re-
veal an increase in the uncertainty in the model structure
f(x; u; �; t) as a whole in the assumed general model struc-
ture

_x(t) = f(x; u; �; t) + �(t) (1)

y(tk) = h(x; u; �; tk) + �(tk) (2)

where �(t) and �(tk) are continuous time and discrete
time stochastic noise processes respectively, x(t) is the
n-dimensional state vector, � is the p-dimensional (time-
invariant) parameter vector, y(tk) is the m-dimensional
observation vector, and u(tk) is the r-dimensional in-
put vector, while the vector functions f(x; u; �; t) and
h(x; u; �; tk) are the continuous time dynamical model and
the discrete time observation function respectively.
The challenge of the RODTOX data set lies in its lim-

itation. It can be shown that reconstruction of all indi-
vidual parameters in the Single-Monod respiration model
(to be de�ned in section 1.2), i.e. the yield coeÆcient
Y , the saturation constant Km, the biomass X(t), the
substrate concentration S(t0), and the maximum speci�c
growth rate �max, based on OUR data only is impossi-
ble [2]. Combinations of these parameters, however, are
identi�able. A second challenge lies in the fact that the
respiration model used is non-linear and this introduces
another major hurdle for the application of a recursive
algorithm since, in general, these algorithms (e.g. the ex-
tended Kalman �lter) require a linearization of the model
at each time step, introducing linearization errors that
deteriorate the estimate. Application of a recursive algo-
rithm (the continuous-discrete recursive prediction error
algorithm (CDRPE, [7]) will be demonstrated here and
help to identify the values of the parameters. It is �nally
noted that the discussion will focus on the CDRPE re-
sults obtained rather than the technicalities involved in
the speci�c case study ([10]) and discussion of the algo-



rithmic development for which we refer to [7, 8].

1.1 An Activated Sludge Respiration

Model

Consider a biomass (X) in an aerated tank feeding on an
injected substrate of wastewater (S1(t)). Assume that the
concentration X is constant over the course of one exper-
iment (in case of the RODTOX device this is a realistic
assumption since the duration of one experiment, i.e. re-
covery to steady state after injection of a unit of wastew-
ater, is usually short (30 mins)). A classical approach for
a dynamical description of the reduction of the substrate
concentration due biochemical growth of a biomass X is
the Michaelis-Menten or Monod model

dS1

dt
= �

�maxX

Y

S1

Km + S1
(3)

where time dependency of S1 on t has been omitted for
notational convenience. The oxygen uptake rate (OURex)
is de�ned as

OURex = (1� Y )
dS1

dt
(4)

In case of several substrate concentrations fSi(t); i =
1; : : : ; kg, the total oxygen uptake rate (OURex) is sim-
ply de�ned by the sum of the individual contributions,
i.e. OURex =

Pk

i=1
(1 � Yi)

dSi

dt
. Dochain et al. have

demonstrated, using the Taylor series expansion method
([6]) for the function OURex(t), that in case of OURex

observations only the parameter combinations

�1 =
(1� Y )�maxX

Y
(5)

�2 = (1� Y )S(0) (6)

�3 = (1� Y )Km (7)

can be uniquely determined. This follows from the obser-
vation that all coeÆcients in the Taylor series expansion
for OURex(t) can be written as combinations of the set
f�i; i = 1; 2; 3g.
In the RODTOX measurement device the data

fOURex(tk); k = 0; 1; : : : ; Ng are generated from dis-
solved oxygen data fDO(tk); k = 0; 1; : : : ; Ng for which
derivatives have to be calculated. Here an unobserved
state, including the substrate concentration, will be in-
troduced that is estimated directly. The dynamics of the
dissolved oxygen concentration (x1(t)) in the reactor in-
clude exogenous respiration OURex(t), a re-aeration pro-
cess (di�usion of oxygen across the air/water interface),
and an endogenous respiration which is assumed constant.
In summary, the DO process model reads

_x1(t) = k1(C
e

s � x1(t))�OURex (8)

where Ce
s is the corrected saturation concentration { the

correction is a small factor that substracts the endogenous

respiration from the saturation concentration, and k1 is
the re-aeration constant. Equations (4) and (8) consti-
tute the two state model of the respiration process in the
bioreactor. Note that only the �rst state is directly observ-
able, while the second state is unobservable. At this point
the previous mentioned identi�cation results can be ap-
plied. Since the Taylor series expansion can be developed
around any time instant t we can estimate the parameters
f�i; i = 1; : : : ; 3g, except that �2 should now be replaced
by �2(t) = �(1� Y )S1(t). The parameters �1 and �2 are
indeed time invariant and will be the same for a Taylor
series expansion around any time instant t. Hence, it is
natural to rede�ne the model for the respiration process
by

_x1(t) = k1(C
e

s � x1(t))� _�2(t) (9)

_�2(t) = �
�1�2(t)

�3 + �2(t)
(10)

The re-aeration constant k1 can readily be determined af-
ter all substrate has been consumed, for example by �tting
an analytical solution of the di�erential equation

_x1(t) = k1(C
e

s � x1(t)) (11)

to the �nal part of the data record { when all substrate
has been consumed and re-aeration is the only active pro-
cess in the above DO balance. Subsequently, the time
invariant parameters �1 and �3 can be determined, to-
gether with the unobservable state �2(t). This will be
done using the CDRPE in the next section. In case of
two substrate concentrations the estimation can be solved
backwards, i.e. �rst estimate k1 from the �nal part of the
data record, then estimate the parameters f�i; i = 4; 5; 6g
of the second substrate (after the �rst substrate has been
consumed), and �nally estimate f�i; : : : ; i = 1; 2; 3g from
the �rst part of the data record when both substrates are
active. Strictly speaking such an approach is not `on-line'
in the sense we used it earlier but the data set is still pro-
cessed recursively in such an approach. The only thing
that changes is the fact that the data set is seperated
into three parts which can be treated in reverse order.
More elegant and certainly worth further investigation, is
to develop a �lter that processes the dataset backwards
in time. Such a backwards �lter could then be used to
estimate �rst k1 in reverse time until a structural collapse
is observered through a de
ection of the gain (K1) pa-
rameters. Then the re-aeration parameter can be �xed,
i.e. 8k : Pk1k1(tk) = 0, and the parameters �4, �5, and
�6 can be estimated using the backwards �lter. Having
established these values a �nal (backwards) run of such
a �lter can be used to estimate f�i; i = 1; 2; 3g. Finally,
it is noted that, using the above recursive approach, `on-
line' estimates of (1�Y )S(t) become available so that the
substrate concentration can be estimated once the yield is
known.



2 Some Results and Discussion

Synthetic data were generated using �1 = 2:0 and �3 =
1:5 and measurement noise with an intensity (variance-
covariance matrix) R = 0:03 was added to the observa-
tions. A typical `a priori' example of the simulated and
the updated estimates generated by the CDRPE is shown
in �gures 1 and 2, where �1(t0) = 1:2, and �3(t0) = 3:0
for the �rst run. In the second and third run (�gures 3{6)
the initial values �1(t0) and �3(t0) are set to the �nal val-
ues �1(tN ) and �3(tN ) from the previous run. In this case
it was observed that the parameter estimates for the two
parameters converge very close to the true values �1 = 2:0
and �3 = 1:5 which is a good result given the non-linear
dynamics of the Michaelis-Menten model. It should be
noted though that in some cases the initial estimates did
not converge to the true values. In �gure 4 the parameter
estimates for the three runs are depicted in the same �gure
and one can see clearly the improvement in the obtained
estimates.

An important note is that the (parametrized) steady
state gain K1 was �xed to zero in the above example
in order to maximize the changes in the parameters �1
and �3. The motivation for such an approach is that we
want to use the recursive algorithm to correctly estimate
the parameters �1 and �3 while the model structure itself
is assumed given and known. In case of model structure
identi�cation, i.e. both the model and the parameters are
only partly known `a priori', it is normal to increase the `a
priori' uncertainty on the Kalman gain parameter. Some
examples are presented in [7].

Metaphorically, one can think of the model structure
f(x; u; �; t) as a plastic or other 
exible structure which
is continuously under stress while the CDRPE processes
the data. Those parts of the 
exible structure that have
most elasticity will change �rst while other, more rigid
parts in the structure resist these changes [8]. We also
note that the 
exibility of the individual components in
the model and, more speci�cally, the `a priori' uncertainty
in the parameter estimates �1(t0); �3(t0), and K1(t0), can
be speci�ed through the associated leading diagonal ele-
ments. Thus, by specifying the variance-covariance ele-
ment associated with K1(t0) equal to zero we allow to let
the data only massage, as it were, the model components
associated with the two parameters �1 and �3. The values
for �i(tN ) were in both cases considerably improved when
compared to the initial estimates �1(t0) and �3(t0). Also,
the uncertainty bounds for �3 associated with the Monod
constant Km hardly decreased while processing the data,
contrary to the uncertainty bounds on �1 associated with
the �max parameter.

Finally, the sensitivity coeÆcients that also become
available `on-line' during the �ltering process are shown
in �gure 3. The graph shows that, indeed, the parameter
�max can best be identi�ed at the very beginning (when
the growth is large) and the middle part of the data record,
while KS can best be identi�ed in the middle of the data

record. This con�rms the well-known fact that, indeed,
the substrate constant Km is most diÆcult to estimate.
Further, both the sensitivities coeÆcients return to their
steady state values after the injection of wastewater has
been processed by the RODTOX device, meaning that
the magnitude of the dynamics described by the model
f(x; u; �; t) are close to zero at the end of the data record.

3 Summary and Further Research

A continuous-discrete type of recursive prediction error
algorithm has been applied to a (synthetically generated)
respirogram. On basis of `on-line' dissolved oxygen mea-
surements only it was found that the parameter combina-
tions �1, �2, and �3 can indeed be identi�ed as predicted
by the results of Dochain et al.. The CDRPE algorithm is
demonstrated to be a good parameter estimator and this,
in fact, is due to an improvement of the coupling between
the parameter and the state vector that is omited in, for
example, the familiar extended Kalman �lter [5], still very
frequently used in the literature as a parameter estimator
for (non-linear) systems (see also [7]). The results of the
CDRPE may further be improved using local smoothing
techniques that improve the estimate at time tk and, basi-
cally, alternate prediction and smoothing formulaes as to
improve the current estimate [3, 4].
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Figure 1: Dissolved Oxygen estimates generated by the
CDRPE { �rst run.
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Figure 2: Parameter estimates for �1 and �3. Note the
change in uncertainty for �1 when compared to �3.
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Figure 3: On-Line sensitivity estimates for �1 and �3
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Figure 4: Parameter estimates developing over three
runs when �i+1(t0) = �i(tN ); i = 1; 2

0 2 4 6 8 10 12 14 16 18
6.5

7

7.5

8

8.5

9

9.5

time

D
O

ex
(t

)

0 2 4 6 8 10 12 14 16
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Figure 5: Dissolved Oxygen estimates generated by the
CDRPE { �nal run.
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Figure 6: Parameter estimates for �1 and �3. Note the
di�erence in uncertainties between the two parameters �1

and �3.
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