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Abstract An earlier study on theoretical identifiability of parameters for a two-step nitrification model
showed that a unique estimation of the yield YA1 is possible with combined respirometric-titrimetric data,
contrary to the case where only one type of measurement is available. Here, the practical identifiability of
model parameters was investigated via evaluation of the output sensitivity functions and the corresponding
Fisher Information Matrix (FIM). It appeared that the FIM was not sufficiently powerful to predict the practical
identifiability of this case with combined measurements as parameters could indeed be identified despite the
fact that the FIM became singular. The accuracy of parameter estimates based on respirometric and
titrimetric data and combination thereof was also investigated. Estimation on titrimetric data (Hp) was very
accurate and a fast convergence of the objective function towards a minimum was obtained. The latter also
holds for estimation on oxygen uptake rate data (rO), however with a lower accuracy. Parameter estimation
based on oxygen concentration data (SO) was more complex but resulted in a higher accuracy. Thus, when
the highest accuracy is needed it is recommended to estimate parameters initially on Hp and/or rO data, and
to subsequently use these parameters as initial values for final, and more accurate estimation on SO data.
Keywords Fisher Information Matrix; identifiability; parameter estimation; respirometry; titrimetry

Introduction
Theoretical parameter identifiability is based on the model structure and the available
measured outputs, and gives an indication of the maximum amount of information that can
be obtained from a given (theoretical) experiment. The practical identifiability on the con-
trary not only depends on the model structure, but is also related to the experimental condi-
tions together with the quality and quantity of the measurements. It should be stressed that
the practical parameter identifiability often does not correspond with the theoretically
derived one due to poor data quality (Holmberg, 1982).

The theoretical identifiability of the parameters of a two-step nitrification model has
been studied via the series expansion methods: Taylor and generating series expansions
(Petersen, 2000; Petersen et al., 2000). The two-step nitrification Monod model (Table 1)
consists of two processes: (1) oxidation of ammonium (SNH) to nitrite (SNO2), and (2) oxi-
dation of nitrite to nitrate (SNO3). Both nitrification steps can be characterised by measure-
ments of oxygen consumption, whereas only the first step can be characterised by its proton
production (Hp) since the oxidation of SNO2 does not have a pH effect. Note that the model
in Table 1 does not take biomass growth into account (X = constant). This is a reasonable
assumption when the model is to be used to describe short-term experiments, as will be the
case in this paper. The identifiability study considered different cases: (1) availability of
only respirometric data (measurements of dissolved oxygen, SO, or oxygen uptake rate, rO),
(2) availability of only titrimetric data (cumulative proton production, Hp), and (3)
availability of a combination of both measurements. Table 2 summarises the results of the
theoretical identifiability study.

An important result of the theoretical identifiability study was that the autotrophic yield for
the first nitrification step (YA1) becomes uniquely identifiable when a combination of respiro-
metric and titrimetric measurements is available. This can be concluded from the “SO + Hp or
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rO + Hp” column in Table 2, where the 4. expression results in a unique identification of YA1.
This means that µmaxA1 X, KSA1, YA1 and SNH(0) are theoretically identifiable from combined
respirometric-titrimetric data. On the contrary, in case only one kind of measurement is avail-
able the parameter YA1 is only identifiable in a combination with other parameters, as can be
seen in the “SO or rO” and the “Hp” column in Table 1. It is in fact not surprising that a unique
identification of YA1 requires two kinds of measurements, since the yield coefficient links the
amount of produced biomass to the number of degraded substrate units.

The methods by which the theoretical identifiability can be studied (e.g. the series expan-
sions) may however not be that straightforward to apply, and may result in sets of non-linear
equations that are far from simple, even for models of moderate complexity. Alternatively,
the practical parameter identifiability can be evaluated directly based on the sensitivity func-
tions (Holmberg, 1982; Marsilli-Libelli, 1989) and the corresponding Fisher Information
Matrix (FIM), which is a known measure for practical identifiability (Munack, 1991).

In this paper, the theoretical identifiability results (Petersen, 2000; Petersen et al., 2000)
are evaluated for a specific case study through interpretation of the sensitivity functions and
the corresponding FIM. This evaluation was carried out as a preliminary step to apply the
results of the theoretical identifiability study in the context of optimal experimental design
for combined respirometric-titrimetric experiments based on optimisation of the FIM
(Petersen, 2000). Furthermore, the accuracy of parameter estimates based on respirometric
or titrimetric data and combined respirometric-titrimetric measurements was investigated.

Theoretical background
Parameter estimation typically aims at minimising a weighted sum of squared errors, J(p),
between model, y(ti, p), and measured, ym(ti), outputs with the weights Qi and N the num-
ber of measurements (Eq. (1)). The minimisation is obtained by optimal choice of the
parameter vector p:
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Table 1 Two-step nitrification model, no biomass growth

Process ↓ / component → SO SNH SNO2 SNO3 Hp Process rate

1. Nitrification step 1

2. Nitrification step 2

Table 2 Overview of theoretically identifiable parameter combinations for nitrification
step 1 and 2, depending on the available measurement(s) (Petersen et al., 2000)

Nitrification step 1 Nitrification step 2

SO or rO Hp SO + Hp or rO + Hp SO or rO
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The effect of a small parameter deviation, ∂p, on the model fit, described by J(p), can be
evaluated by introducing a linearisation of the model with respect to the parameters along
the trajectory (Eq. (2)):

In Eq. (2) Yp(ti, p) denotes the output sensitivity functions with respect to the parameters.
Thus, the expected value of the objective function J(p) can be reformulated (Eq. (3)).

Consequently, to obtain a reliable minimum for J(p) the difference between J(p) and
J(p+∂p) should be maximised, i.e. a minimum is sought where J(p) is sensitive towards
changes in p. The reliability of the minimum can be increased by maximising the term
between brackets in Eq. (3). If the weighting matrix Qi in Eq. (3) is chosen as the inverse
measurement error covariance matrix, assuming that the measurement noise is white (i.e.
independent and normally distributed with zero mean), and uncorrelated (i.e. the measure-
ment error covariance matrix is a diagonal matrix), the term between brackets in Eq. (3) is
defined as the Fisher Information Matrix (FIM). The more a measurement is noise
corrupted the less it will count in the FIM. The FIM is given in Eq. (4) (Munack, 1991):

Moreover, the FIM is the inverse of the parameter estimation error covariance matrix,
COV, and provides the Cramer-Rao lower bound on the parameter estimation errors, Eq.
(5) (Ljung, 1999):

Thus, the FIM can be regarded as a summary of the output sensitivity functions and the
measurement accuracy, thereby summarising the information concerning the model
parameters gained from an experiment. Local parameter identifiability requires that the
rank of the FIM is full. In case FIM is singular some of the sensitivity functions are propor-
tional, and it will be impossible in that situation to obtain reliable parameter estimates from
the data. Finally, confidence intervals can be derived since the standard deviation of the ith
estimated parameter p* can be obtained from the square root σi of the ith diagonal element
of FIM–1. An approximate confidence interval at level α is then given by Eq. (6), where t
indicates the t distribution:

Case study
Data was obtained with a hybrid respirometer combined with a titrimetric measurement
(Gernaey et al., 2001). The set-up (Figure 1) consists of an open continuously aerated ves-
sel and a closed non-aerated respiration chamber. It is equipped with two dissolved oxygen
electrodes. Mixed liquor is continuously pumped between the aeration vessel and the respi-
ration chamber. The oxygen mass balances are given in Eqs. (7) and (8), where the suffixes
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1 and 2 refer to the aeration vessel and the respiration chamber respectively:

The main advantage of this respirometer is that the oxygen uptake rate rO (i.e. rO ,2) can be
calculated by a simple SO mass balance over the closed respiration vessel (Eq. (8)), thereby
avoiding the need to estimate KLa values (Gernaey et al., 2001). In the hybrid respirometer
substrate is added in the aeration vessel at the start of an experiment. Basically two process-
es contribute to rO: (1) the immediate uptake of oxygen due to consumption of readily
biodegradable substrate, i.e. the exogenous oxygen uptake rate rO ,ex, and (2) the endoge-
nous oxygen uptake rate rO ,end. Typically rO ,ex is modelled via a Monod expression (e.g
Table 1) and rO ,end is modelled as a first order decay process b X.

The basic concept of the titrimetric measurement technique is that the pH of the activat-
ed sludge sample is kept at a constant set-point while the cumulative amount of base and/or
acid needed to keep that set-point is measured (Ramadori et al., 1980). Such titrimetric data
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Figure 2 Data ( rO,2, Hp, SO,1 and SO,2) obtained after adding ammonium to activated sludge and model fit

Figure 1 Experimental set-up used to collect combined respirometric-titrimetric data
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contains kinetic information that is comparable to respirometric data in the case of
nitrification, and can be modelled similarly (Gernaey et al., 1998).

The experiment consisted of a SNH addition to activated sludge. Data interpretation was
based on the model of Table 1. Beside substrate degradation, the model included equations
for the first order biomass decay and for the substrate transport in the set-up (Eqs. (7) –(8))
(Gernaey et al., 2001). The data is presented in Figure 2 together with the model fits. A tail
is observed in the rO profile (from t = 60–100 min), indicating that the second nitrification
step was slower than the first step. Here focus will only be on parameter estimation for the
first nitrification step. Therefore, the parameters for the second step were fixed at known
values obtained from a separate experiment with nitrite addition. Thus, according to the
theoretical identifiability analysis (Table 2), the parameters µmaxA1, KSA1, YA1 and SNH (0)
could be estimated when considering combined rO ,2 and Hp data. If SO data was considered
KLa and So

O had to be estimated additionally (Eqs. (7) and (8)).

Results and discussion
Sensitivity functions and practical identifiability

The output sensitivity functions of SO, rO ,2 and Hp with respect to the different parameters
(Figure 3) were analytically derived in MAPLE V (Waterloo Maple Software). The well-
known almost linear dependence between the sensitivities of the outputs with respect to
µmaxA1 and KSA1 was observed (data not shown, see Petersen, 2000). This indicates that
µmaxA1 and KSA1 will be correlated, and they may be difficult to identify in practice
(Holmberg, 1982). Furthermore, Figure 3(a) and 3(b) indicate that the sensitivity functions
of the outputs rO ,2 and Hp with respect to µmaxA1 and YA1 appear proportional. This is con-
firmed by the sensitivity function equations that are proportional (Petersen, 2000).
Consequently, based on these results it will not be possible to obtain reliable estimates for
µmaxA1 and YA1. 

As mentioned above, the sensitivity functions can pinpoint the experimental conditions
under which the dependency of the outputs on the parameters is largest, and thereby under
which conditions most information can be obtained on the parameters. For example, the
sensitivities of rO ,2 with respect to the parameters exhibit rather sharp peaks indicating that
at certain points the sensitivity of the outputs towards the parameters is rather significant
(see Figure 3(a)). This indicates that the full information contained in the data is only
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Figure 3 Sensitivity functions: A: drO,2/dµmaxA1 and drO,2/dYA1; B: dHp/dµmaxA1 and dHp/dYA1; C:
drO,2/dSNH,1(0) and dHp/dSNH,1(0); D: dSO,1/d and dSO,1/db
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available during a rather short part of a typical batch experiment and, further, that large esti-
mation errors may be generated if one does not collect sufficient data during this “sensi-
tive” time interval (Marsilli-Libelli, 1989). On the other hand the profiles of the sensitivity
functions of Hp do not exhibit as sharp peaks (Figure 3(b)). The information is not only
concentrated in a limited time interval. In case of equidistant measurements, this may indi-
cate that with Hp data better advantage is taken of the information provided by the entire
data set. The sensitivity functions with respect to SNH (0) seemed to be clearly distinguish-
able from the other sensitivities indicating that a unique estimate can be expected (Figure
3(c)). The rather different shapes of the sensitivity functions of rO ,2 compared to Hp may
illustrate the difference between the sensitivity of concentration (given by Hp) versus rate
data (given by rO ,2). The sensitivity functions of SO with respect to So

O and b in Figure 3(d)
show that these are proportional, whereas it was found that the shape of the sensitivity func-
tion of KLa was distinguishable, indicating a possible reliable KLa estimation (Petersen,
2000). Summarising, it can be expected from the detailed sensitivity analysis study that
estimation of µmaxA1 and KSA1 may cause practical problems. YA1 is not identifiable when
considering separate measurements of rO ,2, SO or Hp. Furthermore, it was indicated that a
separation of the parameters and b may be problematic.

According to the findings of the theoretical identifiability study (Table 2) YA1 should
become uniquely identifiable when measurements are combined. Surprisingly, however,
when summarising the information of the sensitivity functions in the FIM for combined
respirometric (SO or rO ,2) and titrimetric (Hp) measurements, the FIM becomes singular
indicating an unidentifiable situation. The inclusion of the sensitivity function with respect
to YA1 causes the singularity, since the sensitivity functions of µmaxA1 and YA1 were propor-
tional. Thus, there seems to appear a conflict between the application of FIM as a measure
for local parameter identifiability and the results derived from the theoretical identifiability
studies (Table 2). The FIM does not seem to reflect the improved theoretical identifiability
achieved by combining measurements. Something similar was observed with the parame-
ters So

O and b. The parameter b is theoretically identifiable when combining two oxygen
measurements in the hybrid respirometer (Petersen, 2000). However, the inclusion of the
sensitivity function of b also causes singularity of the FIM.

The reason for this discrepancy is not clear. It may be hypothesised that information on
parameter identifiability obtained from the combination of measured outputs may be lost
due to the local first order linearisation of the model with respect to the parameters on
which FIM is based. To further investigate the practical identifiability of YA1, simultaneous
estimation of µmaxA1, KA1, SNH (0) and YA1 was carried out. A contour plot of the objective
function as a function of the possibly correlated parameters µmaxA1 and YA1 is given in
Figure 4. As would be expected from the FIM results, it appears that the parameters µmaxA1
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Table 3 95% confidence intervals expressed as percentage of the parameter
values, Q, via measurement errors or via objective function

Evaluation method Q Q via measurement error Q via objective function

Data (↓ ) / Parameter (→) µµmaxA1 KSA1 SNH (0) µµmaxA1 KSA1 SNH (0)

rO ,2 1.385 6.328 0.510 1.884 8.805 2.433

Hp 0.905 5.780 0.074 0.911 5.820 0.074

rO ,2 + Hp 0.696 3.942 0.070 0.826 4.740 0.077

SO,1 0.231 0.943 0.241 0.308 1.255 0.321

SO,1+SO,2 0.093 0.506 0.028 0.335 1.821 0.104

SO,1 + SO,2 + Hp 0.091 0.511 0.026 0.264 1.503 0.066
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and YA1 are highly correlated in practice since a long valley is observed, indicating a severe
practical identifiability problem. However, it is also obvious that the contour is closed.
Hence, the result that YA1 is theoretically identifiable is confirmed if one evaluates the non-
linear objective function and not its linear approximation close to the minimum as done
when applying a FIM-based analysis. Obviously this conflict between methods for
identifiability analysis deserves further theoretical analysis.

Evaluation of parameter estimation accuracy with respirometric-titrimetric data

The confidence intervals of the estimated parameters are evaluated based on Eq. (6). It will
be discussed whether respirometric data may be more powerful than titrimetric data for
accurate parameter estimations.

The measurement error covariance matrix Q in Eq. (4) is practically estimated based on
the actual SO, rO ,2 and Hp data (Figure 2) (Petersen, 2000). For SO and rO data the measure-
ment error (s2) is estimated from a data series obtained during endogenous respiration (typi-
cally before or after the substrate addition). For Hp data it would, however, give an
unrealistic, optimistic picture to estimate the measurement error from data after the point
where substrate degradation is terminated, since the Hp profile in this case is a perfect hori-
zontal line. As a consequence s2 is estimated based on the data from t = 15–35 min where the
slope is constant. It was found that the actual measurement error on SO and rO,2 is in the same
order of magnitude, however relatively the measurement error on rO ,2 data is about 100
times larger than the relative error on SO data. This is simply caused by the noise-introducing
derivation of SO data needed to obtain rO. The 95% confidence intervals (expressed as per-
centage of the parameter values) are now retrieved by calculation of the inverse FIM, and by
inserting the diagonal values into Eq. (6) (Table 3). It should be noted that due to the singu-
larity problems with the FIM, the sensitivity functions of YA1 and b were excluded from the
FIM calculation. Thus, confidence intervals for these 2 parameters are not calculated.

First, these results indicate that it is more accurate to estimate the parameters based on
Hp data than on rO ,2 data. This is especially the case for SNH (0) where the 95% confidence
interval is as low as ±0.074% with Hp data. If one considers the Hp profile in Figure 2 this is
not surprising since SNH (0) is in fact determined by the location of the constant horizontal
plateau and many data points contain this information. Furthermore, it becomes obvious
from Table 3 that the confidence intervals improve by the application of combined rO ,2 and
Hp data. This is especially the case for the parameters µmaxA1 and KSA1, where an improve-
ment of about 50% is observed compared to measurements of rO ,2 alone. The accuracy of
the SNH(0) estimate does, however, not improve further by applying combined rO ,2 and Hp
measurements. When the accuracy based on SO data is compared with the accuracy
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Figure 4 Contour plot of the objective function for the parameters µmaxA1 and YA1
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obtained via rO ,2, it is clearly more accurate to estimate on the SO data. This is due to the
much higher measurement noise on rO ,2 data, as mentioned above. Furthermore, a signifi-
cant accuracy improvement is observed when two dissolved oxygen measurements are
available (SO,1 + SO,2) compared to one (SO,1). This confirms the statement of
Vanrolleghem and Spanjers (1998) that this set-up provides two measures of the respiration
rate, thus duplicating the information on the kinetic parameters. The added value of Hp to
combined SO,1 and SO,2 measurements seems to be insignificant.

The accuracies based on measurement errors reported in Table 3 are quite impressive
and warrant some verification. However, the measurement noise of the applied experimen-
tal method is indeed not very significant, as indicated in Figure 2. The confidence intervals
were verified via simulations where the parameter values were set to the limits of the 95%
confidence intervals. The resulting simulated curves indeed just laid within the edges of the
measurement noise, confirming that the calculated 95% confidence intervals are reliable. A
final element of discussion is that the weighting matrix Q was based on the measurement
errors only and did not include the model errors. Therefore, as a second evaluation of the
parameter accuracy, Q was based on the values of J(p) obtained from the parameter estima-
tion, thereby including both measurement noise and model errors. The resulting 95%
confidence intervals are given in the second half of Table 3. 

In general the differences between the 95% confidence intervals obtained with the two
error calculation approaches are not very large when considering rO ,2, Hp, rO ,2+Hp and
SO,1 data. This indicates that the model has been able to describe these data adequately
since the main part of the errors is included in the measurement noise. This is especially the
case for Hp measurements, where the confidence intervals obtained with both approaches
are almost identical. On the contrary the difference in 95% confidence intervals with SO,1 +
SO,2 data seems significant, and when model errors are considered the accuracy does not
improve compared to SO,1 data alone. However, the inclusion of Hp data now improves the
accuracy. The reason for the lack of improvement in accuracy when considering two SO
data sets is probably because the complexity of the parameter estimation procedure increas-
es drastically in this case. Consequently, if only measurement errors are considered, one
may conclude that the most accurate parameters are obtained by applying the two oxygen
measurements, SO,1 and SO,2, from the hybrid set-up. This is however contradicted if the
modelling errors are included as well. The J(p) based approach points more in the direction
of applying only one set of oxygen measurements, i.e. SO,1 or combined SO,1 + Hp data.

Another important factor to consider before choosing the most adequate measured vari-
ables for a parameter estimation problem is the rate of convergence of J(p) towards a mini-
mum and, quite related, the sensitivity for local minima. It appeared that convergence is
significantly faster when rO ,2 and/or Hp data are used rather than SO data. This is due to the
increased complexity of the estimation problem when using SO data, since KLa and both
need to be estimated simultaneously with the kinetic parameters µmaxA1, KSA1 and SNH (0).
Especially the parameter estimation based on Hp data alone is very fast and is, in addition,
also very accurate, as indicated in Table 3. Thus, in practice one may initially choose to
estimate the kinetic parameters on Hp and/or rO ,2 data, and to obtain an even higher accura-
cy, especially for µmaxA1 and KSA1, apply these parameter values as initial guesses for esti-
mations based on SO data. The introduction of a second SO data source, however, may seem
questionable based on the case under study, due to increased complexity of the parameter
estimation problem and its effects on convergence rates.

Conclusions
The practical identifiability was evaluated on a nitrification example via output sensitivity
functions and the corresponding Fisher Information Matrix (FIM), considering combined
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respirometric-titrimetric outputs. The FIM became singular indicating an unidentifiable
situation despite the fact that a theoretical identifiability study had shown that the chosen
parameter set, including a unique identifiability of the yield YA1, should be identifiable.
The FIM seemed inadequate to evaluate this improved theoretical identifiability since the
addition of the sensitivity of YA1 in the FIM caused the singularity. Some information on
the parameters may be lost when applying FIM due to the local first order linearisation of
the model with respect to the parameters on which the FIM is based. Estimation of YA1 was
indeed possible in practice, although YA1 estimates were strongly correlated with µmaxA1.
For this case study it thus seemed that a parameter identifiability evaluation based on FIM
gave too pessimistic a picture.

The accuracy of parameter estimates based on respirometric and titrimetric data was
evaluated considering (i) measurement errors, (ii) model errors and (iii) the complexity of
the parameter estimation as characterised by the convergence rate of the estimation algo-
rithm towards a minimum. Estimation of parameters on Hp data is very accurate and a fast
convergence is obtained. The same holds for rO data although the accuracy is less. An even
higher accuracy can be obtained when the parameter estimates based on Hp and/or rO are
applied as initial values for the more complex parameter estimation based on SO data.
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