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Abstract An earlier study on theoretical identifiability of parameters for a two-step nitrification model
showed that a unique estimation of the yield Y », is possible with combined respirometric-titrimetric data,
contrary to the case where only one type of measurement is available. Here, the practical identifiability of
model parameters was investigated via evaluation of the output sensitivity functions and the corresponding
Fisher Information Matrix (FIM). It appeared that the FIM was not sufficiently powerful to predict the practical
identifiability of this case with combined measurements as parameters could indeed be identified despite the
fact that the FIM became singular. The accuracy of parameter estimates based on respirometric and
titrimetric data and combination thereof was also investigated. Estimation on titrimetric data (Hp) was very
accurate and a fast convergence of the objective function towards a minimum was obtained. The latter also
holds for estimation on oxygen uptake rate data (ro), however with a lower accuracy. Parameter estimation
based on oxygen concentration data (S) was more complex but resulted in a higher accuracy. Thus, when
the highest accuracy is needed it is recommended to estimate parameters initially on Hp and/or r data, and
to subsequently use these parameters as initial values for final, and more accurate estimation on S, data.
Keywords Fisher Information Matrix; identifiability; parameter estimation; respirometry; titrimetry

Introduction

Theoretical parameter identifiability is based on the model structure and the available
measured outputs, and gives an indication of the maximum amount of information that can
be obtained from a given (theoretical) experiment. The practical identifiability on the con-
trary not only depends on the model structure, but isalso related to the experimental condi-
tionstogether with the quality and quantity of the measurements. It should be stressed that
the practical parameter identifiability often does not correspond with the theoretically
derived onedueto poor dataquality (Holmberg, 1982).

The theoretical identifiability of the parameters of a two-step nitrification model has
been studied via the series expansion methods: Taylor and generating series expansions
(Petersen, 2000; Petersen et al., 2000). The two-step nitrification Monod model (Table 1)
consists of two processes: (1) oxidation of ammonium (S,,) to nitrite (§4,). and (2) oxi-
dation of nitrite to nitrate (§55). Both nitrification steps can be characterised by measure-
ments of oxygen consumption, whereas only thefirst step can be characterised by itsproton
production (Hp) since the oxidation of § 4, does not have apH effect. Note that the model
in Table 1 does not take biomass growth into account (X = constant). Thisis a reasonable
assumption when the model isto be used to describe short-term experiments, aswill bethe
case in this paper. The identifiability study considered different cases: (1) availability of
only respirometric data(measurements of dissolved oxygen, Sy, or oxygen uptakerate, r ),
(2) availability of only titrimetric data (cumulative proton production, Hp), and (3)
availability of acombination of both measurements. Table 2 summarises the results of the
theoretical identifiability study.

Animportant result of thetheoretical identifiability study wasthat the autotrophicyieldfor
thefirst nitrification step (Y, ;) becomes uniquely identifiable when acombination of respiro-
metric and titrimetric measurementsisavailable. Thiscan be concluded fromthe* S, + Hpor
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Table 1 Two-step nitrification model, no biomass growth
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Table 2 Overview of theoretically identifiable parameter combinations for nitrification
step 1 and 2, depending on the available measurement(s) (Petersen et al., 2000)
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ro+Hp” columnin Table 2, wherethe 4. expression resultsin auniqueidentification of Y, ;.
Thismeansthat .41 X, Kga1, Yoz @d §4 (0) aretheoretically identifiable from combined
respirometric-titrimetric data. On the contrary, in case only one kind of measurement isavail-
ablethe parameter Y, ; isonly identifiable in acombination with other parameters, as can be
seeninthe*Syorry” andthe“Hp” columninTable 1. Itisinfact not surprising that aunique
identification of Y, ; requirestwo kinds of measurements, sincetheyield coefficient linksthe
amount of produced biomassto the number of degraded substrate units.

The methods by which the theoretical identifiability can be studied (e.g. the series expan-
sions) may however not bethat straightforward to apply, and may result in sets of non-linear
equations that are far from simple, even for models of moderate complexity. Alternatively,
the practical parameter identifiability can be evaluated directly based on the sensitivity func-
tions (Holmberg, 1982; Marsilli-Libelli, 1989) and the corresponding Fisher Information
Matrix (FIM), whichisaknown measurefor practical identifiability (Munack, 1991).

In this paper, the theoretical identifiability results (Petersen, 2000; Petersen et al., 2000)
are evaluated for aspecific case study through interpretation of the sensitivity functionsand
the corresponding FIM. This evaluation was carried out as a preliminary step to apply the
results of the theoretical identifiability study in the context of optimal experimental design
for combined respirometric-titrimetric experiments based on optimisation of the FIM
(Petersen, 2000). Furthermore, the accuracy of parameter estimates based on respirometric
or titrimetric dataand combined respirometri c-titrimetric measurements wasinvestigated.

Theoretical background

Parameter estimation typically aims at minimising aweighted sum of squared errors, J(p),
between model, y(t;, p), and measured, y,(t;), outputs with the weights Q, and N the num-
ber of measurements (Eg. (1)). The minimisation is obtained by optimal choice of the
parameter vector p:

Ip) = Z V(D) = Ym ()T Qi (YD) =Y (t)) (1)



The effect of asmall parameter deviation, dp, on the model fit, described by J(p), can be
evaluated by introducing alinearisation of the model with respect to the parameters along
thetraectory (Eq. (2)):

Y(t,,p-+0p) =y(t,,p) + a%;ap Y(t,P) + Y (t.)3p @

In Eq. (2) Yp(t;, p) denotes the output sensitivity functions with respect to the parameters.
Thus, the expected val ue of the objective function J(p) can bereformulated (Eq. (3)).

gnN O
E[3(p +0p)] = I(p) + op" ﬁz Y, (t.0) " Qi Yo (t; ,p)éﬁp ©)

Consequently, to obtain a reliable minimum for J(p) the difference between J(p) and
J(p+dp) should be maximised, i.e. a minimum is sought where J(p) is sensitive towards
changes in p. The reliability of the minimum can be increased by maximising the term
between brackets in Eq. (3). If the weighting matrix Q; in Eq. (3) is chosen as the inverse
measurement error covariance matrix, assuming that the measurement noise is white (i.e.
independent and normally distributed with zero mean), and uncorrelated (i.e. the measure-
ment error covariance matrix is adiagonal matrix), the term between bracketsin Eq. (3) is
defined as the Fisher Information Matrix (FIM). The more a measurement is noise
corrupted thelessit will countinthe FIM. The FIM isgivenin Eq. (4) (Munack, 1991):

N

FIM = vaai,p)TQti(ti,p) ©

Moreover, the FIM is the inverse of the parameter estimation error covariance matrix,
COV, and provides the Cramer-Rao lower bound on the parameter estimation errors, Eq.
(5) (Ljung, 1999):

COV(p) = FIM (p) (5)

Thus, the FIM can be regarded as a summary of the output sensitivity functions and the
measurement accuracy, thereby summarising the information concerning the model
parameters gained from an experiment. Local parameter identifiability requires that the
rank of the FIM isfull. In case FIM issingular some of the sensitivity functions are propor-
tional, and it will beimpossiblein that situation to obtain reliable parameter estimatesfrom
thedata. Finally, confidenceintervals can be derived since the standard deviation of theith
estimated parameter p* can be obtained from the square root g; of theith diagonal element
of FIM~L, An approximate confidence interval at level a isthen given by Eq. (6), wheret
indicatesthet distribution:

[piD_ta,(N—p)ahpiD+ta,(N—p)ai] (6)

Case study

Data was obtained with a hybrid respirometer combined with a titrimetric measurement
(Gernaey et al., 2001). The set-up (Figure 1) consists of an open continuously aerated ves-
sel and aclosed non-aerated respiration chamber. It is equipped with two dissolved oxygen
electrodes. Mixed liquor is continuously pumped between the aeration vessel and the respi-
ration chamber. The oxygen massbalancesare givenin Egs. (7) and (8), where the suffixes
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1 and 2 refer to the aeration vessel and the respiration chamber respectively:

d
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The main advantage of thisrespirometer isthat the oxygen uptakerater, (i.e. 1, ,) canbe
calculated by asimple S, mass balance over the closed respiration vessel (Eg. (8)), thereby
avoiding the need to estimate K, a values (Gernagy et al., 2001). Inthe hybrid respirometer
substrateisadded in the aeration vessel at the start of an experiment. Basically two process-
es contribute to r: (1) the immediate uptake of oxygen due to consumption of readily
biodegradable substrate, i.e. the exogenous oxygen uptakerater ,, and (2) the endoge-
nous oxygen uptake rate rg 4. Typically rq o, is modelled viaa Monod expression (e.g
Tablel)andrg, oqismodelled asafirst order decay processb X.

The basic concept of thetitrimetric measurement technique isthat the pH of the activat-
ed sludge sampleiskept at aconstant set-point while the cumulative amount of base and/or
acid needed to keep that set-point ismeasured (Ramadori et al., 1980). Such titrimetric data
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Figure 1 Experimental set-up used to collect combined respirometric-titrimetric data
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Figure 2 Data(rg ,, Hp, Sg ; and Sy, ,) obtained after adding ammonium to activated sludge and model fit



contains kinetic information that is comparable to respirometric data in the case of
nitrification, and can be modelled similarly (Gernaey et al., 1998).

The experiment consisted of a S, addition to activated sludge. Datainterpretation was
based on the model of Table 1. Beside substrate degradation, the model included equations
for thefirst order biomass decay and for the substrate transport in the set-up (Egs. (7) —(8))
(Gernaey et al., 2001). Thedatais presented in Figure 2 together with the model fits. A tail
isobservedinther 5 profile (from t = 60-100 min), indicating that the second nitrification
step was slower than thefirst step. Here focuswill only be on parameter estimation for the
first nitrification step. Therefore, the parameters for the second step were fixed at known
values obtained from a separate experiment with nitrite addition. Thus, according to the
theoretical identifiability analysis (Table 2), the parameters (.. a1: Kga1r Yaq1 and Sy (0)
could be estimated when considering combinedr, , and Hp data. If S, datawas considered
K, aand S had to be estimated additionally (Egs. (7) and (8)).

Results and discussion

Sensitivity functions and practical identifiability

The output sensitivity functions of S, r 5 , and Hp with respect to the different parameters
(Figure 3) were analytically derived in MAPLE V (Waterloo Maple Software). The well-
known almost linear dependence between the sensitivities of the outputs with respect to
Hmaxan @nd Kg, ; was observed (data not shown, see Petersen, 2000). This indicates that
Hmaxa1 @nd Kgaq Will be correlated, and they may be difficult to identify in practice
(Holmberg, 1982). Furthermore, Figure 3(a) and 3(b) indicate that the sensitivity functions
of the outputsr 5 , and Hp with respect to y4,,.., o ad Y, ; appear proportional. Thisiscon-
firmed by the sensitivity function equations that are proportional (Petersen, 2000).
Consequently, based on these resultsit will not be possible to obtain reliable estimates for
Himaxa1@d Y.

Asmentioned above, the sensitivity functions can pinpoint the experimental conditions
under which the dependency of the outputs on the parametersislargest, and thereby under
which conditions most information can be obtained on the parameters. For example, the
sensitivitiesof r 5 , with respect to the parameters exhibit rather sharp peaksindicating that
at certain points the sensitivity of the outputs towards the parameters is rather significant
(see Figure 3(a)). This indicates that the full information contained in the data is only
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Figure 3 Sensitivity functions: A: drg ,/dl s, @nd drg ,/dY 55 BrdHp/dUL o 8, @nd dHp/dY ,,; C:
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availableduring arather short part of atypical batch experiment and, further, that large esti-
mation errors may be generated if one does not collect sufficient data during this “sensi-
tive” timeinterval (Marsilli-Libelli, 1989). On the other hand the profiles of the sensitivity
functions of Hp do not exhibit as sharp peaks (Figure 3(b)). The information is not only
concentrated in alimited timeinterval. In case of equidistant measurements, thismay indi-
cate that with Hp data better advantage is taken of the information provided by the entire
data set. The sensitivity functions with respect to S, (0) seemed to be clearly distinguish-
able from the other sensitivities indicating that a unique estimate can be expected (Figure
3(c)). The rather different shapes of the sensitivity functions of r, , compared to Hp may
illustrate the difference between the sensitivity of concentration (given by Hp) versus rate
data (givenby rg, ,). The sensitivity functions of S, with respect to §,and b in Figure 3(d)
show that these are proportional, whereasit wasfound that the shape of the sensitivity func-
tion of K a was distinguishable, indicating a possible reliable K, a estimation (Petersen,
2000). Summarising, it can be expected from the detailed sensitivity analysis study that
estimation of ., A, and Kg, ; may cause practical problems. Y, , isnot identifiable when
considering separate measurements of r 4 ,, Sy or Hp. Furthermore, it was indicated that a
separation of the parametersand b may beyprobl ematic.

According to the findings of the theoretical identifiability study (Table 2) Y,, should
become uniquely identifiable when measurements are combined. Surprisingly, however,
when summarising the information of the sensitivity functions in the FIM for combined
respirometric (S, or ry, ,) and titrimetric (Hp) measurements, the FIM becomes singular
indicating an unidentifiable situation. Theinclusion of the sensitivity function with respect
toY,, causesthesingularity, sincethesensitivity functionsof u », and Y, , were propor-
tional. Thus, there seemsto appear a conflict between the application of FIM asameasure
for local parameter identifiability and the resultsderived from the theoretical identifiability
studies (Table 2). The FIM does not seem to reflect theimproved theoretical identifiability
achieved by combining measurements. Something similar was observed with the parame-
ters  and b. The parameter b is theoretically identifiable when combining two oxygen
measurements in the hybrid respirometer (Petersen, 2000). However, the inclusion of the
sensitivity function of b also causes singularity of the FIM.

Thereason for thisdiscrepancy is not clear. It may be hypothesised that information on
parameter identifiability obtained from the combination of measured outputs may be lost
due to the local first order linearisation of the model with respect to the parameters on
which FIM isbased. Tofurther investigatethe practical identifiability of Y, ;, simultaneous
estimation of .1, Kag, Sy (0) and Y, ; was carried out. A contour plot of the objective
function as a function of the possibly correlated parameters (..., and Y,, is givenin
Figure4. Aswould be expected from the FIM results, it appearsthat the parameters (. ..a 1

Table 3 95% confidence intervals expressed as percentage of the parameter
values, Q, via measurement errors or via objective function

Evaluation method Q Q viameasurement error Q via objective function

Data (1) / Parameter (-) Hrnaxal Ksar Sy (0) Hinaxal Ksa1 Sy (0)
o2 1.385 6.328 0.510 1.884 8.805 2.433
Hp 0.905 5.780 0.074 0.911 5.820 0.074
o2t HP 0.696 3.942 0.070 0.826 4.740 0.077
So1 0.231 0.943 0.241 0.308 1.255 0.321
So1+S0. 0.093 0.506 0.028 0.335 1.821 0.104

So1* S0+ Hp 0.091 0511 0026 0264 1503 0.066
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Figure 4 Contour plot of the objective function for the parameters LI ..., and Y,

and Y, arehighly correlated in practice since along valley is observed, indicating asevere
practical identifiability problem. However, it is also obvious that the contour is closed.
Hence, theresult that Y, ; istheoretically identifiableis confirmed if one eval uates the non-
linear objective function and not its linear approximation close to the minimum as done
when applying a FIM-based analysis. Obviously this conflict between methods for
identifiability analysisdeservesfurther theoretical analysis.

Evaluation of parameter estimation accuracy with respirometric-titrimetric data

The confidenceintervals of the estimated parameters are evaluated based on Eq. (6). It will
be discussed whether respirometric data may be more powerful than titrimetric data for
accurate parameter estimations.

The measurement error covariance matrix Q in Eq. (4) is practically estimated based on
the actual S, r , and Hp data (Figure 2) (Petersen, 2000). For S, and r  data the measure-
ment error (s?) is estimated from a data series obtained duri ng endogenous respiration (typi-
cally before or after the substrate addition). For Hp data it would, however, give an
unrealistic, optimistic picture to estimate the measurement error from data after the point
where substrate degradation is terminated, sincethe Hp profilein this caseis aperfect hori-
zontal line. Asaconsequence 2 is estimated based on the datafromt = 15-35 min wherethe
slopeisconstant. It wasfound that the actual measurement error on §; andr, ,isinthesame
order of magnitude, however relatively the measurement error on r, , data is about 100
timeslarger thantherelativeerror on S, data. Thisissimply caused by the noise-introducing
derivation of S, dataneeded to obtainr 5. The 95% confidence intervals (expressed as per-
centage of the parameter values) are now retrieved by calculation of theinverse FIM, and by
inserting the diagonal valuesinto Eq. (6) (Table 3). It should be noted that due to the singu-
larity problemswith the FIM, the sensitivity functions of Y, ; and b were excluded from the
FIM calculation. Thus, confidenceintervalsfor these 2 parametersare not calcul ated.

First, these resultsindicate that it is more accurate to estimate the parameters based on
Hp datathan onr , data. Thisisespecially the casefor S, (0) where the 95% confidence
interval isaslow as+0.074%with Hp data. If one considersthe Hp profilein Figure 2 thisis
not surprising since S, (0) isin fact determined by the location of the constant horizontal
plateau and many data points contain this information. Furthermore, it becomes obvious
from Table 3 that the confidenceintervalsimprove by the application of combinedr , and
Hp data. Thisisespecially the casefor the parameters i, 1 and Kg, 4, Where animprove-
ment of about 50% is observed compared to measurements of r, , alone. The accuracy of
the §, (0) estimate does, however, not improve further by applying combinedr, , and Hp
measurements. When the accuracy based on S, data is compared with the accuracy
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obtained viarg ,, it is clearly more accurate to estimate on the S, data. This is due to the
much higher measurement noise on I , data, as mentioned above. Furthermore, asignifi-
cant accuracy improvement is observed when two dissolved oxygen measurements are
avalable (Sp; + Sy,) compared to one (Sy,). This confirms the statement of
Vanrolleghem and Spanj ers (1998) that this set-up providestwo measures of therespiration
rate, thus duplicating the information on the kinetic parameters. The added value of Hp to
combined S, ; and S, , measurements seemsto beinsignificant.

The accuracies based on measurement errors reported in Table 3 are quite impressive
and warrant some verification. However, the measurement noise of the applied experimen-
tal method isindeed not very significant, asindicated in Figure 2. The confidenceintervals
were verified via simulations where the parameter values were set to the limits of the 95%
confidenceintervals. Theresulting simulated curvesindeed just lai d within the edges of the
measurement noise, confirming that the cal culated 95% confidenceintervalsarereliable. A
final element of discussion is that the weighting matrix Q was based on the measurement
errors only and did not include the model errors. Therefore, as a second evaluation of the
parameter accuracy, Q was based on the values of J(p) obtained from the parameter estima-
tion, thereby including both measurement noise and model errors. The resulting 95%
confidenceintervalsaregiveninthe second half of Table 3.

In general the differences between the 95% confidence intervals obtained with the two
error calculation approaches are not very large when considering ry ,, Hp, r5 ,*Hp and
Sp,1 data. This indicates that the model has been able to describe these data adequately
sincethe main part of the errorsisincluded in the measurement noise. Thisisespecially the
case for Hp measurements, where the confidence intervals obtained with both approaches
areamost identical. Onthe contrary thedifferencein 95% confidenceintervalswith Sy ; +
So ., data seems significant, and when model errors are considered the accuracy does not
i mbrove compared to S5 , dataalone. However, theinclusion of Hp datanow improvesthe
accuracy. The reason for the lack of improvement in accuracy when considering two Sy
datasetsisprobably becausethe complexity of the parameter estimation procedureincreas-
esdrastically in this case. Consequently, if only measurement errors are considered, one
may conclude that the most accurate parameters are obtained by applying the two oxygen
measurements, Sq ; and S, ,, from the hybrid set-up. This is however contradicted if the
modelling errorsareincluded aswell. The J(p) based approach pointsmorein thedirection
of applying only one set of oxygen measurements, i.e. S, ; or combined Sy, ; + Hp data.

Another important factor to consider before choosing the most adequate measured vari-
ablesfor aparameter estimation problem isthe rate of convergence of J(p) towardsamini-
mum and, quite related, the sensitivity for local minima. It appeared that convergence is
significantly faster whenr 5 , and/or Hp dataare used rather than S, data. Thisisdueto the
increased complexity of the estimation problem when using S, data, since K| a and both
need to be estimated simultaneously with the kinetic parameters (1, . » 1, Kga, and S (0).
Especially the parameter estimation based on Hp dataaloneisvery fast andis, in addition,
also very accurate, as indicated in Table 3. Thus, in practice one may initialy choose to
estimate the kinetic parameters on Hp and/or r, , data, and to obtain an even higher accura-
cy, especialy for y,..; ad Kg, 4, apply these parameter values asinitial guessesfor esti-
mations based on S data. Theintroduction of asecond S, datasource, however, may seem
questionable based on the case under study, due to increased complexity of the parameter
estimation problem and its effects on convergencerates.

Conclusions
The practical identifiability was evaluated on anitrification example via output sensitivity
functions and the corresponding Fisher Information Matrix (FIM), considering combined



respirometric-titrimetric outputs. The FIM became singular indicating an unidentifiable
situation despite the fact that a theoretical identifiability study had shown that the chosen
parameter set, including a unique identifiability of the yield Y,,, should be identifiable.
The FIM seemed inadequate to evaluate this improved theoretical identifiability since the
addition of the sensitivity of Y,, inthe FIM caused the singularity. Some information on
the parameters may be lost when applying FIM due to the local first order linearisation of
the mode! with respect to the parameters on which the FIM isbased. Estimation of Y, ; was
indeed possible in practice, although Y, ; estimates were strongly correlated with (g ;.
For this case study it thus seemed that a parameter identifiability evaluation based on FIM
gavetoo pessimistic apicture.

The accuracy of parameter estimates based on respirometric and titrimetric data was
evaluated considering (i) measurement errors, (ii) model errorsand (iii) the complexity of
the parameter estimation as characterised by the convergence rate of the estimation algo-
rithm towards a minimum. Estimation of parameters on Hp datais very accurate and afast
convergence s obtained. The same holdsfor r 5 dataalthough the accuracy isless. Aneven
higher accuracy can be obtained when the parameter estimates based on Hp and/or r, are
applied asinitial valuesfor the more complex parameter estimation based on S, data.
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